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The prognosis of pancreatic cancer is extremely poor compared to other cancers.

One of the reasons for this is the difficulty of early diagnosis. Surveillance using

cancer biomarkers and image diagnosis can enable early detection and has

improved the prognosis of hepatocellular carcinoma in Japan. However, it is very

difficult to detect pancreatic cancer at an early stage using cancer biomarkers

and image diagnosis alone. Fucosylation is one of the most important types of

glycosylation involved in cancer and inflammation. We have developed a novel

glycocancer biomarker, fucosylated haptoglobin (Fuc-Hpt), and have investigated

its usefulness for the diagnosis of pancreatic cancer over approximately 10 years.

Recently, we also found that most pancreatic tissues surrounding pancreatic can-

cer exhibit chronic pancreatitis with fibrosis and/or fatty degeneration. Certain

forms of chronic pancreatitis might indicate high risk for the development of

pancreatic cancer. In this review, we provide a historical summary of our research

on Fuc-Hpt as a cancer biomarker, and discuss a potential early detection system

for pancreatic cancer.

R ecent advances in medicine have improved the survival
rates of patients with various types of cancers. However,

the prognosis of pancreatic cancer is dismal and the 5-year
survival rate remains at approximately 5%.(1) This poor prog-
nosis is due to the difficulties encountered in the early diagno-
sis of this cancer type. In most cases, patients with pancreatic
cancer come to a hospital at an advanced stage and the tumors
are inoperable. In pancreatic cancer patients, even when small
tumors are detected using various types of image diagnosis, a
high rate of tumor recurrence is often observed following sur-
gical operation. This is likely because small metastatic lesions,
which are not detected with image diagnosis prior to surgical
operation, already exist in distant organs such as the liver and
lung at the time of surgery. Moreover, pancreatic cancer is
very resistant to chemotherapy and radiotherapy.(1) Therefore,
more than 80% of patients suffer relapse after resection.
Although recent approaches, such as polychemotherapy or
strategies leading to the improved effect of gemcitabine, can
substantially improve the prognosis, novel approaches and/or
concepts are required to completely overcome the challenges
in diagnosing and treating pancreatic cancer. There are no
enclosure methods to identify high-risk groups for pancreatic
cancer, as in the case of the enclosure of chronic viral hepatitis
patients for hepatocellular carcinoma. The genetic background
of pancreatic cancer is complicated,(2–4) and the interaction
between cancer cells and immune cells in their

microenvironment plays a pivotal role in pancreatic carcino-
genesis.(5) In this review, we introduce a possible disease asso-
ciated with pancreatic cancer, a potential strategy for the early
diagnosis of pancreatic cancer, and a non-invasive but highly
effective method for therapy, all from the viewpoint of glyco-
biology. Much of the material in this review is speculation
based on available evidence, with the aim of spurring the
research community to discuss possibilities for the early detec-
tion and pre-emptive management of pancreatic cancer.

Pathogenesis of Pancreatic Cancer

Although many researchers have investigated the pathogenesis
of PDAC, thus far, the crucial evidence pointing to causative
inflammation and/or infection for PDAC has not yet been
uncovered as it has in the case of hepatocellular carcinoma,
gastric cancer, and cervical cancer. It is thought that the accu-
mulation of multiple gene mutations induces PDAC. The
pathogenesis of PDAC might be similar to that of colorectal
cancer in terms of the multistep process of carcinogenesis pro-
posed by Vogelstein et al.(6) The PanIN theory is a classical
concept describing the pathogenesis of PDAC. According to
this theory,(7,8) invasive PDAC develops step by step, with the
involvement of PanIN I, II, and III. This phenomenon is
observed in the mouse model of pancreatic cancer. However,
pathological analysis of pancreatic tissue from patients who
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did not suffer from pancreatic diseases revealed many PanIN
lesions, especially in older patients. Some pathologists suggest
that PanIN is just a hyperplasia of the pancreas, and not a pre-
malignant lesion of PDAC. This concept is similar to that of
colon polyps, which represent merely benign disease, with
only a few cases of colon polyps developing into cancer
through a multistep process of oncogene mutation.
Most cases of PDAC exhibit oncogene mutations in K-ras

and inactivation of the CDKN2 gene, which encodes the cell
cycle regulator protein P16.(9) However, K-ras mutation alone
is insufficient to cause the development of PDAC, as evi-
denced by the fact that mice transgenic for K-ras in the pan-
creas do not develop spontaneous PDAC.(10) However,
additional mutations of tumor suppressor genes, such as p16 or
p53, can induce PDAC in K-ras-mutated transgenic mice.
Cerulein-induced chronic inflammation,(11,12) alcohol
administration,(13) and a high-fat diet(14) also caused PDAC in
K-ras-mutated transgenic mice, suggesting that the accumula-
tion of gene mutations resulting from environmental changes
is required for the development of PDAC. Thus, a gene manip-
ulation mouse model of PDAC provides a variety of informa-
tion on PDAC pathogenesis. How these basic pieces of
evidence apply to human pancreatic cancer is a very important
question. However, pancreatic biopsy for premalignant diseases
such as chronic pancreatitis is clinically difficult because of
the high risk it poses to patients. This is a key point to be con-
sidered in PDAC research.

Identification of Fuc-Hpt as a novel type of cancer
biomarker for PDAC

Oligosaccharide attachment is one of the most important post-
translational modifications of proteins, and there are two main
types of protein glycosylation, N-linked and O-linked glycosy-
lation.(15) Among the various types of glycosylation, fucosyla-
tion on both N-glycans and O-glycans is closely related to
cancer and inflammation.(16) It is known that serum levels of
fucosylated proteins are higher in cancer patients. To detect
fucosylated glycoproteins, AAL is commonly used in glyco-
proteomic analysis. Aleuria aurantia lectin recognizes many
types of linkages such as a1-2, a1-3/1-4, and a1-6 fucose. To
identify serum fucosylated proteins in patients with PDAC, we

used AAL blot analysis.(17) As shown in Figure 1(a), an
approximately 40-kDa protein was strongly fucosylated in pan-
creatic cancer patients. There was no change in the protein
levels of 40-kDa proteins in Coomassie Brilliant Blue staining.
Based on results from mass spectrometry and N-terminal
sequence analyses, this 40-kDa protein was identified as the
haptoglobin b-chain. The haptoglobin b-chain has four poten-
tial N-glycosylation sites. As shown in Figure 1(b), site-direc-
ted oligosaccharide analysis with mass spectrometry showed
that the glycan on site 3 had a characteristic structure includ-
ing fucosylation, compared to glycans on other sites.(18) A gly-
can structure, 4F-2 was observed only at site 3 of haptoglobin
glycans of PDAC patients. 4F-2 indicates a tetra-antennary
structure of N-glycans with two fucoses. Based on tandem
mass spectrometry analysis, this glycan structure is suggested
to be the Lewis Y-type (Fuca1-2Galb1-4GlcNAca1-3Fuc). For
the quantitative determination of serum Fuc-Hpt, we established
a lectin–antibody ELISA method, as shown in Figure 2. The
bottom of a 96-well ELISA plate was coated with the Fab frag-
ment of anti-human haptoglobin IgG, because the Fc portion of
IgG has the fucosylated oligosaccharide. The coated plate had
previously been blocked with PBS containing 3% BSA for 1 h,
followed by washing with PBS containing 0.1% Tween 20.
Sera diluted to 1/125–1/625 were used in this lectin–antibody
ELISA. The conditioned medium of a pancreatic cancer cell
line that was transfected with the human haptoglobin expres-
sion vector was used as the standard for lectin–antibody
ELISA.(19) Our previous study investigated the effect of inter-
fering substrates such as formagine, bilirubin F/C, and hemo-
globin in the lectin–antibody ELISA and found that the
addition of hemoglobin reduced Fuc-Hpt levels at half-time.(20)

Clinical Application of Lectin–Antibody ELISA of Fuc-Hpt
as a Cancer Biomarker

When we measured serum Fuc-Hpt in patients with pancreatic
cancer on a larger scale, the ROC curve showed that the
diagnostic value of serum Fuc-Hpt from pancreatic cancer
patients from normal volunteers was almost the same as that
of CA19-9.(20) The area under the curve of the ROC analysis
for the diagnosis of pancreatic cancer was improved, compared
to the first model of the lectin–antibody ELISA kit. This is
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Fig. 1. Identification of fucosylated haptoglobin
and site-directed oligosaccharide analyses of
haptoglobin. (a) An approximately 40-kDa protein
was specifically fucosylated in the sera of pancreatic
cancer (PC) patients, whereas its protein level was
almost the same. This figure is adapted from
Okuyama et al.17 with slight modification,
with permission from Wiley. (b) Site-specific
oligosaccharide analyses with mass spectrometry on
purified oligosaccharides from sera of normal
volunteers (NV), patients with chronic pancreatitis
(CP), and those with PC. Site 3 is susceptible to
fucosylation, and the glycan structure 4F-2 was
specifically detected at this site. These data adapted
from Nakano et al.18 with slight modification, with
permission from Wiley. Numbers on the x-axis in
each figure part indicate branching on N-glycans; F
indicates the number of fucose molecules attached
on each N-glycan. n.d., not detected.
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because the numbers of patients at advanced stages of pancre-
atic cancer were increased in this multi-institutional joint
research. Levels of Fuc-Hpt increased with progression through
the clinical stages of pancreatic cancer.(21) More interestingly,
a combination of carcinoembryonic antigen and Fuc-Hpt is a
marker for poor prognosis following surgery in patients with
colorectal cancer.(17) It is speculated that metastatic cancer in
the liver produces Fuc-Hpt. Therefore, it is thought that Fuc-
Hpt is not a cancer biomarker for early diagnosis of pancreatic
cancer, but a biomarker for early detection of liver metastasis
of pancreatic/colon cancer that cannot be detected in the image
diagnosis. Most pancreatic cancer cells did not express hap-
toglobin mRNA, as evidenced by RT-PCR analysis.(17) We
recently found that the secretion of hepatic glycoproteins is
regulated by fucosylation in the normal liver.(22) That is to
say, fucosylation is a possible signal for the polarized secretion
of fucosylated glycoproteins into bile ducts in the liver.(23)

When inflammation-induced levels of fucosylated proteins in
hepatocytes or transformation of hepatocytes induce a loss of
cell polarity, fucosylated proteins are secreted into blood ves-
sels. According to these theories, Fuc-Hpt could be produced
in metastatic lesions of colon or pancreatic cancer in the liver.
This hypothesis should be investigated by immunohistochemi-
cal study, using an antibody specific for Fuc-Hpt if possible.
Ballooning hepatocytes are known as a typical pathological

characteristic of NASH.(24,25) In ballooning hepatocytes, the
microtubule cytoskeleton is destroyed,(26) and polarized secre-
tion of fucosylated glycoprotein is destroyed. We found that
Fuc-Hpt can be used in the detection of ballooning hepatocytes
in the livers of patients with NASH, for example, by liquid
biopsy.(27) Thus, AAL-reactive Fuc-Hpt is an index for hepato-
cyte deformity with local inflammation in the liver. However,
because AAL recognizes both a1-3/1-4 fucosylation and a1-6
fucosylation, the significance of each of the types of linkage in
fucosylation should be clarified. To this end, a Fuc-Hpt anti-
body for each linkage type should be developed. A summary
of our clinical study of Fuc-Hpt as a cancer biomarker is
shown in Table 1. Although the value of the area under the
ROC curve of Fuc-Hpt is relatively high in the comparative
analysis between PDAC patients with healthy volunteers,
serum Fuc-Hpt level is increased in several kinds of cancer
patients, especially at the advanced stage.(21) This is a limita-
tion of Fuc-Hpt as a cancer biomarker for pancreatic cancer.

Chronic Pancreatitis is a Next-Generation Target for High-
Risk Groups of Pancreatic Cancer

Chronic pancreatitis has been identified as a strong risk factor
for PDAC occurrence.(28) Chronic pancreatitis is morphologi-
cally defined as progressive pancreatic fibrosis and
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Fig. 2. Lectin–antibody ELISA for fucosylated
haptoglobin and changes in the fucosylated
haptoglobin glycosylation pattern in pancreatic
carcinogenesis. A polyclonal antibody for the
haptoglobin b-chain was coated onto the ELISA
plate after deleting the Fc portion of the antibody.
Biotinylated Aleuria aurantia lectin (AAL)/Pholiota
squarrosa lectin (PhoSL) was used as the second
antibody to detect fucosylation. PhoSL recognizes
core fucose, whereas AAL recognizes all types of
fucosylation. In normal controls, serum haptoglobin
is scarcely fucosylated and core fucosylation levels
of haptoglobin are increased at the stage of
chronic pancreatitis. In contrast, an increase in the
Lewis type of fucosylation was observed on
haptoglobin, which might be a sign of distant
metastasis to the liver. Asn, Asparagine; CP, chronic
pancreatitis; HV, healthy volunteers; PDAC,
pancreatic ductal adenocarcinoma.

Table 1. Summary of the clinical study of fucosylated haptoglobin as a cancer biomarker

Methods Patient number AUC Sensitivity, % Specificity, % Reference

AAL lectin blot PC 49, HV 30 � 57 97 17

AAL lectin–antibody ELISA PC 63, HV 22 0.63 50 91 21

AAL lectin–antibody ELISA PC 63, CP 72 0.63 50 79 21

Improved AAL lectin–antibody ELISA PC 300, HV 315 0.91 85 82 20

PhoSL lectin–antibody ELISA PC 55, HV 60 0.68 60 83 36

Improved AAL lectin–antibody ELISA PC 83, HV 59 0.84 76 80 37

Improved AAL lectin–antibody ELISA PC 83, CP 159 0.65 52 78 37

Improved PhoSL lectin–antibody ELISA PC 83, HV 59 0.63 41 85 37

Improved PhoSL lectin–antibody ELISA PC 83, CP 159 0.81 69 84 37

AAL, Aleuria aurantia lectin; CP chronic pancreatitis; HV, healthy volunteers; PC, pancreatic cancer; PhoSL, Pholiota squarrosa lectin.
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inflammation that is accompanied by the atrophy of pancreatic
exocrine cells.(29,30) However, pancreatic biopsy is limited due
to its invasiveness. A diagnosis of chronic pancreatitis is clini-
cally made based on characteristic symptoms of patients and
several kinds of imaging examinations. However, many patients
with gastroenterological and hepatic diseases have minimal
symptoms in the early or mild conditions. Endoscopy and
biopsy as well as blood testing can diagnose inflammation in
these organs. Recently, we found that most pancreatic tissues
surrounding pancreatic cancer had chronic pancreatitis with
fibrosis and/or fatty degeneration.(31) However, these patients
had no clinical history of chronic pancreatitis, suggesting that
the incidence of subclinical pancreatitis in pancreatic cancer
patients might be fairly common. More interestingly, the patho-
logical changes of subclinical pancreatitis were observed in
cases of mortality due to diseases other than pancreas disease.
Although the main cause of chronic pancreatitis is alcohol con-
sumption, it is thought that other causes such as viral/bacterial
infection as well as fatty regeneration might be involved. Non-
alcoholic fatty pancreas disease was recently recognized as a
new clinical entity among obesity-related disease.(32) In patients
with NAFPD, the level of pancreatic fatty degeneration
increases with the degree of obesity, and obesity is known to
increase the PDAC mortality rate.(33) Non-alcoholic fatty liver
disease can progress to liver cirrhosis and hepatocellular carci-
noma.(34) We hypothesize that NAFPD could likewise progress
to chronic pancreatitis and PDAC; however, how this progres-
sion may occur remains unknown. To solve this question, the
cause of non-alcoholic fatty liver disease/NAFPD should be
clarified.

Development of a Novel Biomarker for Chronic
Pancreatitis

As shown above, we found that Fuc-Hpt is a novel type of
cancer biomarker for pancreatic cancer. To detect fucosylation,
we used AAL, which recognizes all type of fucosylation. In
general, a1-3/a1-4 fucose is attached on branched N-glycans/
O-glycans. Alpha1-6 fucose (core fucose) is attached to both
bi-antennary and tri/tetra-antennary glycan structures. Levels
of branched glycans are increased in malignant transformation,
and total fucose levels are increased. Previously we found that
PhoSL more specifically recognizes core fucose.(35) When
PhoSL was used in lectin–antibody ELISA for Fuc-Hpt instead
of AAL, detected Fuc-Hpt levels were 10-fold lower, and the

results of investigating Fuc-Hpt as a cancer biomarker were
therefore different.(36) Because PhoSL-reactive Fuc-Hpt was
not associated with the clinical stage of cancer, cells that pro-
duce this type of Fuc-Hpt would not be cancer cells.
Next, we measured serum Fuc-Hpt levels in patients with

chronic pancreatitis and PDAC, using both AAL–antibody and
PhoSL–antibody ELISA.(37) Very interestingly, AAL-reactive
Fuc-Hpt levels were significantly increased in patients with
chronic pancreatitis, compared to healthy volunteers, and were
further increased in PDAC patients. In contrast, PhoSL-
reactive Fuc-Hpt levels were significantly higher in patients
with chronic pancreatitis compared to healthy volunteers and
PDAC patients (Fig. 2). Multivariate analyses showed that
PhoSL-reactive Fuc-Hpt was an independent determinant for
the diagnosis of chronic pancreatitis. According to glycan
changes on haptoglobin in pancreatic diseases, we speculated
that AAL-reactive Fuc-Hpt is produced from liver metastasis
of pancreatic cancer, and PhoSL-reactive Fuc-Hpt is produced
from infiltrated lymphocytes in chronic pancreatitis tissue.
While AAL-reactive Fuc-Hpt is slightly increased following
surgery for pancreatic cancer, PhoSL-reactive Fuc-Hpt is
slightly decreased following surgery (EM, YK, HE, NH, KK,
ST, RF, TM, manuscript in preparation). Recently, we reported
that serum Mac-2 binding protein is increased in patients with
chronic pancreatitis, similar to PhoSL-reactive Fuc-Hpt.(38) In
this case, we hypothesize that the liver produces Mac-2-bind-
ing protein in patients with chronic pancreatitis, because these
patients probably have steatohepatitis. Serum Mac-2-binding
protein level is dramatically increased in NASH patients.(39,40)

When we study the pathophysiology of pancreatic diseases, the
correlation between liver and pancreas should be considered.

Perspectives from the Study of PDAC in Terms of Early
Detection and Preemptive Medicine

Recently, the concept of “early chronic pancreatitis” has been
established by the Japanese Pancreas Society.(41) It remains
unknown whether early chronic pancreatitis or subclinical pan-
creatitis develops into symptomatic pancreatitis. Even though
subclinical pancreatitis is diagnosed using biomarkers and/or
ultrasonography, it remains unknown whether the incidence of
PDAC in patients with subclinical pancreatitis patients is high,
as with the relationship between viral hepatitis and hepatocellu-
lar carcinoma. According to a variety of gene-manipulating
PDAC mouse models, at least one or more factors are required
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Amylase
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CA19-9
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Cancer immunotherapy

Pre- emptive medicineAlcohol
Other factors?
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Subclinical pancreatitis
Fig. 3. Strategy of early detection and pre-emptive
therapy for pancreatic cancer. To improve the
current poor prognosis of pancreatic cancer, high-
risk groups of pancreatic cancer should be defined
using a combination of several kinds of biomarkers
and ultrasonography. Pre-emptive medicine is an
ideal tool to prevent pancreatic cancer. Although
distant metastasis cannot be identified using image
diagnosis such as computed tomography, MRI, or
PET, dramatic increases in Aleuria aurantia lectin
(AAL)-reactive fucosylated haptoglobin (Fuc-Hpt)
might be an indication that therapies other than
surgical operation are needed. MRCP, magnetic
resonance cholangiopancreatography; PhoSL,
Pholiota squarrosa lectin.
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for progression to PDAC from chronic pancreatitis. It is reported
that familial history of PDAC is involved in the incidence of
PDAC. If a patient receives a diagnosis of chronic pancreatitis
and has a high risk of PDAC based on genetic background, he/
she should have the whole genome sequenced to determine
whether there is an abnormality in a tumor suppressor gene.
Such patients are good candidates for pre-emptive therapy. On
such pre-emptive approach is cancer vaccination. Once pancre-
atic cancer cells develop into a solid tumor, it is difficult to treat
with immunotherapy, because immune cells cannot attack can-
cer cells in the case of pancreatic cancer due to their microenvi-
ronment/stromal cells including fibrosis.(42) We have developed
a unique cancer vaccination therapy using porcine oligosaccha-
ride types.(43,44) A possible strategy for early detection and pre-
emptive medicine for PDAC is shown in Figure 3. A novel
treatment for subclinical pancreatitis is also a candidate for pre-
emptive medicine. In most cases, once PDAC is detected using
image diagnosis such as computed tomography, MRI, and PET,
micrometastasis is observed in different organs. Limited PDAC,
which might be genetically mild, could be completely cured by
surgical resection.
Sialyl Lewis A antigen is well known as CA19-9, and is a

representative cancer biomarker for PDAC, although there are
several problems in its specificity for PDAC diagnosis.(45) We
have found a novel type of CA19-9 carrier molecule: microli-
pids containing CA19-9.(46) Levels of this lipid type of CA19-
9 are specifically increased in the sera of patients with PDAC.
Certain kinds of novel proteins are involved in supplying
membranes with CA19-9. Inhibition of this membrane supply
system could be a novel strategy for PDAC treatment.
Recently, we found that fucosylation is a common type of gly-
cosylation seen in PDAC cancer stem cells, which were iso-
lated by three different methods for establishing cancer stem
cells.(47) Considering these findings together, fucosylation
could be a key type of glycosylation in PDAC.

Closing

A search in PubMed reveals over 10 000 reviews on PDAC,
including many excellent reviews from a genetic perspective.
Although the current review includes many hypotheses,

glycobiology and glycotechnology (glycoscience) would be a
promising tool for the management of PDAC. As a result of
this application of glycoscience, a relationship between
NAFPD and chronic pancreatitis might open a window for
PDAC research similar to that of NASH-derived hepatocellular
carcinoma. Recent advances in cancer medicine have over-
come 50% of cancer types, and this percentage will increase
further in the next 10–20 years. Pancreatic ductal adenocarci-
noma is probably the final target in which medical researchers
still need to clarify a precise etiology, find a method for early
detection, and provide more effective therapy. We believe that
the early detection of PDAC using glycobiomarkers to identify
high-risk groups for PDAC could provide a solution and future
directions for PDAC research.
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AAL Aleuria aurantia lectin
Fuc-Hpt fucosylated haptoglobin
NAFPD non-alcoholic fatty pancreas disease
NASH non-alcoholic steatohepatitis
PanIN pancreatic intraneoplasia
PDAC pancreatic ductal adenocarcinoma
PhoSL Pholiota squarrosa lectin
ROC receiver–operating characteristic
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