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Convolutional neural networks trained with a developmental
sequence of blurry to clear images reveal core differences
between face and object processing

Hojin Jang
Department of Psychology and Vanderbilt Vision
Research Center, Vanderbilt University, Nashville,

TN, USA

Frank Tong
Department of Psychology and Vanderbilt Vision
Research Center, Vanderbilt University, Nashville,

TN, USA

Although convolutional neural networks (CNNs) provide
a promising model for understanding human vision,
most CNNs lack robustness to challenging viewing
conditions, such as image blur, whereas human vision is
much more reliable. Might robustness to blur be
attributable to vision during infancy, given that acuity is
initially poor but improves considerably over the first
several months of life? Here, we evaluated the potential
consequences of such early experiences by training CNN
models on face and object recognition tasks while
gradually reducing the amount of blur applied to the
training images. For CNNs trained on blurry to clear
faces, we observed sustained robustness to blur,
consistent with a recent report by Vogelsang and
colleagues (2018). By contrast, CNNs trained with blurry
to clear objects failed to retain robustness to blur.
Further analyses revealed that the spatial frequency
tuning of the two CNNs was profoundly different. The
blurry to clear face-trained network successfully
retained a preference for low spatial frequencies,
whereas the blurry to clear object-trained CNN exhibited
a progressive shift toward higher spatial frequencies.
Our findings provide novel computational evidence
showing how face recognition, unlike object recognition,
allows for more holistic processing. Moreover, our
results suggest that blurry vision during infancy is
insufficient to account for the robustness of adult vision
to blurry objects.

Introduction

Humans are remarkably good at recognizing objects
across a wide range of viewing conditions, even those
that lead to degraded image quality. In particular, blur
is a problem that people encounter when viewing most

any real-world scene. Any object that lies much closer
or further in depth, relative to the point at which the
eyes are fixated and accommodated, will appear blurred
on the back of the retina (Sprague, Cooper, Reissier,
Yellapragada, & Banks, 2016). Blur leads to a loss of
high spatial frequency information, such that only the
more coarse, lower spatial frequency aspects of the
object are registered. A similar loss of high resolution
information occurs for objects that appear in peripheral
vision, due to retinal and cortical scaling factors that
vary as a function of eccentricity (Duncan & Boynton,
2003; Strasburger, Rentschler, & Jüttner, 2011; Virsu &
Rovamo, 1979).

Although blur leads to loss of fine detail, behavioral
studies have shown that people can still recognize
faces and objects after they have been blurred to a
considerable extent (Kwon & Legge, 2011). Research
has likewise shown that human observers can detect
and identify objects at far eccentricities, even beyond
50 degrees (Boucart, Lenoble, Quettelart, Szaffarczyk,
Despretz, & Thorpe, 2016; Thorpe, Gegenfurtner,
Fabre-Thorpe, & Bülthoff, 2001), although admittedly,
foveal recognition is far more accurate. Our ability to
recognize blurry or low-resolution objects is crucial for
successfully navigating the environment. For example,
while driving, it is critical that we can successfully
detect unexpected obstacles, traffic signs, or pedestrians
crossing the street, especially on a rainy day.

To understand how people recognize objects
degraded by image blur, it may be useful to consider
the performance of deep neural networks, which are
believed to provide the most promising current models
of the human visual system (Kriegeskorte, 2015;
Yamins & DiCarlo, 2016). In particular, convolutional
neural network (CNN) architectures (Fukushima,
1980), which apply a series of filtering and pooling
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operations to mimic the computations of visual cortex
(Hubel & Wiesel, 1962), have proven very successful in
tasks of object classification (He, Zhang, Ren, & Sun,
2015; Krizhevsky, Sutskever, & Hinton, 2012; Simonyan
& Zisserman, 2015) and face identification (Phillips,
Yates, Hu, Hahn, Noyes, Jackson, Cavazos, Jeckeln,
Ranjan, Sankaranarayanan, Chen, Castillo, Chellappa,
White, & O’Toole, 2018; Taigman, Yang, Ranzato,
& Wolf, 2014). Some researchers have even claimed
that CNNs have achieved or surpassed human-level
performance at tasks of object classification (He et al.,
2015; LeCun, Bengio, & Hinton, 2015). It is particularly
striking that CNNs, trained on object classification
tasks, ultimately learn object representations that are
quite similar to those found in the visual cortex of
human and non-human primates (Güçlü & van Gerven,
2015; Horikawa & Kamitani, 2017; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins, Hong, Cadieu, Solomon,
Seibert, & DiCarlo, 2014). Such neuroscientific findings
provide support for the notion that CNNs may perform
visual computations that quite closely resemble the
feedforward computations of the human visual system.

However, other lines of evidence suggest that
CNNs are unusually brittle and lack the robustness of
human vision, as modest changes in image quality can
sometimes lead to catastrophic failure. For example,
CNNs can be severely disrupted if a small amount
of adversarial noise (Goodfellow, Shlens, & Szegedy,
2014) or a moderate amount of random Gaussian noise
(Dodge & Karam, 2017; Geirhos, Medina Temme,
Rauber, Schutt, Bethge, & Wichmann, 2018; Jang &
Tong, 2018) is added to the test image. Image blur
has likewise been found to impair CNN performance
to a degree that would not be expected for human
performance (Dodge & Karam, 2017; Geirhos et al.,
2018). In general, it appears that CNNs excel on visual
tasks in which test images are drawn from a common
statistical distribution as the training images. However,
when the test images fall outside of those encountered
during training, performance can become severely
impaired.

It remains an open question as to whether human
vision is more robust than CNN performance because
we have acquired a greater range of visual experiences or
because the human brain processes visual information
in a qualitatively different manner. In this study, we
focused on the role of experience, which can be readily
modified for CNNs, and asked what types of training
experiences might lead to robustness to blur.

We were particularly motivated by the fact that early
human visual experience is defined by poor acuity at
birth (approximately 20/400) but gradually improves to
near-adult levels within the first year of life (Dobson
& Teller, 1978; Norcia & Tyler, 1985). The blurry
vision of young infants is due to multiple contributing
factors, including hypermetropic eyes due to short
axial length (Wood, Hodi, & Morgan, 1995), poor

accommodation, undeveloped fovea formation, as well
as unmyelinated and immature subcortical/cortical
circuits (Braddick & Atkinson, 2011; Kiorpes &
Movshon, 2004). Although blurry vision at birth may
slow the rate of visual learning, it has been posited
that this gradual shift from blurry to clear vision might
be necessary for the development of more integrative
visual processing. This view has received support from
studies of patients who had dense cataracts at birth and
were subsequently treated at an age of 2 to 12 months.
Because visual acuity was fully corrected by artificial
lenses after the treatment, these patients lacked early
experience with blurry vision. Despite having many
years of compensatory visual experience thereafter,
these patients commonly report difficulties with
recognizing faces and are severely impaired at detecting
changes to the configuration of a face, even though
they can still discriminate changes to the local facial
features (Geldart, Mondloch, Maurer, De Schonen, &
Brent, 2002; Le Grand, Mondloch, Maurer, & Brent,
2001; Le Grand, Mondloch, Maurer, & Brent, 2004).
Other studies have shown that patients with congenital
cataracts are impaired at perceiving the global form of
glass patterns (Lewis, Ellemberg, Maurer, Wilkinson,
Wilson, Dirks, & Brent, 2002), suggesting that spatially
integrative processing is generally impaired in these
patients as well.

A recent study investigated the potential impact
of early experience with blurry faces by training a
CNN initially with blurry face images, followed by
progressively clearer images, and found that the CNN
retained considerable robustness to blur after this
sequence of training (Vogelsang, Gilad-Gutnick,
Ehrenberg, Yonas, Diamond, Held, & Sinha, 2018). In
comparison, a CNN trained on faces that progressed
from clear to blurry showed good performance for
blurry faces but poor performance for clear faces. These
findings provide computational evidence in favor of
the notion that training with a progression from blurry
to clear images may be beneficial for more integrative
spatial processing of faces.

The goal of our study was to assess the generality of
these findings by assessing whether the processing of
blurry objects would necessarily benefit from a sequence
of blurry to clear image training. On one hand, it
seems natural to expect that a common training regime
should lead to the same benefits for the processing of
non-face objects. On the other hand, the tasks of face
recognition and object recognition are quite distinct
and present different computational challenges to the
visual system. Face recognition is a challenging task
that relies on dedicated neural circuitry to distinguish
subtle differences between stimuli that share a common
higher order structure (Kanwisher, McDermott, &
Chun, 1997; Tong, Nakayama, Moscovitch, Weinrib,
& Kanwisher, 2000) by relying on norm-based coding
(Chang & Tsao, 2017; Freiwald, Tsao, & Livingstone,
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2009; Loffler, Yourganov, Wilkinson, & Wilson, 2005).
By contrast, object recognition requires distinguishing
among a much more heterogeneous set of stimuli that
can vary along a wide array of features and object
dimensions (Hebart, Zheng, Pereira, & Baker, 2020). As
a consequence, a much more diverse set of diagnostic
features must be learned in tasks of object recognition.
Such differences in the visual stimuli and associated
task demands may account for why face recognition
relies more heavily on configural and holistic processing
(Le Grand et al., 2004; Tanaka & Simonyi, 2016).

There is also research to suggest that face recognition
relies on lower spatial frequency information when
compared to the subordinate-level discrimination of
certain non-face object categories, such as airplanes
(Harel & Bentin, 2009). Although face recognition tends
to be most accurate for stimuli presented in a mid-range
of spatial frequencies with peak performance centered
around eight cycles per face stimulus (Gaspar, Sekuler,
& Bennett, 2008; Näsänen, 1999; Peli, Lee, Trempe, &
Buzney, 1994), recognition remains possible for faces
that have been low-pass filtered to a cutoff frequency of
only two to three cycles per stimulus (Kwon & Legge,
2011). Moreover, low-pass filtered faces have been
found to engage holistic processing, whereas high-pass
filtered faces do not (Goffaux & Rossion, 2006). Taken
together, these findings raise the possibility that blur
applied to faces and non-face objects may lead to
differential effects on visual processing.

In this study, we trained CNNs on a progressive
sequence of blurry to clear images, and evaluated
whether robustness was retained at the end of training
for face- and object-trained networks. We found
that the face-trained CNNs successfully maintained
robustness to blur at end of training; moreover, during
intermediate training stages they could successfully
generalize across both blurry and clear faces. By
contrast, object-trained CNNs showed elevated
performance for the most recently trained blur level
but poor generalization to other blur levels. By the end
of training, the CNN was no longer robust to blurry
objects.

We devised an analysis to characterize the spatial
frequency tuning of the face- and object-trained
networks, not only for the first convolutional layer but
also for higher layers. This analysis revealed dramatic
differences between the two networks. The face-trained
network successfully maintained a preference for
lower spatial frequencies, whereas the object-trained
network showed a progressive shift toward higher
spatial frequencies after each stage of training. As
a control, we trained a CNN on object images that
were either low-pass filtered using a Gaussian kernel
or matched to the Fourier power spectrum of the
face images. Even after these image manipulations,
followed by our procedure for blurry to clear training,
the CNNs were unable to retain robustness to blur. We

performed additional controls with CNNs trained on
subordinate-level categorization of dogs or birds as well
as CNNs trained on superordinate-level categorization
of animate versus inanimate objects. In all cases,
blurry to clear training with these object stimuli proved
unsuccessful at conferring robustness to blur.

Our results suggest that more holistic, lower spatial
frequency representations can be used to support
successful recognition of faces across a range of
blur levels. By contrast, object recognition requires
higher spatial frequency information to achieve
optimal performance. With a progression of blurry
to clear training images, the object-trained CNN
learns to leverage this new, more discriminating
information, modifying its weights to such a degree
that it no longer successfully processes object images
presented at an earlier trained blur level. Although
early infant experiences with blur may help encourage
the development of more holistic face processing, our
findings with object-trained CNNs suggest that these
early experiences are insufficient to account for people’s
ability to recognize blurry objects. More generally,
this study provides novel computational evidence
that demonstrates how the spatial properties of faces
and objects are profoundly different, and can lead
to different visual learning strategies by recognition
systems.

Methods

Visual stimuli

Face images were collected from the FaceScrub
database (Ng & Winkler, 2014), which consisted of
100,000 face images sampled from 530 celebrities. The
dataset only provided the URLs to the images, and if
image URLs were invalid (as of October 13, 2019),
those images were excluded. We also excluded any face
identities with fewer than 100 examples. This resulted
in a final face image dataset with 395 face identities to
train CNNs on face recognition. Object images were
obtained from the ILSVRC-2012 or ImageNet database
(Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang,
Karpathy, Khosla, Bernstein, Berg, & Fei-Fei, 2015),
which has 1000 object categories with roughly 1.25
million training and validation images. All 1000 object
categories were used to train the object-trained CNNs.
All stimuli were converted to grayscale and resized
to 224 × 224 pixels to meet the image processing
requirements for CNNs.

For our behavioral face recognition task, we chose
10 celebrities (5 women and 5 men) who we considered
likely to be well known to the general public: Jennifer
Aniston, Mila Kunis, Ellen Degeneres, Selena Gomez,
Anne Hathaway, Jim Carrey, Matt Damon, Robert
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Downey Jr., Ryan Gosling, and Samuel L. Jackson.
One of the authors reviewed and sorted out mislabeled
or idiosyncratic photographs of faces. Furthermore, we
excluded any images that shared a pixel-wise correlation
exceeding 0.9 with any other image. The final face image
set consisted of 80 images per celebrity or 800 images
in total. Regarding image variability, the face images of
a given celebrity could vary to a considerable degree
due to variations in lighting, viewpoint (ranging from
front to three-quarter view), facial expression, hairstyle,
make-up, facial hair, age, and/or accessories worn (e.g.,
glasses or a hat). We applied a Gabor wavelet pyramid
model with five spatial scales and eight orientations
to calculate the Pearson correlational similarity of
simulated complex cell responses to the images.
Normalization was first applied to the all responses
at a given spatial scale to control for greater power at
lower spatial frequencies. The pairwise correlational
similarity of face images was somewhat greater for
within-celebrity comparisons (mean r = 0.464, SD =
0.141) than between celebrities (mean r = 0.405, SD =
0.122).

For the behavioral object recognition task, 16 object
categories were selected to compare human and CNN
performance: bear, bison, elephant, hamster, hare,
lion, owl, tabby cat, airliner, couch, jeep, schooner,
speedboat, sports car, table lamp, and teapot. Half
of the object stimuli were animate and the other half
were inanimate. Fifty images per category from the
ImageNet validation dataset were used, and thus we
had 800 images in total. We performed the same Gabor
wavelet pyramid model analysis to the object images.
The correlational similarity of the object images was
somewhat greater for within-category comparisons
(mean r = 0.292, SD = 0.159) than between category
(mean r = 0.255, SD = 0.148). As expected, the
object images were more heterogeneous than the face
images, and within-category (or within-identity) images
shared somewhat greater low-level similarity than
between-category images.

To generate the blurred images, we applied a
Gaussian kernel to each image, adjusting the standard
deviation (σ ) of the Gaussian function to attain
different levels of blur. All image processing was
performed using MATLAB. For both behavioral
experiments, all images were upsampled by a factor of
two for presentation on a CRT monitor at a size of
19 × 19 degrees of visual angle.

Participants

We recruited 20 participants to take part in the
behavioral object recognition study. A separate group
of 20 participants were recruited to take part in
the face recognition study. Each of the two studies
required approximately 1 hour to complete. All

participants reported having normal or corrected-to-
normal visual acuity and provided informed written
consent. The study was approved by the Institutional
Review Board of Vanderbilt University. Participants
were compensated monetarily or through course
credit.

Behavioral experiments

We measured the abilities of human observers at
recognizing faces and objects presented with varying
degrees of blur (σ = 0, 1, 2, 4, 8, 12, 16, 20, 24, and
32). Here, σ = 0 indicated clear images without any
blurring. Eight face images per celebrity were assigned
to each blur level for the face recognition task, whereas
five images per object category were assigned to
each blur level for the object recognition task. Both
experiments consisted of a total of 800 images, with 80
images presented at each blur level. Image assignment
across blur levels was counterbalanced across
participants and the order of image presentation was
randomized.

Each visual stimulus was briefly presented for 200
ms on a gray background, subtending a visual angle of
19 degrees. After stimulus presentation, participants
were asked to report the face identity or object category
by entering in a corresponding number code on a
numerical pad. The number code for each stimulus
identity remained on the screen throughout the study.
The mapping between number codes and stimulus
identities was counterbalanced across participants.
The experiment required approximately 1 hour to
complete, including informed consent, instructions,
and debriefing. The experiment was implemented
using MATLAB and the Psychophysics Toolbox
(http://psychtoolbox.org/).

Training of convolutional neural networks

The majority of all CNN experiments and analyses
were performed using AlexNet, which can achieve a
high level of classification performance while still being
quite fast to train from scratch (Krizhevsky et al., 2012).
We performed supplementary analyses using VGG-19,
which is a deeper CNN with greater learning capacity
(Simonyan & Zisserman, 2015).

With the face dataset of 395 celebrities, we divided
the images into separate training and validation sets
using an approximately 90/10 split. On average, this
led to 117 examples per identity for training and
13 examples per identity for validation. For object
images obtained from ImageNet, we used their training
images (∼1.2 million) for training and their validation
dataset (50k images) for testing the CNNs. For data
augmentation, the training images were randomly

http://psychtoolbox.org/
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rotated from -10 degrees to +10 degrees and about
half were flipped about the vertical axis. Across all
images within a training set, we calculated the mean
and standard deviation of the pixel intensity values and
used these values to normalize the pixel intensities of
the images.

The models were trained using stochastic gradient
descent with a fixed learning rate of 0.01, momentum
of 0.9, and weight decay of 0.0001. To train the network
initially with blurred images, we applied a Gaussian
kernel with the standard deviation of σ = 8, and
subsequently reduced the blur level to 4, 2, 1, and 0. The
blur level was changed every 100 training epochs for the
face recognition task and every 10 training epochs for
the object recognition task. Given that the number of
training examples per category of ILSVRC-2012 was
approximately 10 times larger than that of FaceScrub,
the networks in both tasks processed similar numbers
of training images per category for each blur level. For
comparison, a control CNN was trained with only clear
images using the same number of training epochs. All
training procedures were implemented in PyTorch on a
workstation equipped with multiple GPUs.

Receptive field analysis

We fitted a 2D elliptical Gabor model to the first-layer
receptive fields (11 × 11 pixels) of the trained CNNs.
The function we used obtained the best fitting model
after sampling from 100 different starting points using
a gradient descent method. Filters with R-squared
values less than 0.4 were excluded from analysis. After
fitting, the average of standard deviation values of the
2D Gaussian envelope was determined as the size of
the receptive field.

Peak spatial frequency in tuning curves

To estimate the spatial frequency preferences
of the CNNs, we devised a method in which we
presented grating patterns to CNNs and examined the
responses of feature maps across layers. Specifically,
the gratings were created by sinusoidal patterns using
15 orientations (0, 12, …, 168 degrees), 25 spatial
frequencies (4.48, 8.96, ..., 112 cycles/stimulus), and
four phases (0, 90, 180, and 270 degrees). We measured
the average responses to the gratings from individual
feature maps for each convolutional layer and plotted
the tuning curves for spatial frequency by averaging
across orientations and phases. Each tuning curve was
normalized to a range from 0 to 1. The peak spatial
frequency was determined from each tuning curve as
it yielded the maximum. This peak spatial frequency
indicated which spatial frequency was mostly preferred
by each feature map of the network.

Spatial frequency control images

As a supplementary analysis, we manipulated the
spatial frequency content of the training object images
in two ways. First, we calculated the average amplitude
spectrum of all training face images and replaced
the amplitude spectrum of individual training object
images with the average amplitude spectrum from the
face images. This was done by performing the fast
Fourier transform on each object image in MATLAB,
adjusting the amplitude spectrum accordingly, and
then performing the inverse fast Fourier transform to
reconstruct the amplitude-matched object image. Our
second approach relied on low-pass filtering applied to
training object images using a cutoff frequency of either
32 or 16 cycles per image. This was done by zeroing out
all amplitude values below the cutoff frequency in the
Fourier domain, and then performing the inverse fast
Fourier transform to reconstruct the image.

Code and data availability

The experimental code, PyTorch code, and human
behavioral data will be made available on open
science framework upon publication of this work.
Visual stimuli can be obtained via the FaceScrub and
ImageNet databases https://osf.io/95pek/?view_only=
7a634add763c4e2a81c2fe1830df23d6.

Results

We first evaluated the performance of human
observers and CNNs on their ability to recognize faces
or objects presented with varying levels of blur. We
selected 10 celebrities from the FaceScrub dataset (Ng &
Winkler, 2014) and 16 object categories (8 animate and
8 inanimate) from the ImageNet dataset (Russakovsky
et al., 2015) for these forced-choice recognition tasks.
To quantify CNN performance, we trained a separate
model of AlexNet on either faces or objects, using
clear grayscale versions of all of the training images
from the corresponding data set, and then evaluated
test performance using independent test images (see
Methods).

Figure 1 shows performance accuracy plotted as
a function of blur level, as indicated by the standard
deviation (σ ) of the Gaussian kernel used for filtering.
Human and CNN performance was about equally
accurate for clear images (σ = 0) but quickly diverged
at modest levels of blur. Although CNN performance
never quite declined to chance level (1/10 or 10%)
for faces (see Figure 1A), performance became
very poor at a blur level of eight and approached
near floor performance by a blur level of 12. In

https://osf.io/95pek/?viewonly7a634add763c4e2a81c2fe1830df23d6
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Figure 1. (A) Face recognition accuracy of human observers (blue triangles), AlexNet trained on clear face images (gray open circles),
and AlexNet trained on a sequence of blurry to clear faces (black filled circles) when tested with a wide range of blur levels (chance
level performance with a dashed line, 1/10 or 10%). The solid lines represent a logistic function fitted to the data. Images of one of
the authors are shown (with permission) for illustrative purposes. (B) Object recognition accuracy of human observers (red triangles),
AlexNet trained on clear objects (gray open circles), and AlexNet trained on a sequence of blurry to clear objects (black filled circles)
when tested with a wide range of blur levels (chance level performance, 1/16 or 6.25%). Error bars indicate ±1 standard error of the
mean.

comparison, human performance remained above 50%
accuracy at a blur level of 12. CNNs were particularly
vulnerable to blurry objects with performance falling
to near-chance levels at a blur level of four, whereas
human performance remained significantly above
chance at a blur level of 16 (see Figure 1B). It can also
be seen that blurry objects were more challenging to
recognize than blurry faces for both CNNs and human
observers.

We sought to determine whether the training of
CNNs on a sequence of blurry to clear images would
lead to enhanced robustness to blur. CNNs with initially
randomized weights were trained on either faces or
objects with decreasing levels of blur applied to the
images across successive stages of training (σ = 8, 4, 2,
1, or 0). After the final stage of training, we evaluated
the performance of these CNNs with the same subset
of blurry faces and objects that were used to assess
human performance.

Figure 1 reveals a striking divergence in performance
between the face-trained and object-trained CNNs.
The blurry to clear face-trained CNN performed much
better at recognizing blurry faces than the clear-trained
CNN; moreover, it provided a good approximation
of human performance, which is quite robust to
blur. Performance was even improved at blur levels
that extended beyond those that were encountered
during blurry to clear face training (σ = 12 and

16). By contrast, the blurry to clear object-trained
CNN performed hardly better than its clear-trained
counterpart, and both were far less robust to object
blur than human observers. These findings suggest that
blurry to clear trained CNNs may provide a suitable
model to account for the face recognition performance
of human observers but not their object recognition
performance.

How does the performance of these CNNs change
across successive stages of training? Figure 2A shows
the performance accuracy of the face-trained CNN,
evaluated after each stage of training (blue curve) on
test images from 395 celebrities presented with varying
levels of blur. After the first stage of training (σ = 8,
leftmost plot), the CNN performed well at the highest
blur level but was unable to generalize to images with
little to no blur (σ ranging from 0 to 2) that had yet
to be trained. However, after the second stage of
training (σ = 4), the face-trained CNN performed well
across the full range of blur levels, generalizing well
even to clear images that had yet to be encountered in
training. Subsequent stages of training led to modest
improvement for clear faces and faces with minimal
blur, accompanied by a modest reduction in test
performance at the highest blur level (σ = 8). By the
end of training (rightmost plot), the CNN exhibited
a modest advantage for clear images yet remained
robust across the full range of previously trained blur
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Figure 2. Performance accuracy of AlexNet after training with faces (A) or objects (B) presented at different blur levels (σ = 8, 4, 2, 1,
or 0) over a series of training stages. Gray curves indicate the performance of control CNNs trained on clear images only. To illustrate
the amount of blur applied at each training stage, images of one of the authors are shown (with permission) at each blur level.

levels. These findings are largely consistent with those
reported by Vogelsang et al. (2018).

For comparison, we trained a control CNN with
the same number of training images but used clear
faces only. The control CNN (gray curve) exhibited
excellent performance with clear and minimally blurred
images (σ ranging from 0 to 2) after only a single
stage of training, outperforming the blurry to clear

face-trained CNN in this range. However, the control
CNN performed poorly with faces presented at high
blur levels of four or eight, indicating poor robustness
to blur. Subsequent stages of training led to negligible
changes in performance.

We observed a very different pattern of results for
the CNN trained on a sequence of blurry to clear
object images, which was trained using 1000 categories
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of objects obtained from ImageNet. Although the first
stage of training with blurred objects led to improved
performance at that blur level with top-1 accuracy
of 19.2% (Figure 2B, σ = 8, top row, leftmost plot),
training at the next blur level (σ = 4) led to a loss of
robustness to the originally trained level of blur, with
performance plummeting to an accuracy of 0.37%
(chance level = 0.1%). Subsequent stages of training led
to similar declines in robustness to previously trained
levels of blur. After the final stage of training with
clear images (σ = 0), performance across blur levels
was very similar to that of the control CNN trained
exclusively on clear objects (see gray curve, Figure 2B,
rightmost plot). We also calculated the top-5 accuracy
of the object-trained CNNs to ensure that their
lower performance accuracy would not obscure our
ability to find evidence of successful generalization
across changes in blur level. Here, responses were
scored as correct if the correct category was among
the five highest softmax responses of the CNN. We
found that top-5 accuracy (see Figure 2B, bottom
row) revealed the same pattern of results as top-1
accuracy.

One potential concern with respect to the blurry to
clear object training results might be that the learning
capacity of AlexNet was insufficient to maintain the
knowledge acquired from earlier stages of training. We
conducted the same experiment on a higher capacity
CNN, VGG-19 (Simonyan & Zisserman, 2015) to
address this issue and observed essentially the same
pattern of results for both faces and objects (Figure 3).
Our findings suggest that training with a sequence of
blurry to clear objects is insufficient for CNNs to learn
stable object representations that remain robust to
blur.

To understand how blur training with faces or
objects modified the representations learned by the
CNNs, we visualized the receptive fields learned by the
first convolutional layer. Each row in Figure 4A depicts
how the receptive field of an example unit changes
across successive stages of training. For the face-trained
network, the receptive fields remained quite stable
across training stages, with a preference for large, coarse
features. By contrast, the CNN trained on blurry to
clear objects exhibited marked changes across training
periods — the receptive fields appeared to shrink in size
and shifted toward preferring higher spatial frequencies.
These findings indicate that training with progressively
clearer objects induced the CNN to learn finer spatial
representations.

We quantified the receptive field size of these first
layer representations by fitting a 2D Gabor model and
calculating the standard deviation values corresponding
to the Gaussian profile of the fitted model. This analysis
revealed that blurry to clear face training allowed the
CNN to learn and maintain larger receptive fields than
the CNN trained on clear faces only (Figure 4B). In

comparison, the blurry to clear object-trained CNN
had large receptive fields initially but these shrunk in
size with training, such that by the final stage, they
were no larger than those of the clear object-trained
CNN. These results are concordant with the pattern
of performance accuracy that we observed as a
function of blur level after the final stages of training
(see Figure 2).

To understand how the spatial frequency tuning of
the CNNs was affected by the training, we calculated
how strongly units in each layer responded to sinewave
grating patterns presented across a range of spatial
frequencies, orientations, and spatial phases (see
Methods). This analysis allowed us to characterize
the spatial frequency preferences not only for layer
one but for higher layers as well. We calculated
the preferred spatial frequency of all feature-tuned
units in convolutional layers one through five of
AlexNet.

The plots in Figure 4 depict the preferred spatial
frequency of all feature-tuned units in a given layer,
sorted by preference from low to high. Focusing on
layer one of the blurry to clear face-trained CNN
(Figure 4C, left), it can be seen that spatial frequency
preferences remained stable across training stages
(σ from 8 to 0) and were considerably lower than
those of the clear face-trained CNN (gray curve). A
very similar pattern of results could be seen for the
blurry to clear face-trained CNN in layers two to five.
We performed a Mann-Whitney U test to determine
whether the population of feature-tuned units in a
given layer exhibited significant changes in spatial
frequency preference between successive stages of
training. The units in layers one through five all showed
a significant change in spatial frequency preference
(p < 0.005 in all cases) between the first and second
stages of blurry to clear training (σ = 8 vs. σ = 4)
but showed no significant changes thereafter. After
training was complete, the blurry to clear face-trained
CNN preferred lower spatial frequencies than the
clear face-trained CNN (p < 0.001 for layers 1–4, and
p < 0.05 for layer 5). We conclude that the blurry to
clear face-trained CNN exhibited strong and stable
preferences for lower spatial frequencies in most units
throughout the network.

These findings can be contrasted with the blurry to
clear object-trained CNN (Figure 4D), which exhibited
a marked shift in preference toward higher spatial
frequencies over the course of training. This trend
could be observed in all five convolutional layers, and
was particularly prominent in layers two and three,
which showed a significant shift in preference toward
higher spatial frequencies after every stage of training
(p < 0.001 in all cases). After the final stage of training,
the blurry to clear object-trained CNN did exhibit
a preference for somewhat lower spatial frequencies
in layers one and two than did the control CNN
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Figure 3. Performance accuracy of VGG-19 after training with faces (A) or objects (B), following the conventions described in Figure 2.
Images of one of the authors are shown (with permission) at each blur level.

(p < 0.001) but such differences were much weaker
or negligible in the higher layers (layer 3, p = 0.36;
layer 4, p = 0.0054; and layer 5, p = 0.95). A direct
comparison of the face- and object-trained CNNs
(see Figures 4C vs. 4D) further reveals how the object
recognition task led to preferences for a higher as
well as much wider distribution of spatial frequencies,
when compared to face recognition. A similar analysis
of preferred spatial frequency was performed on the

VGG-19 networks, which revealed stable preferences
for lower spatial frequencies during blurry to clear face
training and a shift in preference toward higher spatial
frequencies during blurry to clear object training (see
Supplementary Materials). These findings concur with
the notion that faces can be processed in a more holistic
manner than objects, although to our knowledge, our
computational approach for demonstrating this effect
is quite different from previous approaches (Goffaux,
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Figure 4. (A) Examples of the learned receptive fields obtained from a CNN trained on a sequence of blurry to clear faces (left) or
blurry to clear objects (right). (B) Receptive field sizes were measured after each training period for both blurry to clear trained CNNs
and CNNs trained on clear images only. (C) Peak spatial frequency preferences of face-trained CNNs across successive stages of
training, with separate plots shown for each convolutional layer. For visualization purposes, the feature maps are sorted by their peak
spatial frequency preference. The gray lines indicate the peak spatial frequency preferences of the clear face-trained network to serve
as a reference. (D) Peak spatial frequency preferences of CNNs trained on object recognition, following the conventions of C.

Hault, Michel, Vuong, & Rossion, 2005; Le Grand
et al., 2004; Richler & Gauthier, 2014; Sinha, 2002;
Tanaka & Simonyi, 2016).

Why did the representations for faces change so
little as the training images progressed from blurry to
clear, while the representations for objects changed so
dramatically? Figure 5 shows a continuous plot of the
accuracy of training performance over time for both

face and object recognition tasks. The face recognition
network was able to achieve excellent performance very
quickly at the initial blur level of eight, and by a blur
level of four, performance was near ceiling, indicating
that the network had very little left to learn. These
findings are consistent with the strong generalization
that was observed across all blur levels after the CNN
was trained on faces with a blur level of four (see
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Figure 5. Performance accuracy on training images for CNNs
trained on a progression of blurry to clear faces (blue) or
objects (red). Vertical dashed lines indicate the transitions
between blur levels.

Figure 2A). In comparison, the object recognition
network showed slower and more gradual improvement,
implying that more remained to be learned in order to
adapt to each new blur level, which provided new higher
spatial frequency information to leverage for improved
performance. This presumably led to overwriting of
the representations that supported earlier robustness to
blur.

One might ask whether controlling for differences in
the overall spatial frequency content of faces and objects
might allow CNNs to learn more blur-robust or holistic
representations of objects. A Fourier power spectrum
analysis indicated that the object images did indeed
contain greater power at higher spatial frequencies
when compared to the face images (Figure 6A). If the
object images were matched to the power spectrum of
the face images, would blurry to clear object training
lead to robustness to blur? We suspected that this would
be unlikely, given that the spatial frequency information
that is needed for successful classification of face
identity or object category might be quite distinct from
the range of spatial frequencies that are contained in
the face or object images.

Nevertheless, we thought it would be informative to
perform this control analysis. We adjusted the set of
object images to match the average power spectrum of
the training face images (Figure 6B), and then trained
a CNN with these blurry to clear object images. The
trained CNN was then tested with the original set of
object test images with varying levels of blur applied.

Despite controlling for differences in spectral power
during training, blurry to clear object training still
failed to lead to robustness to blur (Figure 6C), and the
pattern of results was almost identical to those observed
with the original blurry to clear object-trained CNN
(see Figure 2B). To extend this analysis, we constructed

two new sets of object images that were low-pass filtered
with a cut-off frequency of either 32 or 16 cycles per
stimulus. Again, CNNs trained on these blurry to clear
object images failed to retain robustness to blur at the
end of training (Figure 6D). With more severe low-pass
filtering of 16 cycles, the CNN showed some ability
to generalize to modest levels of blur but higher levels
of blur remained problematic (σ = 4 or 8). Moreover,
these modest improvements for blurry objects came
with the cost of poorer performance with clear objects.
Our findings indicate that the inadequacy of blurry to
clear object training for inducing robustness to blur
cannot be attributed simply to differences in spatial
frequency content between objects and faces or to
the presence of high spatial frequency information
in objects.

We further sought to determine whether different
levels of object categorization might have an impact
on the efficacy of blurry to clear image training.
Face recognition requires performing fine-grained
subordinate-level discrimination between visually
similar stimuli that share a common configuration
across different identities, thereby presenting challenges
that differ from basic-level object categorization
(Diamond & Carey, 1986; Gauthier & Tarr, 1997).
Therefore, it is conceivable that a CNN trained
exclusively on subordinate-level object categorization
might benefit from blurry to clear image training. On
the other hand, developmental research has suggested
that infants progress in their visual categorization skills
by first learning about superordinate categories (e.g.,
animate versus inanimate), followed by basic-level
categories, and then subordinate-level categories
(Mandler & McDonough, 1993; Quinn, 2004). This
led us to also consider whether blurry to clear image
training might enhance the robustness of superordinate
categorization.

To investigate subordinate-level object categorization,
we leveraged the semantic WordNet hierarchy of
ImageNet to select 116 different dog breeds and 52
bird species. Separate CNNs were trained to classify
either dogs or birds using the same training procedures
as before. Our analyses revealed that blurry to clear
image training on these subordinate-level categorization
tasks failed to induce sustained robustness to blur,
as performance was very poor at high levels of blur
(Figure 7A, rightmost panel). For the dog-trained
CNN, we observed a modest improvement after blurry
to clear training for images with moderate blur (σ =
2) but this came with the associated cost of poorer
performance for clear images (σ = 0) when compared
to the clear-trained CNN. The bird-trained CNNs
exhibited lower accuracy overall, and blurry to clear
image training led to poorer performance for clear
images while failing to improve performance for blurry
images.
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Figure 6. (A) Average power spectrum of face and object training images plotted on a log scale (ordinate) as a linear function of spatial
frequency. (B) Examples of original object images (first column), object images with Fourier power spectrum matched to the average
power spectrum of the face training dataset (second column), and low-pass filtered images with a cutoff frequency of either 32
cycle/images (third column) or 16 cycle/images (fourth column). (C) Recognition accuracy for a CNN trained on blurry to clear objects,
after objects were first matched to the Fourier power spectrum of faces (orange curve). For comparison, performance of the CNN
exclusively trained on the original clear objects is also shown (gray). (D) Object recognition accuracy of CNNs trained on blurry to clear
objects, after the objects were low-pass filtered with a cut-off frequency of 32 cycles per stimulus (light green) or 16 cycles per
stimulus (dark green). Again, the CNN originally trained on clear objects is shown in gray.

We also investigated superordinate-level classification
by sorting the ImageNet categories according to 407
animate categories and 522 inanimate categories. When
a CNN was trained to perform animate/inanimate
classification using a sequence of blurry to clear images,
it improved at the currently trained blur level but
lost robustness to the previously trained blur level
(Figure 7B). After training was completed, the blurry to
clear trained CNN exhibited performance that scarcely

differed from the clear-trained CNN. Collectively,
these results demonstrate that CNNs trained on blurry
to clear objects fail to maintain robustness to blur,
regardless of whether they are trained on superordinate,
basic-level, or subordinate-level categorization. By
contrast, face-trained CNNs, which must learn to
distinguish faces at the subordinate level, can readily
acquire robustness to blur from blurry to clear image
training.



Journal of Vision (2021) 21(12):6, 1–18 Jang & Tong 13

Figure 7. (A) Comparison of CNNs trained on blurry-to-clear (solid) or clear (dashed) images of different dog breeds (red) or bird
species (orange). (B) Comparison of CNNs trained on blurry-to-clear (red) or clear (gray) images of ImageNet objects to perform an
animate/inanimate discrimination task.

Discussion

In this study, we investigated whether CNNs trained
with a developmentally motivated sequence of blurry
to clear images would be able to attain robustness
to blur that could better match human performance.
Training with blurry to clear faces allowed CNNs to
achieve considerable robustness to blur, consistent with
a previous report by Vogelsang et al. (2018). Moreover,
our blurry to clear face-trained CNN provided a very
good approximation of human recognition accuracy
for blurry faces (see Figure 1A), suggesting that
such trained networks may provide a more suitable
model of human face processing. It was noteworthy
that at an intermediate stage of training, the CNN
trained with a modest level of blur (σ = 4) could
successfully generalize across both blurry and clear
faces. These findings demonstrate that sufficient
information was present in the lower spatial frequency
range of these face stimuli to allow for successful
learning and generalization. We characterized the
spatial frequency tuning preferences of this face-trained
network across successive stages of training, and found
that the CNN was able to learn stable lower spatial
frequency representations of the face stimuli and
support successful recognition across a range of blur
levels.

However, it should be emphasized that the learning
of these lower spatial frequency representations of
faces was not a foregone conclusion. CNNs that
were trained exclusively with clear faces showed poor
generalization to blurry face images and exhibited a
preference for higher spatial frequencies. These results
are consistent with the proposal that visual experience
with blurry faces in early infancy may be critical for the
development of holistic face processing and that a lack
of such early experiences with blurry faces may bias
recognition to favor finer spatial details (Le Grand et
al., 2001, Le Grand et al., 2004; Vogelsang et al., 2018).

In comparison, we found that CNNs trained with
a sequence of blurry to clear objects led to a much
more specialized form of learning. After each stage
of training, performance was selectively elevated
at the most recently trained blur level, whereas
generalization to neighboring blur levels was extremely
poor. This pattern of results was replicated in CNNs
trained on subordinate-level classification of dogs
or birds, as well as a CNN trained to distinguish
animate from inanimate objects. These changes in test
performance could be explained by the progressive
shift in the network’s preference for higher spatial
frequency information to leverage better performance.
Our findings suggest that object-trained CNNs are
predisposed to learn specialized representations that
are highly specific in spatial scale, such that changes in
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the spatial frequency content of the training images
cause previously learned representations to be modified
or overwritten. To the extent that CNNs provide a
suitable model of the learned representations of the
human visual system, these findings lead us to conclude
that poor acuity in infancy is unlikely to account for
the robustness with which people can recognize blurry
objects in adulthood (e.g. see Figure 1B).

Perhaps more importantly, our findings demonstrate
how faces and objects are processed in a qualitatively
different manner by CNNs when they are trained
using a common progression of blurry to clear images.
We observed a growing divergence in the spatial
tuning of face- and object-trained CNNs after each
stage of blur training. These results provide novel
computational evidence to suggest that faces constitute
a special stimulus class that can be processed more
holistically than most other object categories, by
utilizing information in lower spatial frequency bands
for successful recognition.

Our findings add to a large body of studies of
holistic processing, which have relied on a variety of
experimental methods and operational definitions to
characterize this process (Goffaux & Rossion, 2006;
Le Grand et al., 2004; Michel, Rossion, Han, Chung,
& Caldara, 2006; Richler & Gauthier, 2014; Richler,
Gauthier, Wenger, & Palmeri, 2008; Tanaka & Farah,
1993; Tanaka & Simonyi, 2016), and lead us to suggest
a possible computational definition of this inferred
process. Specifically, holistic processing may entail the
ability to recognize a set of stimuli across a range of
blur levels while relying on a common set of visual
representations. An important component of face
recognition involves distinguishing subtle differences
in the overall 3D shape of different faces (Chang
& Tsao, 2017), and shape from shading provides a
critical cue for encoding information about face shape
(Atick, Griffin, & Redlich, 1996; Yildirim, Belledonne,
Freiwald, & Tenenbaum, 2020). These cues about 3D
face shape take the form of gradual rather than abrupt
changes in luminance that occur across the 2D facial
image. The gradual nature of these luminance changes
may partly explain why face recognition can tolerate
fairly high levels of blur (see Figure 1A).

Consistent with this notion, previous research
has suggested that face recognition tends to rely on
information in the lower and mid-range of spatial
frequencies. Optimal levels of face recognition
performance have been reported for bandpass filtered
faces typically centered at around eight cycles per
stimulus (Gaspar et al., 2008; Näsänen, 1999; Peli et
al., 1994). Another study found that low-pass filtered
faces with hair can still be successfully recognized at
a cut-off frequency of only 2.6 cycles per stimulus
(Kwon & Legge, 2011), whereas those without hair can
be recognized at a cutoff frequency of 4.2 cycles per
stimulus. (It should be noted that letter identification

was successful with even lower cutoff frequencies of
∼1 cycle per stimulus.) There is also some evidence to
suggest that faces can be recognized at lower spatial
frequencies than certain non-face objects, such as
airplanes (Harel & Bentin, 2009). Although such
findings point to potential differences regarding how
faces and objects are processed across varying spatial
scales, the findings reported here indicate a much
sharper divergence between face and object processing.

Our computational findings suggest that the robust
recognition of blurry objects cannot readily be
attributed to the blurry nature of early infant vision.
How then is such robustness achieved and maintained
in adulthood? We propose that visual experience
at all ages is permeated with experiences of blurry
objects, such as whenever they appear widely separated
in depth from the point of fixation (Sprague et al.,
2016). There is also evidence to suggest that whenever
an observer fixates an object at a new depth plane,
the accommodation system requires about 200 ms
to adjust its focus (Chirre, Prieto, & Artal, 2015). It
is also the case that vision in the periphery leads to
frequent sampling of low resolution objects, and that
the object recognition system may be incentivized to
learn the appearance of these peripheral objects to
guide the process of visual search (Li & DiCarlo, 2008;
Strasburger et al., 2011). As a consequence, the human
visual system experiences continual training with a
wide range of blur levels in the real world. It will be of
interest for future studies to investigate whether CNNs,
trained with different regimes of blurry experiences, can
acquire robustness to blurry objects in a manner that
better matches human performance. In addition to blur,
there is growing interest in understanding why CNNs
lack robustness to challenging viewing conditions, such
as visual noise, occlusion, and other types of image
distortion (Geirhos et al., 2018; Jang & Tong, 2018;
Spoerer, McClure, & Kriegeskorte, 2017). Although
CNNs can be trained to become more robust to a
specific type of image distortion, such training typically
fails to generalize to other challenging visual conditions.
A major goal in computer vision is to develop deep
neural networks that can learn to robustly recognize
objects from fewer training examples to better mimic
human vision.

Although we found that blurry to clear image
training was not effective for promoting robustness
of object recognition, the concept of coarse-to-fine
processing has been widely discussed in the object
recognition literature (Bullier, 2001; Schyns & Oliva,
1994; Watt, 1987). By some accounts, low spatial
frequency information processing serves to guide the
processing of high spatial frequency information.
Although this proposal does not necessarily justify
our strategy of training CNNs with blurry to clear
images, such a training regime could provide, in some
instances, computational advantages in learning. From
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an optimization perspective, initial training with blurry
inputs could serve to flatten the parameter search space
and act as a form of regularization, thereby promoting
more efficient search for a global minimum.

Finally, this study demonstrates the utility of using
deep neural networks to address questions pertaining
to human visual development, which may otherwise
be difficult or impossible to test. Although one can
observe or record the visual experiences of infants, it is
rarely possible to modify their experiences outside of a
brief experimental session. By contrast, the totality of
a deep network’s learned experiences can be precisely
specified and manipulated, and any control conditions
of interest can also be tested. Thus, the impact of
a series of learning experiences, from beginning to
end, can be studied in detail. For example, here, we
could evaluate whether blurry to clear image training
might be beneficial for learning distinctions between
animate and inanimate objects, as developmental
research has suggested that categorization ability
gradually progresses from superordinate to basic to
subordinate levels (Mandler & McDonough, 1993;
Quinn, 2004). Although we did not find any benefit of
blurry to clear image training with respect to acquiring
robustness to blur, it is conceivable that future studies
could investigate other questions pertaining to level
of categorization and visual development. There is
also growing interest in using ecologically valid input
to train deep networks, such as obtaining video data
from babies using head-mounted cameras (Smith,
Jayaraman, Clerkin, & Yu, 2018). For example, a
recent study demonstrated that a contrastive method of
unsupervised learning allowed a deep neural network to
learn appropriate object representations from baby-cam
data (Zhuang, Yan, Nayebi, Schrimpf, Frank, DiCarlo,
& Yamins, 2021). This confluence of neuroscience,
vision science, and artificial intelligence is progressing
rapidly (Cichy & Kaiser, 2019; Kar, Kubilius, Schmidt,
Issa, & DiCarlo, 2019; Kriegeskorte, 2015; Yamins
& DiCarlo, 2016). Soon, through the development of
more biologically plausible network architectures (e.g.
Kar et al., 2019; Kietzmann, Spoerer, Sorensen, Cichy,
Hauk, & Kriegeskorte, 2019), better conceived learning
methods (e.g. Zhuang et al., 2021), and the use of
ecologically and developmentally valid training data,
neuroscientists will be well-positioned to develop better
models of the human visual system.

Keywords: deep learning, face perception, visual
development
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