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Homozygous deletion (HD) of the tumor suppressor gene CDKN2A is the most frequent
genetic alteration in malignant pleural mesothelioma and is also frequent in non-small cell
lung cancers. This HD is often accompanied by the HD of the type I interferons (IFN I)
genes that are located closed to the CDKN2A gene on the p21.3 region of chromosome
9. IFN I genes encode sixteen cytokines (IFN-a, IFN-b…) that are implicated in cellular
antiviral and antitumor defense and in the induction of the immune response. In this
review, we discuss the potential influence of IFN I genes HD on thoracic cancers therapy
and speak in favor of better taking these HD into account in patients monitoring.

Keywords: lung cancer, mesothelioma, type I interferon, CDKN2A (p16), homozygous deletion,
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FREQUENT HOMOZYGOUS CO-DELETION OF THE CDKN2A
TUMOR SUPPRESSOR GENE AND THE IFN I GENES IN
THORACIC CANCERS

Non-small cell lung cancer (NSCLC) is the most common cause of cancer death worldwide often
due to long-term tobacco smoking. Malignant pleural mesothelioma (MPM) is a rare cancer that is
mainly due to asbestos exposure. As other cancers, some genomic alterations are found in NSCLC
and MPM tumor cells, especially in locus containing tumor suppressor genes. These alterations are
in part responsible for the disease.

In MPM cells, the most frequent genomic alteration is the homologous deletion (HD) in the
p21.3 region of chromosome 9 (1–6). These HDs are variable in length but they mainly overlap at
the level of the cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor gene located in
this region (Figures 1A, B). Fluorescence in situ hybridization (FISH) studies reported that
CDKN2A gene HDs are found in 60 to 80% of patients (3–6). Copy number alteration study
from The Cancer Genome Atlas (TCGA) reported a lower frequency of 44% of patients with
CDKN2A gene HD inMPM (Figure 1B) (7). However, TCGA study is performed on tumor biopsies
that often contain non-malignant cells. These non-malignant cells may mask CDKN2A gene HD
that are only present in tumor cells. Thus, some patients with CDKN2A gene HD were probably not
detected in the TCGA study.
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In NSCLC, CDKN2A gene HDs were also identified in the
1990s (8–10). They were then found more frequently in a subset
of patient with intact retinoblastoma (rb) pathway (11). FISH
studies on 85 and 19 NSCLC patients reported CDKN2A gene
HD in 21 and 29% of patients respectively (12, 13), and FISH
study on 31 squamous cell carcinoma (SqCC) patients reported
them in 16% (14). TCGA study on 1144 NSCLC patients (660
lung adenocarcinoma and 484 lung SqCC) reported CDKN2A
gene HD in 21% of patients (Figure 1C) (15).

The CDKN2A gene encodes several proteins, notably
p16INK4a and p14arf that are implicated in the regulation of the
cell cycle. p16INK4a binds to cyclin-dependent kinase 4 and 6
(CDK4/6) and inhibits its capacity with cyclin D1 to
phosphorylate rb protein and the translocation of the
transcription factor E2F from the cytoplasm to the nucleus
(16). In absence of p16INK4a, E2F translocates to the nucleus
and allows the transition from G1 phase to S phase of the cell
cycle. p14arf also acts as a tumor suppressor via the p53 pathway
and its absence favors the entry in the cell cycle.

Close to CDKN2A gene, CDKN2B and MTAP are two other
genes that are often co-deleted with CDKN2A in MPM
Frontiers in Oncology | www.frontiersin.org 2
(Figure 1B) and NSCLC (Figure 1C). CDKN2B encode the
p15Ink4b protein that interacts with CDK4/6 and inhibits its
activation by cyclin D and thus acts as a tumor suppressor (17).
MTAP encodes the S-methyl-5’-thioadenosine phosphorylase
(MTAP) implicated in the polyamine metabolism (18).

Further downstream from CDKN2A and MTAP in the p21.3
region of human chromosome 9, a cluster of 16 genes encodes
the type I interferons (IFN I): IFN-b, IFN-e, IFN-w and 13 IFN-a
(Figure 1A) (19). IFNB1 is the furthest gene from CDKN2A. In
the 1990s, IFN I genes HDs were identified in a fraction of
NSCLC and MPM patients with CDKN2A gene HD (1, 2, 8, 20).
We recently reported that in 78 short-term–cultured MPM cell
lines, 57 (73%) and 18 (23%) cell lines harbors CDKN2A and
IFNBI genes HD respectively, whereas in TCGA study
performed on 82 patients, these percentage where smaller,
probably due to non-malignant cells contamination (44 and
9%) (Figure 1B) (21). Thus, about 10 to 20% of mesothelioma
patients present HD of all the IFN I genes. In NSCLC, the TCGA
study on 1,144 patients reported 21 and 7% of patients with
CDKN2A and IFNBI gene HDs respectively (Figure 1C).
Interestingly, NSCLC patients with IFN I and CDKN2A gene
A

B

C

FIGURE 1 | Homozygous Deletions in the p21.3 region of chromosome 9 in MPM and NSCLC. (A) Schematic representation of genes present in the p21.3 region
of chromosome 9 between positions 21,000,000 and 22,200,000 drawn from UCSC Genome Browser (https://genome.ucsc.edu/). (B) Oncoprint representation of
CDKN2A, CDKN2B, MTAP, IFNA2 and IFNB1 genomic alterations found in tumor samples of 82 MPM patients. Oncoprint was performed with cbioportals website
(http://www.cbioportal.org/) using TCGA Pancancer atlas data. (C) Oncoprint representation of CDKN2A, CDKN2B, MTAP, IFNA2 and IFNB1 genomic alterations
found in tumor samples of 1144 NSCLC patients. Oncoprint was performed with cbioportals website (http://www.cbioportal.org/) using TCGA Pan lung cancer data.
Only the patients with at least one genomic alteration in the five genes are shown. ADC, adenocarcinoma; SqCC, squamous cell carcinoma.
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HDs have a significantly worst disease free survival than patients
with only CDKN2A gene HD (22), suggesting a tumor
suppressor role for IFN I genes in this cancer.
THE TYPE I INTERFERON RESPONSE IN
THORACIC CANCERS

Type I interferon (IFN I) response is key in antiviral immune
response (Figure 2). The IFN I response allows infected and
immune cells to report via IFN-a and -b secretion the presence
of the virus to neighboring cells and to the immune system via
the IFN-a/-b receptor (IFNAR) which is expressed by virtually
all somatic cells (23). The presence of viral genome or
intermediaries of its replication is detected by cytoplasmic
pattern recognition receptors (PRR) and lead to the production
of IFN I via two main pathways: the stimulator of interferon
genes protein (STING) pathway for DNA viruses and the
mitochondrial antiviral-signaling protein (MAVS) pathway for
RNA viruses (23, 24). IFN I are also produced by immune cells
notably via Toll like receptor (TLR) activation, especially
plasmacytoid dendritic cells (pDC) (25). IFN-b is expressed by
all nucleated cells in response to infection, whereas the IFN-a are
mainly produced by immune cells. Among IFN-a, IFN-a2 was
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the first cytokines to be approved in clinics for cancer treatment
in 1986 and is the most studied (26).

Cells exposed to IFN I express hundreds of IFN-stimulated
genes (ISGs). Many ISGs encode proteins that induce a state of
anti-viral resistance. These antiviral proteins act by blocking the
different stages of the viral cycle, from the entry of the virus,
through the inhibition of its replication, to the release of its
progeny by the infected cell (23, 27). The IFN I also play a crucial
role in the induction and the regulation of the antiviral adaptive
immune response, notably by favoring antigen cross-priming by
dendritic cells (28, 29). However, during chronic infection,
prolonged IFN I response can have deleterious effects by
inducing immune dysfunctions (30).

IFN I response is often induced during cancer development
and treatments. Several pathways are involved in this induction.
Presence of mitochondrial or nuclear DNA in the cytoplasm of
tumor cells can induce the secretion of IFN I via the STING
pathway (31–39). Expression of endogenous retrovirus (ERV)
under the form of dsRNA due to epigenetic deregulation in
tumor cells can also trigger the expression of IFN I via the MAVS
pathway (35, 40–44). Non-malignant cells from the tumor
microenvironment, such as phagocytic cells notably dendritic
cells (DC), can also produce IFN I via activation of the STING
pathway after engulfment of dead tumor cells. This occurs due to
FIGURE 2 | The IFN I response. (1) The IFN I response is triggered by different stimuli such as ssDNA, dsDNA, ssRNA and dsRNA via the toll like receptors, the
MAVS and the STING pathway. (2) Activation of these pathways induces the nuclear translocation of transcription factors such as IRF3, IRF7 and NF-kB that trigger
IFN I production and expression of some interferon stimulated genes (ISGs). (3) Secreted IFN I trigger IFNAR signaling on neighboring cells, notably immune cells. (4)
IFN I and other soluble factors of the IFN I response activate the immune response. (5) Activation of IFNAR signaling by IFN I leads to the formation of the interferon
stimulated gene factor 3 complex. (6) This complex translocates to the nucleus and activates numerous ISGs with antiviral, immunomodulatory and regulatory
functions. PRR, pattern recognition receptors.
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accumulation of DNA from engulfed dead tumor cells in DC
cytoplasm (39, 45–47). A recent analysis of 31 cancer types in
TCGA database by Liu et al. shows that, lung adenocarcinoma,
MPM and SqCC are the 3rd, 6th and 8th respectively in the
intensity of an IFN I signature based on the expression of 38 ISGs
(35). Globally, IFN I signature correlates with the degree of
immune cells infiltration, but some tumors with an interferon
signature and with no immune cells infiltration were also found.

IFN I signaling is able to modulate the expressions of hundreds
of genes (27). This signaling pathway also induces expression of
noncoding RNAs including long noncoding RNAs, miRNA and
ERV RNA (27, 41, 48). Due to its potential toxicity and
inflammatory effects, IFN I production and signaling are tightly
regulated by numerous positive and negative regulators, many of
which are ISGs (49). Thus, induction of IFN I response in tumors
has multiple complex effects that are rather unfavorable to tumor
development. The IFN I can restrict tumor growth by reducing
proliferation of tumor cells, inducing their apoptosis, limiting their
migratory capacity and inhibiting angiogenesis (50, 51).
Furthermore, they increase antigen presentation by HLA
molecules, stimulate the innate and adaptive antitumor immune
response and inhibit CD4+ regulatory T cells (30, 50, 52–56). IFN
I were shown to play an important role in tumor immuno-editing
in mouse models of chemically-induced and transposable tumors
(57). They signal tumor cells to the immune system. They are
necessary for the priming of anti-tumor T cell response as the
abrogation of IFN I signaling in CD8+ dendritic cells blocks their
capacity to cross-present antigens in mouse (54, 55). They also
participate in the activation of anti-tumor NK cell response (56).
Induction of anti-tumor NK and T cell responses lead to the
secretions of the type II interferon-gamma (IFN-g) that will
further shapes the immunogenicity and the immunosuppressive
microenvironment of the tumor with the IFN I (58). Indeed, IFN I
are also involved in setting up the immunosuppressive tumor
environment by inducing the expression of numerous inhibitory
molecules such as PD1 and PDL1 that block CD8+ T cell
cytotoxicity (30, 50, 58). IFN I can also induce Indoleamine 2,3-
dioxygenase (IDO) expression that reduces locally the amount of
tryptophan needed for T cell functions and favors their
differentiation in Treg (59). Thus, the IFN I in tumors play a
dual role by stimulating the innate and adaptive immune response
and inducing feedback mechanisms to control its magnitude.

IFN I in NSCLC modulates numerous pathways implicated in
proliferation, survival and apoptosis of tumor cells including
JAK/STAT, Src kinases, Vav proto-oncogene, PTEN/PI3-K/
AKT, Crk proteins and MAP kinase signaling pathways (51).
Several recent studies reported that a constitutive activation of
the IFN I response in lung tumors correlates with tumor
inflammation and immune checkpoint inhibitors efficacy (60–
62). Furthermore, DNA damages and dysfunctions of the DNA
damage response are inducers of the IFN I response and have
been linked to immune checkpoint efficiency (37, 63). The
renewed interest in IFN I response also comes from the
observation that they are necessary for the radiotherapy
abscopal response (64–67), and that they participate in the
induction of the antitumor immune response by chemotherapy
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(68). This is also due to the identification of new potential
immune checkpoint such as ADAR and Trex1 which are ISG
that functions as negative regulators of the IFN I response by
inactivating the nucleic acids that stimulate this response (35, 40,
65, 66). By blocking ADAR or Trex function, IFN I response is
amplified which promotes the antitumor immune response.
Thus, there is still a great interest to adapt treatments or find
new therapeutic strategies to activate the IFN I response locally
especially in cold tumors with no or low immune cells infiltrate.
POTENTIAL CONSEQUENCES OF IFN I
GENES HD FOR THORACIC CANCERS
THERAPY

Given the central role of IFN I response in tumor immune
surveillance, the frequent loss of all copies of IFN I genes that
accompanied CDKN2A gene HD in tumor cells likely plays a role
in tumor immune escape. In NSCLC, like in other cancers,
patients with only CDKN2A gene HD have a longer survival
compared to patients with IFN I and CDKN2A genes HD (22).
Thus, IFN I genes act as tumor suppressors genes in malignant
cells. Beside this study of Ye et al., nothing is known on the
prognostic value and immunotherapy biomarker potential of
IFN I genes HD in NSCLC, MPM and other cancers. These
deletions were described as early as the mid-1990s and yet they
have not been well documented. It may be because they were
discovered in studies focusing on the CDKN2A tumor suppressor
gene HD. Furthermore, reports that IFN I treatment in NSCLC
and MPM has limited clinical benefit at that time, may have
decrease the interest of studying IFN I gene HD. Finally, most
studies on the role of IFN I on antitumor immune response were
performed with IFNARko mouse models that are easier to obtain
than mouse models ko for all IFN I genes. These IFNARko
models are instrumental to understand the role of IFN I signaling
on tumor cells and the different subtypes of immune cells but are
less suitable to study the source of the IFN I production.

Questions arise regarding presence of IFN I genes HD in
tumor cells. There are several potential cellular sources of IFN I
secretion in tumors, that are basically tumor and immune cells.
Thus, the first question is the role of IFN I production by tumor
cells and if absence of this production is compensated by other
cellular sources. Several recent studies suggest that triggering of
the tumor cells IFN I production play a role in the induction of
the anti-tumor immune response.

Kitajima et al. reported that the lack of response to immune
checkpoint blockade (ICB) of patients with KRAS-LKB1–mutant
lung cancers is due to the inhibition of STING expression via the
loss of LKB1 (62). They show that KRAS-LKB1–mutant tumor
cells are not able to sense cytoplasmic dsDNA via the STING
pathway, and to produce IFN I in response. In consequence, T
cells infiltration and PD-L1 expression in KRAS-LKB1-mutant
tumors is reduced and ICB therapy is ineffective.

Demaria’s team showed that triggering of tumor cell IFN I
response is necessary for induction of anti-tumor immune
June 2021 | Volume 11 | Article 695770
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response by radiotherapy (64, 65). They first reported that
abscopal response in mouse is abrogated when cancer cells in
the irradiated tumor do not express cGAS/STING or overexpress
the exonuclease Trex1 (65). Irradiation induces the presence of
cytoplasmic DNA that triggers the IFN-b production via the
STING pathway and lead to the expression of the ISG Trex1.
This ISG is an exonuclease that degrades DNA in the cytoplasm
and thus decreases IFN I response by tumor cells and triggering
of the antitumor immune response. By inactivating Trex1 in
tumor cells, the IFN I response induced by irradiation is
increased, as well as the antitumor immune response. Thus,
tumor cell IFN I response is essential for abscopal effect of
radiation in that mouse model. Demaria’s team then showed that
combination of radiotherapy and anti-CTLA4 blockade in
NSCLC patients that have failed anti-CTLA4 alone or in
combination with chemotherapy, induced IFN-b in the blood
and an antitumor T cell response in responding patients (64).

These studies highlight the important role on the antitumor
immune response of triggering the IFN I response via the STING
pathway in tumor cells. However, IFN I response in tumor cells
can also be induced by the sensing of endogenous dsRNA via the
MAVS pathway and that also plays a role in the stimulation of
the antitumor immune response (35, 40–44). Best evidences
come from the study of an ISG, the adenosine deaminase
acting on RNA (ADAR) that acts on the MAVS pathway like
Trex1 does on the STING pathway (35, 40). The ADAR protein,
by converting A to I, disrupts the normal A:U pairing which
destabilizes the dsRNA into ssRNA. dsRNA edited by ADAR are
no longer able to trigger the IFN I response by the dsRNA
cytoplasmic sensor Mda5. Thus like Trex1, ADAR inactivates the
stimuli at the origin of the IFN I production by tumor cells. In a
mouse model, Ishizuka et al. reported that loss of ADAR1 in
tumor cells overcomes the resistance to immune checkpoint
inhibitors by increasing the IFN I response via the MAVS
pathway and, thus, the inflammation of the tumor
microenvironment (40). This results was confirmed by Liu
et al., that show that both, the MAVS and the STING pathway
are needed to maintain the IFN I response in tumor cells that
have lost ADAR (35).

Altogether these studies on the STING and the MAVS pathway
show that triggering of the IFN I response in tumor cells is central to
inflame the microenvironment. However, it does not establish
clearly that IFN I production by tumor cells is required. Indeed,
in these studies, the MAVS or the STING pathway is inactivated.
This inactivation impairs IFN I production and also the expression
of lots of other genes. Indeed, when the MAVS or the STING
pathway are triggered, activated transcription factors such as IRF3
and NF-kB not only induce IFN I production, but also the
expression of many other genes with many being ISG (Figure 2).
In MPM cell lines that have lost IFN I genes, exposition to
attenuated measles virus still resulted in the induction of
expression of a small subset of genes (21). Among these genes,
somemay play a role in the inflammation of the microenvironment,
such as the chemokines CCL5, CXCL10 and CXCL11, or the type
III interferons. Thus, triggering of the IFN I response in tumor cells
Frontiers in Oncology | www.frontiersin.org 5
that have lost IFN I genes may still conserve a certain capacity to
inflame the microenvironment. By studying patients with IFN I
genes HD tumors, we would better understand the IFN I
contribution of tumor cells versus non-malignant cells in cancer
development and therapies. We would also better define the
contribution of IFN I versus other cytokines/chemokines induced
by the triggering of the MAVS or the STING pathway.

IFN I genes HDmay also be interesting for new cancer therapies
such as antitumor virotherapy using oncolytic replicative viruses.
We studied the replication and oncolytic activity of the attenuated
Schwarz strain of measles virus (MV) on 22 human MPM cell lines
and four types of healthy cell (fibroblasts, mesothelial, endothelial
and lung epithelial cells) (69). We found that the healthy cells and
seven MPM cell lines were resistant to MV replication due to a
protective functional IFN I response. The 15 others MPM cell lines
were permissive to MV replication and lysis due to a defective IFN I
response. Among these 15 cell lines, 11 were unable to produce IFN
I when exposed to MV. We showed later that eight of these 11 cell
lines have lost both copies of the IFN I genes (21). The three others
cells line have at least one copy of IFN I genes but are not able to
produce IFN I in response to the virus suggesting another type of
defects of the IFN I response in theseMPM cells lines (69). These 11
MV-sensitive MPM cell lines that are unable to produce IFN I in
response to MV become MV-resistant if exposed to exogenous IFN
I, suggesting that IFNAR signaling is functional in these cell lines.
The four other MV-sensitive MPM cell lines were able to produce
IFN I in response to MV, but unable to control viral replication
suggesting a defect of the IFN I response in IFNAR signaling. This
defective IFNAR signaling has been previously reported in tumor
cells of some patients with MPM (70). It has been associated to
mark decrease of IFNAR, IRF9 and PKR expression and to tumor
sensitivity to an oncolytic vesicular stomatitis virus. These studies
illustrate the diversity of defects found in the IFN I response from
one patients to another in MPM. Such converging selection of
tumor cells with a deficient IFN I response highlights the tumor
suppressive role of this response.

Other questions are still pending regarding IFN I genes HD.
These HD are diverse in length (Figure 2). For some patients,
only a part of IFN I genes are lost and IFNB1 gene that encodes
IFN-b is preserved (Figure 1). Consequences of these partial
losses are also to define. During tumor development, do these
HD appear concomitantly to CDKN2A HD or do they appear
later conferring an additional advantage to the tumor variant
that carries them? The best techniques for detecting IFN I genes
HD is probably FISH assay that can be performed cost effectively
on paraffin-embedded tissue and allow to identify homozygous
and hemizygous deletions at the single cell level (71). It can also
be performed by polymerase chain reaction-based techniques or
whole exome sequencing on tumor biopsies, but large amount of
non-malignant cells in the biopsy may hide the deletions.

With the success of cancer immunotherapy and recent
advances in understanding the IFN I tumor suppressor role,
IFN I genes HD should be studied and taken into account in the
monitoring of MPM and NSCLC patients. This would likely lead
to new strategies and improvements of immunotherapy.
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