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Abstract

Ribosomally synthesized and post-translationally modified peptide (RiPP) biosyn-

thetic enzymes often exhibit promiscuous substrate preferences that cannot be reduced

to simple rules. Large language models are promising tools for predicting such pep-

tide fitness landscapes. However, state-of-the-art protein language models are trained

on relatively few peptide sequences. A previous study comprehensively profiled the
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peptide substrate preferences of LazBF (a two-component serine dehydratase) and

LazDEF (a three-component azole synthetase) from the lactazole biosynthetic path-

way. We demonstrated that masked language modeling of LazBF substrate preferences

produced language model embeddings that improved downstream classification mod-

els of both LazBF and LazDEF substrates. Similarly, masked language modelling of

LazDEF substrate preferences produced embeddings that improved the performance of

classification models of both LazBF and LazDEF substrates. Our results suggest that

the models learned functional forms that are transferable between distinct enzymatic

transformations that act within the same biosynthetic pathway. Our transfer learning

method improved performance and data efficiency in data-scarce scenarios. We then

fine-tuned models on each data set and showed that the fine-tuned models provided

interpretable insight that we anticipate will facilitate the design of substrate libraries

that are compatible with desired RiPP biosynthetic pathways.

Introduction

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad

category of natural products with largely untapped clinical potential.1,2 A typical RiPP

precursor peptide contains an N-terminal leader region followed by a core region (Figure

1).3 RiPP precursor peptides undergo post-translational modifications (PTMs) in the core

region, which serve to restrict conformational flexibility, enhance proteolytic resistance, and

chemically diversify the natural product.3 After modification of the core peptide, the leader

region is cleaved, releasing the mature RiPP. The PTMs are installed by RiPP biosynthetic

enzymes, some of which display high levels of specificity while others act on diverse pep-

tides.4 A significant effort has been dedicated to characterizing the substrate preferences of

RiPP biosynthetic enzymes and PTM enzymes in general, which, in many cases, cannot be

explained by a simple set of rules.5–10 Consequently, machine learning and deep learning

are increasingly used to develop predictive models of PTM specificity.5,11,12 For instance,

2



XGBoost was used to predict the protein substrates of phosphorylation and acetylation in

multiple organisms,13 and a transformer-based protein language model was applied to pre-

dict glycation sites in humans.14 Finally, MusiteDeep is a web server for deep learning-based

PTM site prediction and visualization for proteins.15

Characterizing RiPP biosynthetic enzyme specificity is challenging, mainly due to the

complexity of substrate fitness landscapes and the scarcity of sequences labeled as substrates

or non-substrates.18,19 Accordingly, pretrained protein language models can be used to em-

bed peptides as information rich vector representations to combat data scarcity.20 Protein

language models are transformer-based neural networks that learn the biological proper-

ties of polypeptides by predicting the identities of hidden residues in a training paradigm

called masked language modeling.21,22 Masked language modeling is a form of self-supervised

learning, in which a model predicts features contained within the training data (e.g., masked

residues) instead of experimentally determined property labels. The protein language model

representations of polypeptide sequences, also called embeddings, can be extracted and used

as feature vectors for training downstream machine learning models.23,24 This is a canonical

example of transfer learning, in which knowledge learned during one task is utilized in a

distinct but related task.25,26 Protein language model representations have seen widespread

use in peptide prediction tasks such as antimicrobial activity and toxicity prediction.27–31

However, protein language models have been trained mostly on protein sequences, which

have are much larger and more structurally defined compared to peptides.32,33 Therefore,

protein language models may not fully capture peptide-specific features. Sadeh et al. trained

self-supervised language models on peptide data, but unfortunately their models are not pub-

licly available.34 To the best of our knowledge, no self-supervised, sequence-based peptide

language models are publicly available. Peptide prediction models may benefit from transfer

learning paradigms in which protein language models are further trained on peptide data

that is closely relevant to the downstream task. In a few cases, there exist large, high quality

data sets characterizing the substrate specificity of specific RiPP biosynthetic enzymes.5,35
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Figure 1: a) The generic biosynthesis pathway of RiPPs. RiPP precursor peptides contain
a leader peptide and a core peptide. After post-translational modifications in the core
peptide, the leader peptide is cleaved. b) The lactazole biosynthetic gene cluster contains
six proteins. LazA is the precursor peptide. LazB (tRNA-dependent glutamylation enzyme)
and the eliminase domain of LazF form a serine dehydratase while LazD (RRE-containing
E1-like protein),16 LazE (YcaO cyclodehydratase),17 and the dehydrogenase domain of LazF
comprise a thiazole synthetase. LazC is a pyridine synthase. c) Serine dehydration catalyzed
by LazBF. d) Thiazole formation catalyzed by LazDEF.
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In this work, we evaluated whether learning such data sets in a self-supervised fashion could

more effectively capture functional forms that are transferable to prediction tasks of other

enzymes from the same biosynthetic pathway.

Transfer learning between the substrate preferences of enzymes from the same biosyn-

thetic pathway could potentially enhance data efficiency and model performance in situations

with low data availability. To date, little work has been performed to investigate transfer

learning between substrate prediction tasks of related enzymes. Lu et al. used a geometric

machine learning approach to model the substrate preferences of protease enzymes.36 This

work found that models trained to predict the substrates of a single protease were able to

generalize to other protease variants with multiple amino acid substitutions. In the case of

RiPP biosynthetic enzymes, transfer learning could also help evaluate the degree of shared

features between distinct enzymes. Such insights could aid peptide engineering tasks and

facilitate a more holistic understanding of RiPP biosynthesis.

Thiopeptides are a specialized form of pyritide antibiotics deriving mostly from Bacillota

and Actinomycetota.3,37,38 Lactazole A (LazA)39 is a natural product from the pyritide family

of RiPPs40,41 which is encoded by a biosynthetic gene cluster containing 5 synthetases (Figure

1). A diverse array of precursor peptides can be converted to lactazole-like products by these

biosynthetic enzymes which catalyze post-translational modifications.42 LazBF is a split

Ser dehydratase which installs a Dha residue in LazA precursor peptides.43,44 LazDEF is a

split azole-forming enzyme complex which produces thiazoles in LazA precursor peptides.45

A previous study comprehensively profiled the peptide fitness landscapes of LazBF and

LazDEF (LazC was not included in their study) via the generation of two data sets each

containing over 8 million LazA core sequences labeled as substrates or non-substrates.5

This study trained convolutional neural networks which showed excellent performance on

substrate classification tasks. In the case of LazBF, dehydration sites and important residues

were identified using integrated gradients,46 an interpretable machine learning technique

which determines the positive or negative contribution of each input feature to the model’s
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prediction. Despite the robust interpretability of their models, this study was unable to

produce a general set of rules describing the substrate preferences of either LazBF or LazDEF.

The comprehensive nature of the LazBF/DEF substrate data sets, and the fact that both

data sets characterize related but distinct enzymes from the same biosynthetic pathway make

them good candidates for exploring the plausibility of transfer learning between peptide

substrate prediction tasks.

In this work, we used masked language modeling to further train protein language mod-

els on RiPP biosynthetic enzyme substrates and non-substrates. We then evaluated transfer

learning between the substrate preferences of LazBF and LazDEF. Specifically, we observed

that embeddings from a self-supervised language model trained on LazBF substrates and

non-substrates outperformed baseline protein language model embeddings on either sub-

strate classification task. We show a similar result in the opposite direction, where embed-

dings from a self-supervised model of LazDEF substrates and non-substrates outperformed

baseline embeddings on either substrate classification task. Embeddings from LazBF/DEF-

specific language models also outperformed embeddings from a baseline peptide language

model trained on a subset of PeptideAtlas,47 a diverse data set of mass-spectrometry identi-

fied peptides. We then trained our language models to directly classify peptides as substrates

or non-substrates through a process called fine-tuning. Finally, we evaluated the transfer of

interpretable machine learning techniques between the LazBF and LazDEF substrate pre-

diction tasks. Specifically, we showed that a model fine-tuned to classify LazDEF substrates

correctly identified the residue types and positions important for LazBF substrate fitness.

Figure 2 presents a schematic representation of our overall workflow. Our results suggest that

1) some degree of features are shared between the fitness landscapes of LazBF and LazDEF,

and 2) masked language modeling and transfer learning lead to improved predictive perfor-

mance on RiPP biosynthetic enzyme prediction tasks, especially when large unlabeled data

sets are available. With the increasing power of high-throughput methods, this work could

enable improvement on other substrate prediction tasks by leveraging large data sets and

6



transfer learning.

Methods

Data Preprocessing

Vinogradov et al. used an mRNA display based profiling method and next-generation se-

quencing to generate two data sets of LazA core peptide sequences labeled as either sub-

strates or non-substrates for LazBF and LazDEF respectively.5 For LazBF substrates/non-

substrates, each core peptide contained a serine residue flanked by five N-terminal and five

C-terminal residues (library 5S5). For LazDEF substrates/non-substrates, each core region

contained cysteine flanked by six residues on each side (library 6C6). Duplicate sequences

were removed from both libraries. Pairs of identical sequences found in the substrate and

non-substrate bins were removed. For both libraries, a sample of 1.3 million sequences con-

taining an equal number of substrates and non-substrates was selected. A subset of 50,000

peptides from each sample was excluded as “held-out” data for training and validation of

downstream models after masked language modeling. The remaining 1.25 million LazA

core peptide sequences in each sample were used as the training data for masked language

modeling. Importantly, none of the held-out sequences were seen during masked language

modeling. Figure 3 provides a schematic of the data preprocessing pipeline.

In a later study, Chang et al. used mRNA display based profiling to generate a data

set of LazA core peptide sequences labeled as either substrates or non-substrates for the

entire lactazole biosynthetic pathway (LazBCDEF).48 This study comprehensively profiled

the combined substrate preferences of all 5 synthetases as opposed to individual enzymes.

This data set was preprocessed in a manner identical to the LazBF/DEF substrate data sets.
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Figure 2: A schematic representation of the workflow for masked language modeling of LazBF
and LazDEF substrate preferences. a) LazBF and LazDEF substrate/non-substrate embed-
dings were extracted from the protein language model ESM-2 (Vanilla-ESM). The baseline
performance of downstream classification models was assessed. b) 3 copies of Vanilla-ESM
were independently trained through masked language modeling of 3 peptide data sets. Em-
beddings were extracted and the performance of downstream classification models was com-
pared to baseline. c) Models were further trained to directly classify LazBF/DEF substrates.
The models’ predictions were analyzed with interpretable machine learning techniques in-
cluding attention analysis (see methods).
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Figure 3: A schematic representation of our data preprocessing pipeline. a) LazA core
sequences (n = 1.3 million) were selected from library 5S5. A ‘held-out’ data set of 50,000
peptides was set aside for downstream model training and evaluation. b) LazA core sequences
(n = 1.3 million) were selected from library 6C6. A held-out data set of 50,000 peptides was
set aside for downstream model training and evaluation.

Masked Language Modeling

Masked language modeling is a widely-used strategy for pretraining large language mod-

els.49,50 In the context of protein language models, masked language modeling takes a

polypeptide sequence and replaces a random subset (15%) of the amino acids with a masking

token ([MASK]). Partially masked polypeptides are fed into the model, which is optimized

to predict the identity of masked residues given the context of the surrounding amino acids.

This ‘self-supervised’ pretraining objective has enabled models to learn the biological fea-

tures of proteins including secondary structure, long range residue-residue contacts, and

mutational effects.23 We hypothesized that, for a pretrained protein language model, further

masked language modeling of the LazBF or LazDEF substrate preference data sets would

update the model’s representations and enable better discrimination between substrates and

non-substrates. Additionally, we sought to test how well the representations from a model
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trained on LazBF substrates and non-substrates would be able to discriminate LazDEF

substrates and vice versa.

ESM-2 is a family of transformer-based protein language models with state-of-the-art

performance on various protein and peptide prediction tasks.23,51 ESM-2 is composed of a

series of encoder layers, where each layer takes a numerically represented polypeptide as

input and maps it to a continuous vector representation. Layers are stacked sequentially

to produce increasingly rich representations. A 12-layer, 35 million parameter version of

ESM-2 was used as a baseline model (Vanilla-ESM). 3 copies of Vanilla-ESM underwent

additional training using masked language modeling. “LazBF-ESM” was trained on 1.25

million LazA core peptide sequences from the LazBF data set. “LazDEF-ESM” was trained

on 1.25 million LazA core peptide sequences from the LazDEF data set. “Peptide-ESM” was

trained on a random sample of 1.25 million sequences from Peptide Atlas.47 Each model was

trained for 1 epoch (i.e., one complete pass through the training data set) on their respective

data sets with a learning rate of 3× 10−6 and a batch size of 512.

Embedding Extraction and Downstream Model Training

Each layer of a protein language model produces vector representations of protein sequences

that encode biological structure and function.52,53 Protein language model representations,

are commonly used as the input to downstream machine learning models trained on various

protein and peptide prediction tasks.54,55 The embeddings for all core peptides in the LazBF

and LazDEF held-out data sets were extracted from Vanilla-ESM, Peptide-ESM, LazBF-

ESM, and LazDEF-ESM. For each sequence, the last layer representation was obtained as

a matrix of shape L × 480, where L was the length of the sequence. The last layer repre-

sentation was averaged across the length dimension to obtain a single 480-dimensional mean

representation. The embeddings from the held-out LazBF and LazDEF data sets were used

for training and validation of various machine learning models as described in the proceeding

subsections. Each downstream model type was trained and validated independently on both
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the LazBF and LazDEF held-out data sets. All downstream models were implemented in

Scikit-learn.56 StandardScaler was applied to all embeddings following standard protocols

prior to training.

Unsupervised clustering

Unsupervised k -Means clustering was used to assess how well the distinction between sub-

strates and non-substrates was represented in the high-dimensional ESM-2 embeddings. A

k -Means clustering model with n clusters = 2 was fit to each set of embeddings. The accu-

racy between the ground truth labels and the k -Means predicted labels was then calculated,

along with the precision, recall, area under the receiver operating characteristic (AUROC),

and F1 score. For each set of embeddings, five separate k -Means models were trained with

different random state parameters. The model’s final performance was described by the

average of the k -Means metrics.

Supervised classification models

Supervised learning models are trained by predicting properties of labeled data points (e.g.,

substrate or non-substrate). Logistic regression (LR), k -nearest neighbors classifier (KNN),

random forest (RF), AdaBoost (AB), support vector classifier (SVC), and multi-layer per-

ceptron (MLP) models were trained via supervised learning to predict LazBF and LazDEF

substrates using the embeddings from each of the 4 protein language models as input. All

embeddings were reduced to 50 dimensions with principal component analysis (PCA) before

being used as the input for supervised classification models. Stratified 5-fold cross validation

was performed for each model. For each fold, the accuracy, precision, recall, AUROC, and

F1 score between the ground truth labels and the predicted labels was calculated. The final

model performance was described by the average metrics for all 5 folds. To emulate real-

world scenarios in which training data is limited, each model type was trained and validated

under 3 conditions. In the “high-N” condition, 5-fold cross validation was performed such
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that for each fold, 10,000 peptides were used for validation, and 40,000 peptides were used

for model training. In the “medium-N” condition, 5-fold cross validation was performed such

that for each fold, 10,000 peptides were used for validation, but only a random sample of

1,000 peptides were used for model training. In the “low-N” condition, 5-fold cross validation

was performed such that for each fold, 10,000 peptides were used for validation, but only

a random sample of 100 peptides were used for model training. Hyperparameters of each

supervised model were optimized separately for each set of embeddings under each condition

using grid search. The optimized hyperparameters for all downstream models are in Tables

S1-S3.

Embedding space visualization

t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize the embeddings

from each protein language model. A sample of 5,000 peptides from both held-out data sets

were selected for visualization. The 480-dimensional embeddings were first reduced to 100

dimensions with PCA, and then further reduced to two dimensions with t-SNE.

Fine-Tuning, Integrated Gradients, and Attention Analysis

Fine-tuning refers to further training a language model to directly predict properties of la-

beled data points using supervised learning.57 Fine-tuning boosts the model’s performance

on a downstream task in part by transferring broader knowledge learned during masked

language modelling. The embeddings from the language model are not extracted at any

point during fine-tuning. Instead, all the model’s parameters are optimized to classify la-

beled training data. Both LazBF-ESM and LazDEF-ESM were fine-tuned using supervised

learning on their respective data sets. For each model, the same sequences used for masked

language modeling were used as the training set for fine-tuning. The same held-out data sets

containing sequences unseen during masked language modeling and fine-tuning were used to

evaluate the fine-tuned models. Vanilla-ESM was also fine-tuned to classify substrates of the
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entire lactazole biosynthetic pathway. The accuracy on each held-out data set was calculated

for each of the 3 fine-tuned models.

Integrated gradients are an interpretable machine learning technique used to quantify

the positive or negative contribution of input features to a model’s prediction for a given

data point.46 In the context of predicting whether a peptide is the substrate of an enzyme, a

positive value for a given residue implies that the residue is important for substrate fitness.

A negative value for a given residue suggests that the residue is associated with being a non-

substrate. The fine-tuned LazBF model and the fine-tuned LazDEF model were separately

used to calculate the integrated gradients for each peptide in the held-out LazBF data set.

For each model, and for each residue type, all contributions of that residue across all 50,000

sequences were summed and then divided by the frequency of that residue in the held-out

LazBF data, producing two matrices of shape 1×20 representing the average contribution of

each residue type according to the integrated gradients of each model. A similar procedure

produced two 1×11 matrices, representing the average contribution of each position for each

model. Finally, a similar procedure produced two 20× 11 matrices, representing the average

contribution of each residue type in each position for each model.

ESM-2 employs a multi-head self-attention mechanism, where each of the 12 layers pro-

duce 20 attention heads (240 attention heads in total).58 Each attention head is a 2D matrix

α of shape L× L, where L is the length of the tokenized input sequence. The tokenized in-

put sequence includes a “beginning of sequence” ([BOS]) and an “end of sequence” ([EOS])

character in addition to the amino acids. Individual attention weights αi,j quantify how

much the residue at position i affects the model’s representation of the residue at posi-

tion j, with greater values suggesting greater influence. Attention weights have been shown

to highlight biological features of proteins including residue-residue contacts and binding

sites.59 The pairwise nature of the self-attention mechanism resembles epistatic interactions

in protein/peptide fitness landscapes.60 Vinogradov et al. calculated pairwise epi-scores that

attempted to quantify how the fitness of a residue at a given position is affected by residues
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at other positions.5 Thus, we looked for similarities between self-attention matrices and the

pairwise epi-scores calculated in previous work for one LazBF and one LazDEF substrate.

All 240 attention matrices were obtained for both peptides.

Results and discussion

Vanilla-ESM Baseline

We first evaluated the performance of downstream LazBF and LazDEF substrate classifica-

tion models trained on embeddings from a baseline protein language model (Vanilla-ESM).

The performance of each model type was evaluated separately under a high-N, medium-N,

and low-N condition defined by the number of sequences used for training. The results of

each model type trained on embeddings from Vanilla-ESM – without any additional masked

language modeling – are displayed in Table 1. Embeddings from Vanilla-ESM perform rea-

sonably well on RiPP biosynthetic enzyme substrate classification tasks, particularly in the

high-N condition for the LazBF substrate prediction task. The reasonable performance

of Vanilla-ESM embeddings underscores the richness of protein language model represen-

tations, which can effectively generalize to novel tasks. Models trained on fewer training

samples (i.e., medium-N and low-N) had lower performance. This reflects the importance of

having sufficiently large and diverse training data in supervised learning paradigms.

Masked Language Modeling Improves LazDEF Substrate Classifi-

cation Performance

The accuracy of each supervised model type trained on LazDEF substrate/non-substrate

embeddings from each of the four language models are presented in Figure 4. The precision,

recall, AUROC, and F1 score of each model type is available in Figures S1-S4. LazDEF-

ESM produced embeddings that significantly increased the performance of all downstream
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Table 1: Classification Accuracy with Vanilla-ESM Embeddings

Training Size SVC MLP LR RF AB KNN
LazBF High-N 90.9 ± 0.13 90.2± 0.31 89.6± 0.27 88.4± 0.26 88.8± 0.42 87.4± 0.29
LazDEF High-N 83.0 ± 0.27 81.5± 0.19 80.5± 0.21 79.7± 0.32 79.4± 0.48 78.0± 0.26

Training Size SVC MLP LR RF AB KNN
LazBF Medium-N 88.1± 0.57 88.0± 0.26 88.2 ± 0.09 84.9± 0.33 85.4± 0.45 83.8± 0.80
LazDEF Medium-N 78.1± 0.41 76.8± 0.30 79.0 ± 0.47 76.4± 0.51 75.4± 0.35 73.9± 0.57

Training Size SVC MLP LR RF AB KNN
LazBF Low-N 82.2 ± 0.92 81.3± 0.93 80.9± 2.07 77.4± 1.75 76.1± 1.77 77.0± 0.80
LazDEF Low-N 70.8± 0.97 72.3± 0.74 72.7 ± 0.94 69.1± 1.15 64.8± 1.35 67.6± 0.86

Accuracy of support vector classifier (SVC), multi-layer perceptron (MLP), logistic regres-
sion (LR), random forest (RF), AdaBoost (AB), and k -nearest neighbors classifier (KNN)
models trained on embeddings from Vanilla-ESM on both substrate classification tasks. Val-
ues are Mean ± SD. The best performing model in each row is highlighted.

LazDEF substrate classification models across all training sizes. We suspect that during

masked language modeling, the model became attuned to specific features of the LazDEF

data set, including the features that distinguish substrates from non-substrates. The model’s

representations were updated in accordance with these features, allowing for improved dis-

crimination of substrate and non-substrate sequences.

Strikingly, LazBF-ESM also produced embeddings that significantly increased the per-

formance of LazDEF substrate classification models. Every LazDEF substrate classification

model across all training sizes showed a sizable improvement in performance when trained

on embeddings from LazBF-ESM, demonstrating that transfer learning improved the per-

formance of the models. Embeddings from Peptide-ESM also improved LazDEF substrate

classification models in nearly all cases, but to a lesser extent than LazBF-ESM or LazDEF-

ESM embeddings. This indicated that large data sets characterizing the substrate prefer-

ences of specific RiPP biosynthetic enzymes provided the most utility in improving RiPP

biosynthetic enzyme substrate classification models.

t-SNE was then used to reduce each set of embeddings to two dimensions for visual-

ization. t-SNE plots of the Vanilla-ESM and Peptide-ESM embedding spaces of LazDEF

substrates and non-substrates do not show any apparent distinction between substrates and

non-substrates (Figures 5, S9). Notably, the LazBF-ESM embedding space shows a visi-
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Figure 4: Accuracy of LazDEF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.

16



Figure 5: t-SNE visualization of the LazDEF embedding space for a) Vanilla-ESM,
b) ESM trained on LazBF substrates/non-substrates, and c) ESM trained on LazDEF
substrates/non-substrates. t-SNE visualization of the LazBF embedding space for d) Vanilla-
ESM, e) ESM trained on LazDEF substrates/non-substrates, and f) ESM trained on LazBF
substrates/non-substrates. Substrates are red and non-substrates samples are blue.

bly higher degree of clustering within substrates and non-substrates than the Vanilla-ESM

embedding space. This agrees with the increase in downstream LazDEF substrate classifi-

cation model performance observed after masked language modeling of the LazBF data set.

Finally, the LazDEF-ESM embedding space shows the most obvious segregation (Figure 5).

The increased ability to distinguish LazDEF substrates/non-substrates suggests that using

embeddings from a language model trained on a large data set relevant to the task of interest

can greatly increase the predictive power of downstream classifiers through transfer learning.
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Masked Language Modeling of Either Data Set Improves LazBF

Substrate Classification Performance

The accuracy of each model type trained on embeddings of LazBF substrates/non-substrates

from each of the 4 protein language models are presented in Figure 6. The precision, recall,

AUROC, and F1 score of each model type is available in Figures S5-S8. Similarly, LazBF-

ESM produced embeddings that significantly improved the performance of both unsuper-

vised k -Means clustering and supervised classification models of LazBF substrates across all

training sizes. LazDEF-ESM also produced embeddings that improved the performance of

most LazBF substrate classification models. In the high-N condition, all models showed per-

formance increases, with unsupervised k -Means clustering showing the most improvement.

Most supervised models trained using the medium-N and low-N conditions also showed im-

proved performance. SVC and MLP showed the largest and most consistent increases across

these two conditions. Expectedly, the low-N condition produced models with higher variance,

which likely contributed to more unstable results. In most cases, LazDEF-ESM embeddings

also outperformed Peptide-ESM embeddings.

A t-SNE plot of the LazBF substrate/non-substrate embeddings from Vanilla-ESM and

Peptide-ESM show an already apparent distinction between substrates and non-substrates

(Figures 5, S9). This suggests that the pretrained model is sensitive to differences inherent in

LazBF substrates and non-substrates. The visual divergence of substrates and non-substrates

is arguably more apparent in the embedding space of LazDEF-ESM (Figure 5e). Predictably,

the embedding space of LazBF-ESM shows the most dramatic separation of substrates from

non-substrates (Figure 5f). This is consistent with large increases in downstream LazBF

substrate classification model performance after masked language modeling of the LazBF

data set.

The observation that LazBF substrate classifiers showed improved performance when

trained on embeddings from LazDEF-ESM suggests that information relevant to LazBF

classification was learned during masked language modeling of the LazDEF substrates/non-
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Figure 6: Accuracy of LazBF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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substrates. However, Vanilla-ESM embeddings already showed good performance on LazBF

prediction tasks. We suspect that this left less room for improvement through masked

language modeling of the LazDEF data set. However, any improvement is compelling given

that 1) LazBF and LazDEF catalyze disparate transformations and 2) the substrate fitness

landscapes of LazBF and LazDEF are reported to be divergent from one another, particularly

in the degree to which pairwise positional epistasis affects fitness.5 Tanimoto similarity is

a common metric used to quantify the chemical similarity between small molecules and

peptides. The average Tanimoto similarity between peptides in the held-out LazBF and

held-out LazDEF substrate data sets was calculated to be 0.354 ± 0.031, suggesting that

the data sets contained relatively dissimilar sequences. The results of this and the previous

section show that knowledge learned during the unsupervised modeling of RiPP biosynthetic

enzyme substrates/non-substrates can be transferred to other tasks, particularly those that

involve related but distinct enzymes from the same biosynthetic pathway. Additionally,

unsupervised modeling of RiPP biosynthetic enzyme substrates/non-substrates appear to

produce better representations than unsupervised modeling of diverse peptides.

Despite catalyzing different transformations, both LazBF and LazDEF bind LazA pre-

cursor peptides as substrates. Therefore, there is expected to be some degree of similarity

between the substrate preferences of the two enzymes. However, we observed that more in-

formation about LazDEF substrate preferences was learned from masked language modeling

of LazBF substrate preferences than vice versa. We hypothesize that this asymmetry results

from the order of the post-translational modifications that occur during lactazole biosyn-

thesis. In nature, LazDEF modifies LazA precursor peptides prior to LazBF.45 Therefore,

self-supervised modeling of LazBF substrate preferences learns the biophysical features of

substrates that are likely to have been modified by LazDEF. However, the opposite is not

necessarily true. This presents an intuitive explanation as to why transfer learning showed

greater success at improving LazDEF substrate classification models.
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Fine-Tuned Language Model Performance on RiPP Biosynthetic

Enzyme Classification Tasks

LazBF-ESM and LazDEF-ESM were then trained to classify the substrates of their respective

data sets through a training procedure called fine-tuning. Vanilla-ESM was also fine-tuned

to classify substrates of the entire lactazole biosynthetic pathway. Each fine-tuned model

showed excellent performance on its respective held-out data set (>0.95 accuracy in each

case). We also evaluated how well each fine-tuned model performed on the other held-out

data sets without any further training (Table 2). The fine-tuned LazBF-ESM model showed

no ability to classify LazDEF substrates, and showed little ability to classify substrates for

the entire pathway after supervised training. In contrast, the fine-tuned LazDEF model

achieved 0.697 accuracy on the held-out LazBF substrate data set, likely due in part to the

LazBF data set being more enriched (Figure 5d). This model also showed some ability to

classify substrates of the entire lactazole biosynthetic pathway. Finally, the supervised model

trained to classify substrates of the entire pathway showed some ability to classify LazBF

and LazDEF substrates without any further training.

Integrated gradients can quantify how individual residues contribute to a model’s pre-

diction. Inspired by the performance of LazDEF-ESM on the LazBF substrate classification

task, we looked for similarities between the integrated gradients for LazBF substrates/non-

substrates from both models (Figure 7). We observed that the average contribution of each

residue type from fine-tuned LazDEF-ESM strongly correlated with the average contribution

of each residue type from fine-tuned LazBF-ESM, with a spearman coefficient of 0.80 (Fig-

ure 7a). Similarly, the average contribution of each position from both fine-tuned models

showed a 0.81 spearman coefficient (Figure 7b). The average contribution of each residue

type in each position also showed a moderate correlation (0.59 spearman coefficient). These

correlations exist despite fine-tuned LazDEF-ESM having never been trained on LazBF sub-

strates. Therefore, to some extent, fine-tuned RiPP biosynthetic enzyme prediction models

can produce valid and interpretable predictions about distinct, but related prediction tasks.
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Table 2: Classification Accuracy Fine-Tuned Models

Supervised LazBF Supervised LazDEF Supervised LazBCDEF
LazBF test set 99.3% 69.7% 64.8%
LazDEF test set 50.9% 99.2% 58.8%
LazBCDEF test set 52.3% 64.1% 95.9%

Figure 7: Fine-tuned LazBF-ESM and fine-tuned LazDEF-ESM produce correlated inte-
grated gradients for LazBF substrates/non-substrates. a) The average contribution of each
position to substrate fitness shows a 0.81 spearmanr between the two models. b) The average
contribution of each amino acid to substrate fitness shows a 0.80 spearmanr between the two
models.

Attention Analysis

Attention matrices describe the model’s perceived relevance or association between each

pair of tokenized residues, including the [BOS] and [EOS] tokens added to the beginning and

the end of the peptide respectively (see methods). Higher values between a pair of tokens

indicates greater relevance between them. Analyzing attention matrices can provide insight

into which residues the model regards as important. We observe a general trend in which

the attention heads from earlier layers focus mainly on the [BOS] and [EOS] tokens, while

heads from later layers dedicate significant attention to specific residues or motifs (Figures

8a, S10). Our observation that the model’s attention mechanism ‘zeros-in’ on important

residues is consistent with the widespread claim that the per-layer representations of protein

language models are hierarchical in nature, with earlier layers encoding low-level features

and later layers encoding more global representations of structure and/or function.59
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Figure 8: Attention maps from the fine-tuned LazBF-ESM. [BOS] and [EOS] tokens mark
the “beginning of sequence” and “end of sequence” respectively. a) Middle and later layers
focus on specific residues and motifs. b) Attention heads from the penultimate layer highlight
a motif with high pairwise epi-scores in a LazBF substrate. c) Attention heads from the final
layer highlight a residue important for substrate fitness in a LazDEF substrate.

Previous work utilized predictive machine learning models to calculate the pairwise epi-

scores for LazBF substrates. Pairwise epi-score values provide an estimate of the strength

with which amino acids in the core peptide region affect each other’s fitness.5 The self-

attention mechanism found in transformer models resembles pairwise epi-scores by quantify-

ing the degree to which one amino acid affects the representations of other amino acids in the

peptide.59,60 For the LazBF substrate FVCHPSRWVGA, the computed pairwise epi-scores

suggest that a His4-Pro5-Ser6-Arg7-Trp8 motif contributes to the fitness of the peptide.5
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Figure 8b shows that multiple attention heads in the 11th layer of the fine-tuned LazBF-

ESM dedicate attention between pairs of amino acids within this motif. This suggests that

the supervised protein language model’s attention mechanism is somewhat able to highlight

epistatic interactions and provide a rough idea of which residues are important for fitness.

Surprisingly, we observe that the fine-tuned version of LazBF-ESM also highlights some

epistatic features of the LazDEF substrate VIGGRTCDGTRYY (Figure 8c). Precalculated

epi-scores for this peptide indicate that Asp8 has numerous positive and negative epistatic

interactions with surrounding peptides including Thr6, Gly9, and Arg11. We find that

multiple heads from the last layer of our fine-tuned LazBF-ESM dedicate significant attention

between Asp8 and nearby residues, thus highlighting Asp8 as an important residue.

Conclusions

In this work, we enhanced the performance of protein language model embeddings for RiPP

biosynthetic enzyme substrate prediction tasks by performing masked language modeling

of substrate/non-substrate data. We applied transfer learning to improve the performance

of peptide substrate prediction models for distinct enzymes from the same biosynthetic

pathway. A limited number of studies have explored transfer learning in the domain of

enzyme substrate prediction, and, to the best of our knowledge, this is the first work to

investigate transfer learning between RiPP biosynthetic enzymes.

We focused on LazBF and LazDEF, a serine dehydratase and azole synthetase respec-

tively, from the lactazole biosynthesis pathway. Masked language modeling was used to

train two peptide language models on data sets comprised of LazA sequences labeled as

substrates or non-substrates for LazBF and LazDEF respectively. An additional peptide

language model was trained on a diverse set of non-LazA peptides. We found that all pep-

tide language models produced embeddings that increased the performance of downstream

classification models on both substrate prediction tasks. The LazBF/DEF models provided
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the largest increases in performance. This suggested some information is shared between

the two fitness landscapes, and that masked language modeling of one data set allowed the

model to learn important features of the other data set. The performance enhancements were

most significant for downstream LazDEF classification models, including the medium-N and

low-N conditions. Our workflow enhances the ability to classify RiPP biosynthetic enzyme

substrates in limited data regime. This is attractive in the context of peptide engineering,

where it could expedite peptide design and discovery by reducing the need for comprehensive

experimental profiling.

We also demonstrated that interpretable machine learning techniques are somewhat

transferable between similar RiPP biosynthetic enzyme classification tasks. Specifically, we

found that the integrated gradients for LazBF peptides from a supervised LazDEF model cor-

related with the integrated gradients from a supervised LazBF model. Due to the increasing

abundance of sequence data and rapid advances in next-generation sequencing technology,

we anticipate the development of large peptide data sets suitable for masked language model-

ing. Coupled with the growing size and sophistication of protein language models, we expect

masked language modeling and transfer learning to aid enzyme substrate prediction tasks

especially in cases where large data sets for related enzymes are available.
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Figure S1: Precision of LazDEF substrate classification models trained on embeddings
from Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S2: Recall of LazDEF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S3: F1 score of LazDEF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S4: AUROC of LazDEF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S5: Precision of LazBF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S6: Recall of LazBF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S7: F1 score of LazBF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Figure S8: AUROC of LazBF substrate classification models trained on embeddings from
Vanilla-ESM (green), ESM trained on a subset of PeptideAtlas (orange), ESM trained
on LazBF substrates/non-substrates (blue), and ESM trained on LazDEF substrates/non-
substrates (pink) in the a) high-N condition, b) medium-N condition, and c) low-N condition.
A star indicates the top performing model for each set of embeddings.
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Table S1: The optimal hyperparameters for each downstream model type trained on each
set of embeddings for the high-N condition.

Embedding Downstream Model Hyperparameters
LazBF Vanilla-ESM SVC C=5, kernel=’rbf’
LazBF Vanilla-ESM MLP hidden layer sizes=1000, activation=’relu’
LazBF Vanilla-ESM LR C= 0.1, penalty=’l2’
LazBF Vanilla-ESM RF n estimators=500, criterion=’log loss’
LazBF Vanilla-ESM AB learning rate=1, n estimators=500
LazBF Vanilla-ESM KNN n neighbors=25, weights=’distance’
LazDEF Vanilla-ESM SVC C=5, kernel=’rbf’
LazDEF Vanilla-ESM MLP hidden layer sizes=1000, activation=’relu’
LazDEF Vanilla-ESM LR C=0.1, penalty=’l2’
LazDEF Vanilla-ESM RF n estimators=500, criterion=’gini’
LazDEF Vanilla-ESM AB learning rate=1, n estimators=500
LazDEF Vanilla-ESM KNN n neighbors=50, weights=’uniform’
LazBF LazBF-ESM SVC C=10, kernel=’rbf’
LazBF LazBF-ESM MLP hidden layer sizes=1000, activation=’relu’
LazBF LazBF-ESM LR C=0.1, penalty=None
LazBF LazBF-ESM RF n estimators=100, criterion=’gini’
LazBF LazBF-ESM AB learning rate=0.1, n estimators=500
LazBF LazBF-ESM KNN n neighbors=25, weights=’distance’
LazDEF LazBF-ESM SVC C=5, kernel=’rbf’
LazDEF LazBF-ESM MLP hidden layer sizes=1000, activation=’relu’
LazDEF LazBF-ESM LR C=0.1, penalty=’l2’
LazDEF LazBF-ESM RF n estimators=500, criterion=’log loss’
LazDEF LazBF-ESM AB learning rate=1, n estimators=500
LazDEF LazBF-ESM KNN n neighbors=50, weights=’distance’
LazBF LazDEF-ESM SVC C=5, kernel=’rbf’
LazBF LazDEF-ESM MLP hidden layer sizes=1000, activation=’relu’
LazBF LazDEF-ESM LR C=0.1, penalty=None
LazBF LazDEF-ESM RF n estimators=500, criterion=’log loss’
LazBF LazDEF-ESM AB learning rate=1, n estimators=500
LazBF LazDEF-ESM KNN n neighbors=50, weights=’uniform’
LazDEF LazDEF-ESM SVC C=1, kernel=’rbf’
LazDEF LazDEF-ESM MLP hidden layer sizes=1000, activation=’relu’
LazDEF LazDEF-ESM LR C=10, penalty=None
LazDEF LazDEF-ESM RF n estimators=500, criterion=’gini’
LazDEF LazDEF-ESM AB learning rate=1, n estimators=500
LazDEF LazDEF-ESM KNN n neighbors=50, weights=’uniform’
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Table S2: The optimal hyperparameters for each downstream model type trained on each
set of embeddings for the medium-N condition.

Embedding Downstream Model Hyperparameters
LazBF Vanilla-ESM SVC C=10, kernel=’linear’
LazBF Vanilla-ESM MLP hidden layer sizes=500, activation=’relu’
LazBF Vanilla-ESM LR C=10, penalty=None
LazBF Vanilla-ESM RF n estimators=200, criterion=’gini’
LazBF Vanilla-ESM AB learning rate=1, n estimators=200
LazBF Vanilla-ESM KNN n neighbors=50, weights=’distance’
LazDEF Vanilla-ESM SVC C=1, kernel=’rbf’
LazDEF Vanilla-ESM MLP hidden layer sizes=100, activation=’relu’
LazDEF Vanilla-ESM LR C=0.1, penalty=None
LazDEF Vanilla-ESM RF n estimators=200, criterion=’entropy’
LazDEF Vanilla-ESM AB learning rate=0.1, n estimators=500
LazDEF Vanilla-ESM KNN n neighbors=50, weights=’uniform’
LazBF LazBF-ESM SVC C=0.1, kernel=’linear’
LazBF LazBF-ESM MLP hidden layer sizes=50, activation=’tanh’
LazBF LazBF-ESM LR C=0.1, penalty=’l2’
LazBF LazBF-ESM RF n estimators=200, criterion=’entropy’
LazBF LazBF-ESM AB learning rate=0.1, n estimators=200
LazBF LazBF-ESM KNN n neighbors=25, weights=’uniform’
LazDEF LazBF-ESM SVC C=1, kernel=’linear’
LazDEF LazBF-ESM MLP hidden layer sizes=100, activation=’tanh’
LazDEF LazBF-ESM LR C=0.1, penalty=’l2’
LazDEF LazBF-ESM RF n estimators=500, criterion=’gini’
LazDEF LazBF-ESM AB learning rate=1, n estimators=200
LazDEF LazBF-ESM KNN n neighbors=25, weights=’uniform’
LazBF LazDEF-ESM SVC C=0.1, kernel=’linear’
LazBF LazDEF-ESM MLP hidden layer sizes=500, activation=’relu’
LazBF LazDEF-ESM LR C=0.1, penalty=’l2’
LazBF LazDEF-ESM RF n estimators=500, criterion=’log loss’
LazBF LazDEF-ESM AB learning rate=1, n estimators=200
LazBF LazDEF-ESM KNN n neighbors=50, weights=’uniform’
LazDEF LazDEF-ESM SVC C=1, kernel=’rbf’
LazDEF LazDEF-ESM MLP hidden layer sizes=100, activation=’relu’
LazDEF LazDEF-ESM LR C=5, penalty=None
LazDEF LazDEF-ESM RF n estimators=50, criterion=’entropy’
LazDEF LazDEF-ESM AB learning rate=0.1, n estimators=500
LazDEF LazDEF-ESM KNN n neighbors=25, weights=’uniform’
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Table S3: The optimal hyperparameters for each downstream model type trained on each
set of embeddings for the low-N condition.

Embedding Downstream Model Hyperparameters
LazBF Vanilla-ESM SVC C=5, kernel=’rbf’
LazBF Vanilla-ESM MLP hidden layer sizes=100, activation=’relu’
LazBF Vanilla-ESM LR C=0.1, penalty=None
LazBF Vanilla-ESM RF n estimators=100, criterion=’entropy’
LazBF Vanilla-ESM AB learning rate=1, n estimators=500
LazBF Vanilla-ESM KNN n neighbors=5, weights=’uniform’
LazDEF Vanilla-ESM SVC C=0.1, kernel=’linear’
LazDEF Vanilla-ESM MLP hidden layer sizes=1000, activation=’relu’
LazDEF Vanilla-ESM LR C=0.1, penalty=’l2’
LazDEF Vanilla-ESM RF n estimators=100, criterion=’entropy’
LazDEF Vanilla-ESM AB learning rate=1, n estimators=200
LazDEF Vanilla-ESM KNN n neighbors=10, weights=’uniform’
LazBF LazBF-ESM SVC C=0.1, kernel=’rbf’
LazBF LazBF-ESM MLP hidden layer sizes=500, activation=’relu’
LazBF LazBF-ESM LR C=0.1, penalty=’l2’
LazBF LazBF-ESM RF n estimators=200, criterion=’entropy’
LazBF LazBF-ESM AB learning rate=5, n estimators=200
LazBF LazBF-ESM KNN n neighbors=5, weights=’uniform’
LazDEF LazBF-ESM SVC C=5, kernel=’rbf’
LazDEF LazBF-ESM MLP hidden layer sizes=750, activation=’relu’
LazDEF LazBF-ESM LR C=0.1, penalty=’l2’
LazDEF LazBF-ESM RF n estimators=200, criterion=’gini’
LazDEF LazBF-ESM AB learning rate=1, n estimators=500
LazDEF LazBF-ESM KNN n neighbors=50, weights=’distance’
LazBF LazDEF-ESM SVC C=0.1, kernel=’linear’
LazBF LazDEF-ESM MLP hidden layer sizes=750, activation=’relu’
LazBF LazDEF-ESM LR C=0.1, penalty=’l2’
LazBF LazDEF-ESM RF n estimators=50, criterion=’log loss’
LazBF LazDEF-ESM AB learning rate=1, n estimators=500
LazBF LazDEF-ESM KNN n neighbors=10, weights=’uniform’
LazDEF LazDEF-ESM SVC C=1, kernel=’rbf’
LazDEF LazDEF-ESM MLP hidden layer sizes=500, activation=’tanh’
LazDEF LazDEF-ESM LR C=0.1, penalty=’l2’
LazDEF LazDEF-ESM RF n estimators=200, criterion=’log loss’
LazDEF LazDEF-ESM AB learning rate=0.1, n estimators=50
LazDEF LazDEF-ESM KNN n neighbors=50, weights=’uniform’
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Table S4: The optimal hyperparameters for each downstream model type trained on Peptide-
ESM embeddings for the low-N, med-N, and high-N conditions.

Embedding Downstream Model Hyperparameters
LazBF Peptide-ESM low-N SVC C=0.1, kernel=’linear’
LazBF Peptide-ESM low-N MLP hidden layer sizes=750, activation=’relu’
LazBF Peptide-ESM low-N LR C=1, penalty=None
LazBF Peptide-ESM low-N RF n estimators=50, criterion=’entropy’
LazBF Peptide-ESM low-N AB learning rate=1, n estimators=50
LazBF Peptide-ESM low-N KNN n neighbors=10, weights=’uniform’
LazDEF Peptide-ESM low-N SVC C=1, kernel=’linear’
LazDEF Peptide-ESM low-N MLP hidden layer sizes=500, activation=’relu’
LazDEF Peptide-ESM low-N LR C=1, penalty=’None’
LazDEF Peptide-ESM low-N RF n estimators=200, criterion=’gini’
LazDEF Peptide-ESM low-N AB learning rate=1, n estimators=200
LazDEF Peptide-ESM low-N KNN n neighbors=25, weights=’uniform’
LazBF Peptide-ESM med-N SVC C=1, kernel=’linear’
LazBF Peptide-ESM med-N MLP hidden layer sizes=500, activation=’tanh’
LazBF Peptide-ESM med-N LR C=1, penalty=None
LazBF Peptide-ESM med-N RF n estimators=500, criterion=’entropy’
LazBF Peptide-ESM med-N AB learning rate=0.1, n estimators=200
LazBF Peptide-ESM med-N KNN n neighbors=10, weights=’uniform’
LazDEF Peptide-ESM med-N SVC C=0.1, kernel=’linear’
LazDEF Peptide-ESM med-N MLP hidden layer sizes=1000, activation=’relu’
LazDEF Peptide-ESM med-N LR C=0.1, penalty=’None’
LazDEF Peptide-ESM med-N RF n estimators=200, criterion=’entropy’
LazDEF Peptide-ESM med-N AB learning rate=1, n estimators=500
LazDEF Peptide-ESM med-N KNN n neighbors=25, weights=’distance’
LazBF Peptide-ESM high-N SVC C=0.1, kernel=’linear’
LazBF Peptide-ESM high-N MLP hidden layer sizes=750, activation=’tanh’
LazBF Peptide-ESM high-N LR C=5, penalty=None
LazBF Peptide-ESM high-N RF n estimators=500, criterion=’entropy’
LazBF Peptide-ESM high-N AB learning rate=1, n estimators=500
LazBF Peptide-ESM high-N KNN n neighbors=50, weights=’uniform’
LazDEF Peptide-ESM high-N SVC C=5, kernel=’linear’
LazDEF Peptide-ESM high-N MLP hidden layer sizes=50, activation=’relu’
LazDEF Peptide-ESM high-N LR C=1, penalty=’None’
LazDEF Peptide-ESM high-N RF n estimators=500, criterion=’log loss’
LazDEF Peptide-ESM high-N AB learning rate=1, n estimators=500
LazDEF Peptide-ESM high-N KNN n neighbors=50, weights=’uniform’
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Figure S9: t-SNE visualization of the embedding space from ESM trained on a subset
of PeptideAtlas for a) LazDEF substrates/non-substrates, and b) LazBF substrates/non-
substrates. Substrates are red and non-substrates samples are blue.
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Figure S10: The average attention for all 12 layers of the fine-tuned LazBF-ESM for the
LazBF substrate FVCHPSRWVGA.
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