
Gene Regulation and Systems Biology 2007: 1 9–15 9

ORIGINAL RESEARCH

Correspondence: Koji Kadota, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 
1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan. Tel: +81-3-5841-1295; Fax: +81-3-5841-1136; 
Email: kadota@iu.a.u-tokyo.ac.jp
Please note that this article may not be used for commercial purposes. For further information please refer to the  copyright 
statement at http://www.la-press.com/copyright.htm

Evaluation of Two Outlier-Detection-Based Methods for 
Detecting Tissue-Selective Genes from Microarray Data
Koji Kadota1, Tomokazu Konishi2 and Kentaro Shimizu1

1Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bun-
kyo-ku, Tokyo 113-8657, Japan. 2Faculty of Bioresource Sciences, Akita Prefectural University, 
Shimoshinjyo, Nakano, Akita 010-0195, Japan.

Abstract: Large-scale expression profi ling using DNA microarrays enables identifi cation of tissue-selective genes for which 
expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two 
outlier-detection-based methods (an AIC-based method and Sprent’s non-parametric method) can treat equally various types 
of selective patterns, but they produce substantially different results. We investigated the performance of these two methods 
for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expres-
sion patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and 
analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method 
was more robust in both cases. The fi ndings confi rm that the use of the AIC-based method in the recently proposed ROKU 
method for detecting tissue-selective expression patterns is correct and that Sprent’s method is not suitable for ROKU.
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Introduction
The majority of microarray studies have focused on the detection of differentially expressed genes. Of 
these, tissue-selective genes for which expression in a single or small number of tissues is signifi cantly 
different than in other tissues have attracted great interest due to their value in revealing the biological 
and physiological functions of tissues and organs at the molecular level (Kadota et al. 2006; Liang et al. 
2006). 

Numerous methods have been used to detect tissue-selective genes in microarrays (Greller and Tobin, 
1999; Pavlidis and Noble, 2001; Kadota et al. 2003a; Schug et al. 2005; Ge et al. 2005; Yanai et al. 
2005; Liang et al. 2006; Kadota et al. 2006). Of these, A recent study (ROKU; Kadota et al. 2006) 
demonstrated the effectiveness of using both Shannon entropy for ranking genes on the basis of their 
tissue selectivity (Schug et al. 2005) and an outlier-detection-based method for identifying tissues in 
which a gene is selective (the AIC-based method; Kadota et al. 2003a). However, it did not clarify why 
an AIC-based method was used even though other types of outlier-detection-based methods are applicable 
(Kadota et al. 2006). For example, Sprent’s non-parametric method could be used (Ge et al. 2005).

We have now evaluated and compared two outlier-based methods previously used for the detection 
of tissue-selective genes: the AIC-based method (Kadota et al. 2003a) and Sprent’s non-parametric 
method (Ge et al. 2005). Their outputs greatly vary mainly with changes in two factors. One is the 
maximum number of outlier candidates. For example, the AIC-based method sets this parameter to half 
the sample number interrogated; it can of course be set to other numbers. The other is the number of 
samples in the dataset. Researchers may subtract (or add) samples from a dataset if the data quality is 
under a post-determined threshold (or because other samples are added). The outputs for the common 
parts from two slightly different datasets can differ. Of course, we want to use a method for which the 
output is robust against changes in both factors. The two outlier-detection-based methods were evaluated 
in terms of these two factors.
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Methods

Gene expression data
Expression data for normal human tissues were 
obtained from a dataset consisting of data for 36 
various types of tissues in Affymetrix high-density 
oligonucleotide microarrays representing 22283 
clones and controls (http://www.genome.rcast.
u-tokyo.ac.jp/normal/). The raw (probe-level) data 
were processed using the SuperNORM algorithm 
(Konishi, 2004 and 2006) and log2 transformed.

Detecting specifi c tissues using 
the AIC-based method
Detection of specifi c tissues using the AIC-based 
method (Kadota et al. 2003a) is performed as follows: 
(i) normalize gene vector x = (x1, x2, …, xN) for N 
tissues (x1 < x2 … < xN) by subtracting the mean 
and dividing by the standard deviation (SD); (ii) 
calculate statistics U = n × logσ + 2 × s × (logn!)/n 
for various combinations of outlier candidates, 
where n and s denote the numbers of non-outlier 
and outlier candidates and σ denotes the SD of the 
observations of the n non-outlier candidates; and 
(iii) regard tissues corresponding to outliers 
detected in the combination of minimum U as 
specifi c. The maximum number, Nmax, of outlier 
candidates was originally set to N/2 (Kadota et al. 
2003a). We analyzed the effect of changing Nmax. 
The R code is available in the additional fi le 2.

Detecting specifi c tissues using 
Sprent’s method
Detection of specifi c tissues using Sprent’s non-
parametric method (Ge et al. 2005) is performed 
as follows: (i) normalize gene vector x = (x1, x2, 
…, xN) for N tissues by subtracting the median and 
dividing by the median absolute deviation (MAD); 
(ii) regard tissues corresponding to absolute 
values >k as specifi c. Parameter k was originally 
set to 5 (Ge et al. 2005). We analyzed the effect of 
changing k.

Results and Discussion
The purpose of this study was to compare two 
outlier-detection-based methods (the AIC-based 
method and Sprent’s non-parametric method) for 
the detection of tissues in which a gene is selective. 
Compared to other statistical methods excluding 

ROKU, which uses the AIC-based method (Kadota 
et al. 2006), both methods have two advantages. 
First, they can treat equally various types of tissue-
selective genes: (a) ‘up-type’ genes selectively 
over-expressed in a single or small number of 
tissues, (b) ‘down-type’ genes selectively under-
expressed in some tissues, and (c) ‘mixed-type’ 
genes selectively over- and under-expressed in 
some tissues (Kadota et al. 2006). Second, they 
can extract genes whose expression is considerably 
different only in arbitrarily selected tissues. Other 
methods such as template matching (Pavlidis and 
Noble, 2001) and Schug’s Q-statistic (Schug et al. 
2005) sometimes detect genes considerably 
different in other tissues in addition to the objective 
tissue (Kadota et al. 2003a; Kadota et al. 2006).

Although neither method can rank genes on the 
basis of their overall tissue selectivity, ROKU can 
compensate for this by adding an entropy-based 
score for individual genes (Kadota et al. 2006). For 
ROKU users who want to detect various types of 
tissue-selective patterns, the remaining issue is 
whether another published method (Sprent’s 
method; Ge et al. 2005) is suitable for ROKU. 
Fortunately, the two methods have two common 
characteristics: (i) the same output format and (ii) 
only one parameter can affect the output (Nmax for 
the AIC-based method and k for Sprent’s method). 
These similarities facilitate direct comparison with 
no modifi cations. 

Here we examine the effects of (1) different 
parameter settings and (2) a reduced number of 
samples on robustness. We do this using the 
expression data for 22283 clones and 36 samples. 
We fi rst present an example using a hypothetical 
expression vector for ten tissues, x = (12, 51, 52, 
54, 57, 59, 60, 63, 85, 88) and then evaluate the 
two methods using actual microarray data. Both 
methods output a vector (consisting of 1 for over-
expressed outliers, –1 for under-expressed outliers, 
and 0 for non-outliers) that corresponds to the input 
expression vector. We only need compare these 
outlier vectors.

Effect of different parameter settings
The outlier vectors produced using outlier-
detection-based methods vary with the parameters 
(Nmax for the AIC-based method and k for Sprent’s 
method) (Figure 1). In general, the number of 
detected outliers (the number of nonzero elements 
in the outlier vector) tends to be lower when Nmax 
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is small and k is large. For example, reducing Nmax, 
which is the maximum number of outlier candi-
dates, from 5 to 1 produced two different outlier 
vectors: (–1, 0, 0, 0, 0, 0, 0, 0, 1, 1) for Nmax = 3 to 5 
and (–1, 0, 0, 0, 0, 0, 0, 0, 0, 0) for Nmax = 1 and 2 
(Figure 1a). This is not surprising since the latter 
values of Nmax are less than the number of outliers 
detected using the former values of Nmax (1 or 2 <3). 
There is also some variation in the outlier vectors 
produced using different values of parameter k in 
Sprent’s method (Figure 1b).

For the hypothetical vector, the two outlier-
detection-based methods with the default parameter 

settings (Nmax = k = 5) produce different outlier 
vectors. The difference is whether the second 
highest observation (the value of “85”) is detected 
as an over-expressed outlier (the AIC-based 
method) or a non-outlier (Sprent’s method). Since 
we designed the original hypothetical expression 
vector to have three significantly different 
observations than in the others (the same as the 
outlier vector obtained using the AIC-based 
method), the observation should be detected as an 
over-expressed outlier. Some researchers, however, 
disagree with our judgment and think, for example, 
there is only one tissue (T1) in which the 

Figure 1. Calculation of outlier vectors using different parameter settings for hypothetical input vector. The procedure for (a) the 
AIC-based method and (b) Sprent’s method are shown. Changing the parameter settings changed the outlier vectors.
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hypothetical vector is selective. The fi nal decision 
about tissue selectivity thus suffers from some 
subjectivity. Accordingly, we would be unable to 
determine which of the alternative methods 
performs better even if demonstrations for many 
hypothetical expression vectors and many actual 
vectors were provided. Figure 1 merely presents 
an example of producing different outlier vectors 
with different parameter settings.

Figure 2 shows the average percentage of 
detected outliers for various values of Nmax 
(Figure 2a) and k (Figure 2b) when actual gene 
expression vectors for 36 normal human tissues 
(Ge et al. 2005) were analyzed. The results with 
the default parameter settings (Nmax = N/2 = 18; k 
= 5) yielded similar average percentages: 2.43% 
for the AIC-based method and 2.32% for Sprent’s 
method. Clearly, the percentages for the AIC-based 
method were insensitive to changes in the parameter 
value while those for Sprent’s method were 
sensitive. For example, changing Nmax from 9 

(N*1/4) to 27 (N*3/4) yielded a difference of 
0.06% (2.43– 2.37%) (Figure 2a), while changing 
k from 4.0 to 6.0 yielded a difference of 2.64% 
(4.11–1.47%) (Figure 2b). Although the ranges for 
the AIC-based method (9–27) and Sprent’s method 
(4.0–6.0) are not directly comparable, these 
parameters are possible. These results suggest that 
researchers who want a method for detecting 
tissues in which a gene is selective that is insensitive 
to variations in these parameters should use the 
AIC-based method. The “outlier matrix” (consisting 
of 1 for over-expressed outliers, –1 for under-
expressed outliers, and 0 for non-outliers) that 
corresponds to the actual gene expression matrix 
when the AIC-based method is used with the 
default parameter setting is available in the 
additional fi le 1.

An interesting exercise is to change the 2  in 
the AIC criterion for detecting outliers to other 
values such as 1 or 2 though the original equation 
(U = n × logσ + 2 × s × (logn!)/n) has a solid 

Figure 2. Effect of different parameter settings for actual data. Percentages of detected outliers using (a) the AIC-based method and 
(b) Sprent’s method are shown. Note that those for the AIC-based method were more invariant than for Sprent’s method.
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theoretical basis (Ueda T, 1996; Kadota et al. 
2003a; Kadota et al. 2003b). A decrease (or 
increase) in the weight for the penalty results in an 
increased (or decreased) number of outliers. 
Changing 2  to 1 (or 2) with the default value of 
Nmax (18) yielded 5.19% (or 1.13%) for the average 
percentage of detected outliers. The AIC-based 
method remained robust against changes in Nmax 
when these other weights were used (data not 
shown).

Effect of reduced number of samples
In addition to the effect of different parameter 
settings, outlier vectors could also vary with the 
addition or reduction of samples even when the same 
parameter values are used. To examine the effect 
of reducing the number of samples, we generated 
N leave-one-out input vectors consisting of (N–1) 
samples from an expression vector originally 
consisting of N samples. Consider, for example, a 
hypothetical vector consisting of ten observations. 
Ten leave-one-out input vectors, each of which has 
nine observations, can be analyzed. If the method 
is good, the ten leave-one-out output vectors should 
be the same as the original output vector of ten 
observations.

Figure 3 shows the results of the “leave-one-out 
outlier detection” (LOOOD) analysis for the 
hypothetical vector using (a) the AIC-based method 
and (b) Sprent’s method, with the default parameter 
settings (Nmax = k = 5). Clearly, the AIC-based 
method is more robust against a reduction in the 
number of samples, at least for this hypothetical 
expression vector.

To examine the two methods further using 
actual data, we defi ned a basis for evaluation as 
follows: (i) the outlier vector obtained from the 
original vector (not a leave-one-out vector) is 
“true,” (ii) the outliers (“–1” or “1”) in the outlier 
vector are “positive,” and (iii) the non-outliers 
(“0”) are “negative.” Accordingly, the LOOOD 
results give rise to four quantities:

True positive (TP): outliers that are detected as 
outliers in the outlier vector obtained from the 
original expression vector consisting of N 
observations

True negative (TN): non-outliers that are 
detected as non-outliers in the original outlier 
vector

False positive (FP): outliers that are detected as 
non-outliers in the original outlier vector

False negative (FN): non-outliers that are 
detected as outliers in the original outlier vector

Figure 3. Example of leave-one-out outlier detection (LOOOD) for a hypothetical input vector. The output vectors were obtained using 
(a) the AIC-based method and (b) Sprent’s method with default parameter values (Nmax = k = 5).
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For example, the values for Sprent’s method 
(Figure 3b) were TP = 16, TN = 67, FP = 5, and 
FN = 2. Zviling et al. (2005) stated that any single 
number that represents the power of the method 
must account for all the categories listed above. We 
defi ne two such numbers: “accuracy” = (TP + TN)/
(TP + TN + FP + FN) and “Matthews correlation 
coeffi cient (MCC)” = (TP*TN - FP*FN)/((TP + 
FN)*(TN + FP)*(TP + FP)*(TN + FN))1/2 (Matthews, 
1975). Accuracy represents the fraction of the 
unchanged vectors among LOOOD test, and MCC 
represents the correlation between the original 
vector and the LOOOD results when the Pearson 
correlation coeffi cient is used. These statistics can 
take values in the following ranges: 0 � accuracy 
�1; –1 � MCC �1. The higher the value, 
the greater the robustness against a reduction in the 
number of samples. The LOOOD results for the 
hypothetical vector and Sprent’s method were 
accuracy = 92.22% and MCC = 77.50% (Figure 3b); 
for the AIC-based method (Figure 3a), they were 
accuracy = MCC = 100% since FP = FN = 0.

Figure 4 shows the LOOOD results for actual 
data using (a) the AIC-based method and (b) 
Sprent’s method. Accuracy and MCC were 
calculated for each parameter value (Nmax = 9 – 27 
and k = 4.0 – 6.0) around the default values 
(Nmax = 18 and k = 5). Obviously, the values for 
the AIC-based method were higher than those for 
Sprent’s method. We verified these results by 
varying the value of N in leave-N-out outlier 
detection (data not shown). These results suggest 
that the AIC-based method is less affected by slight 
changes in the input vector than Sprent’s method.

As mentioned above, objective comparison of 
methods for detecting tissue-selective patterns is 
understandably diffi cult. We know of only two 
reports in which the authors explicitly compared 
their method to other methods using the same 
dataset: (i) Kadota et al. (2003a) reported that the 
AIC-based method is superior to template matching 
and ANOVA, and (ii) Kadota et al. (2006) reported 
that ROKU can compensate for the disadvantages 
of the AIC-based method and of the entropy-based 
method proposed by Schug et al. (2005). The 
reports on the consistency between the results for 
a reduced number of samples and those for all the 
samples (Broberg P, 2003; Breitling et al. 2004) 
are of limited value because the results for all the 
samples were assumed to be correct (Jeffery et al. 
2006). There is of course no guarantee, but it is 
probably safe to say that a higher number of 

samples should produce better results. Therefore, 
we still appreciate the advantages of the AIC-based 
method compared to Sprent’s method.

Conclusion
We compared two outlier-detection-based methods 
previously used for the detection of tissue-selective 
genes. The AIC-based method was found to be 
better than Sprent’s non-parametric method in 
terms of robustness of the output against (1) a 
change in the parameter settings and (2) a reduction 
in the numbers of samples. These fi ndings suggest 
that the use of the AIC-based method rather than 
Sprent’s method in the recently proposed ROKU 

Figure 4. Effect of reduced number of samples for actual data.
Accuracy (circles) and Matthews correlation coeffi cient (crosses) are 
shown. Parameter values shown include the range of values likely 
used in practice. 
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method for detecting tissue-selective expression 
patterns was correct. 

More work remains to be done. First, while the 
AIC-based method has clear advantages compared 
to Sprent’s method, the Bayesian information 
criterion (BIC) should also be applicable. It would 
be interesting to develop a BIC-based method and 
compare its performance to that of the AIC-based 
method. Second, the approach used here is not 
suitable for comparing ROKU with other methods 
such as the Tukey-Kramer’s honestly signifi cant 
difference test due to their different output formats 
and the lack of genuine tissue-selective genes. We 
plan to develop a better approach for comparing a 
number of methods for detecting tissue-selective 
expression patterns. 
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Additional File
Additional fi le 1 (additional.txt) – includes all data analyzed using AIC-based 

method for dataset of Ge et al. (2005).
For the original gene expression matrix, an outlier matrix (consisting of 1 

for over-expressed outliers, -1 for under-expressed outliers, and 0 for 
non-outliers) is provided. It also contains an entropy score (H’) 
measured by ROKU.

Additional fi le 2 (r_code.txt) – R function of AIC-based method.
The R function for the AIC-based method is provided. An example analysis 

using the hypothetical vector is also provided.
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