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Background: Guidelines for clinicians treating military concussion recommend exertional testing before
return-to-duty, yet there is currently no standardized task or inclusion of an objective physiological mea-
sure like heart rate variability (HRV). Methodology & results: We pilot-tested two clinically feasible ex-
ertional tasks that include HRV measures and examined reliability of a commercially available heart rate
monitor. Testing healthy participants confirmed that the 6-min step test and 2-min pushup test evoked the
targeted physiological response, and the Polar H10 was reliable to the gold-standard electrocardiogram.
Conclusion: Both tasks are brief assessments that can be implemented into primary care setting including
the Polar H10 as an affordable way to access HRV. Additional research utilizing these tasks to evaluate
concussion recovery can validate standardized exertional tasks for clinical use.
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Concussion or mild traumatic brain injury (mTBI) is a prevalent injury in civilian, athletic and military populations.
mTBI results in a variety of symptoms that limit activity. Both early return to normal activity and prolonged rest
have been shown to increase symptom duration [1–3]. Clinicians commonly determine military duty readiness based
on self-reported absence of symptoms and return to ’normal’ performance on clinical assessments that may have
ceiling effects for this population [4].

The Traumatic Brain Injury Center of Excellence (TBI CoE) has developed clinical recommendations for military
primary care providers (PCP) for management of mTBI that outline a five-stage activity progression, similar to
sports concussion consensus return-to-play recommendations [5–7]. TBI CoE guidelines recommend an exertional
test before resumption of activity and again before return to duty. However, implementation of exertion testing is
inconsistent, and there are no standardized exertional assessments that are feasible and validated for primary care.

Symptom self-report at rest serves as the primary measure that clinicians use to recommend return-to-activity [8],
but physiological deficits may persist beyond symptom resolution [9,10]. Although concussive symptoms may have
multiple causes, one contributor to impairment is autonomic nervous system (ANS) dysfunction [11,12]. The ANS
drives communication between the brain and circulatory regulation that may be disrupted after mTBI [13,14].
Sympathetic and parasympathetic function is reflected in heart rate variability (HRV), which is the variation
in time between successive heartbeats. HRV can serve as a proxy for ’top-down’ integration of mechanisms
that regulate peripheral physiology and can provide insight on stress and overall health [15]. One critical HRV
component, respiratory sinus arrhythmia (RSA), or high frequency (HF), represents parasympathetic activity or
vagal tone [15,16]. After concussion, it may be necessary to induce physical stress to observe subtle ANS and
cardiovascular dysfunction [17].
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The current gold standard for HRV measurement requires electrocardiogram (ECG) measurement [18] because the
sequence of times between R-peaks provides a noninvasive measure of the neural regulation of the heart, but ECG
is not always feasible. High-quality heart rate monitors (HRM) like the Polar H10 (Polar Electro Oy, Kempele,
Finland) are a less expensive alternative with adequate reliability compared to ECG in a resting state, but lower
reliability under higher exertion levels has been reported [19–21].

Exertional testing is a reasonable clinical approach to identify possible ANS dysfunction after concussion [22].
Standardized and validated exertional tasks for mTBI in acute and prolonged recovery are the Buffalo Concussion
Treadmill Task (BCTT) [23] and a similar bike test [24], but time and equipment requirements make them more
appropriate for rehabilitation settings. Military service members with concussion are typically followed by primary
care for the first month postinjury. Although exertional testing [25] is encouraged to guide return to activity and
duty, the required time, space, and equipment [26,27] are not available for most primary care providers. A field
expedient test of exertion for PCPs guided by objective physiological measures could improve clinical feasibility
and implementation.

The goals of the present study are to pilot test clinically feasible exertional tasks developed based on minimal
time, space, equipment requirements and determine whether the objective physiological measure of HRV could
be implemented during the testing protocols. We tested healthy adults, a majority of whom were service members
(SMs), in two brief exertional tests: a stepping (STEP) and a pushup (PU) task that were easy to administer using
readily available equipment and typical PCP exam room space [4,27]. We used a modified 6-min Chester Step Test,
a graded step test validated for emergency service providers to quantify occupational aerobic capacity [28,29].
The step task progressively increases speed every 2 min, and similar to the BCTT [30] and HRV has been
successfully collected during a stepping task [31]. The second exertional task was performance of pushups for
2 min. Pushups are part of the current Army Physical Fitness Test and an important training component for all
military branches [32] with clear functional health relevance [33,34], but they have not been studied to test exertion
after concussion. We hypothesized that HRV measurement before, during and after each task using clinically
available equipment (Polar H10) would be reliable compared with the gold standard ECG (Faros 180, Mega
Electronics Ltd., Pioneerinkatu, Finland) measurement. We also hypothesized that both tasks would be feasible for
participants to complete and achieve targeted exertion levels and physiological responses.

Methods
Participants
All participants were healthy adults between the ages of 18 and 45 years who were active, exercising at least three
times a week to be representative of the active duty military population. A majority of participants were affiliated
with the US Marine Corps, serving in eastern North Carolina at a recruiting station. Exclusion criteria were any
medical condition or injury that limited ability to perform a physical training session or moderate exertion of
stepping or pushups for 10 min, history of moderate to severe TBI or self-reported concussion in the past year.
Screening occurred during in-person briefings via review of inclusion/exclusion criteria and study procedures;
individuals interested in participating could contact researchers.

Testing procedures
Participants were seen for a single test session lasting approximately 45–60 min. We continuously recorded heart
rate (HR) and interbeat intervals (IBIs) with two HRM (Polar H10 and Faros 180), during baseline, STEP and PU
tasks (counterbalanced order) and recovery periods after each task (Figure 1). During exertion HR was monitored
in real time via Bluetooth, and exertion level and concussive symptoms were surveyed each minute.

Self-report measures
Participants completed a demographic questionnaire including questions on self-reported concussion history,
military experience, current pain (0–10 scale), sleep (number of hours) and caffeine (number of drinks) within
the past 24 h. Rate of perceived exertion (RPE) using the Borg Scale, a 6–20 scale reflecting subjective measure of
workload, was used to document self-perceived exertion during exercise [35]. The presence or increase of symptoms
was assessed using a 0–10 Likert scale focusing on headache, dizziness, nausea, light/sound sensitivity and fogginess,
similar to the approach used in other exertional tests for concussion [23,36]. Throughout the session, we recorded
verbal RPE and concussive symptom scores at the end of baseline (BL), rest following first test (R1), rest following
second test (R2) and each minute during each exertional task, not expecting testing to cause symptom exacerbation.
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Figure 1. Layout of testing session.
HR: Heart rate; PU: Pushup; RPE: Rate of perceived exertion.

Heart rate recording
To examine the reliability of HRV measurement we employed the Faros 180 ECG monitor (Mega Electronics
Ltd.) and the more clinically feasible Polar H10 monitor (Polar Electro Oy). Both monitors recorded HR and IBIs.
Participants wore the Polar H10 around their chest and the Faros 180 was connected by three lead electrodes (right
and left collarbone, left ribcage). The target range for heart rate (60–85% of predicted HRmax) was determined
from the Fox and Haskell’s equation (HRmax =220 -age[years]) [37]. This equation is a simple, commonly used part
of the BCTT protocol [30] and has been recommended for use in military populations for graded exercise tests [38].

Stopping criteria
We used BCTT guidelines for safety in our protocol to halt either test based on signs of excessive participant
stress [39], including HR >85% of predicted HRmax, RPE >16, a reported increase >2 on the symptom scale over
baseline values or the examiner perceived that testing was unsafe. Participants were also instructed that they could
discontinue testing at any time if they deemed it necessary.

STEP task
The step task was a maximum of 6 min in duration and required a 12-inch step and a smartphone metronome
app. Every 2 min the stepping pace increased as a participant stepped up and down a 12-inch step (using preferred
lead and trail legs) beginning at 80 bpm (20 steps/min), then 100 bpm (25 steps/min), and finally 120 bpm
(30 steps/min). The test was discontinued based on safety stopping criteria or if the participant was unable to
maintain the metronome pace.

PU task
The PU task was a maximum of 2 min long. Participants were instructed to complete as many pushups as possible
during the time duration without resting. This is especially relevant for military populations [33]. The test was
discontinued for the stopping criteria or if the participant released from plank position to rest at any point. The
total number of pushups was measured with a handheld counter by the examiner.

Data processing & reduction
The Faros 180 recorded a complete ECG waveform at 1 kHz. IBIs, the time between consecutive heartbeats
expressed in milliseconds, were derived from detected R peaks in ECG using the Cardio Peak-Valley Detector
(CPVD) [40] to create the IBI event series. Polar H10 monitor automatically reduced the heart rate electrical
signal to IBIs. Before analysis, both sequences of IBIs were synchronized automatically, then visually inspected to
ensure proper alignment. Each aligned sequence was then transformed into a 2-Hz equally sampled time series
by linear interpolation, extracting of HRV parameters while preventing the two series from becoming decoupled.
The unedited IBI file was visually inspected and edited offline with CardioEdit software (developed in the Porges
laboratory and implemented by researchers trained in the Porges laboratory).
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HRV frequency components were calculated with CardioBatch software (Brain-Body Center, University of
Illinois at Chicago), which implements the Porges–Bohrer method [41]. This method is neither moderated by
respiration nor influenced by nonstationarity and reliably generates stronger effect sizes than other commonly used
metrics of RSA [41]. Variables included average heart rate (i.e., normalized mean IBIs every 60 s), RSA defined by
the frequencies of spontaneous breathing (0.12–0.4 Hz), low frequency (LF) HRV occurring within the frequencies
of spontaneous vasomotor and blood pressure oscillations (0.06–0.10 Hz) and heart period (i.e., total HRV, mean
IBIs) (Appendix 1).

Data analysis
Means, standard deviations, medians, interquartile ranges and 95% CIs were calculated for all demographic and
questionnaire data. Alpha was set a priori at α <0.05 for all statistical analyses. Normality was assessed for all
dependent variables using the Shapiro–Wilk test. Only participants with complete data for both sensors were
included in reliability analyses.

Reliability and accuracy of the Polar H10 IBIs compared with the Faros 180 IBIs were analyzed using Bland–
Altman (B-A) plots and generalized estimating equations (GEE). Comparison of independent measurements was
facilitated by visualizing the distribution between the mean measurement and the difference [42]. B-A plots, examined
with SPSS statistical software (IBM SPSS Statistics, Version 26.0 [IBM Corp., NY, USA]), show agreement between
two sensors, by plotting the mean between pair of measurements against its difference. Visual inspection of the
B-A plots is used to identify systematic biases and possible outliers. Paired t-tests evaluated whether the differences
between the signals were biased (i.e., one signal source generating longer or shorter values). B-A plots and the t-test
were performed on IBIs collected from all participants during all tasks. Scatter plot and linear regression analyses
were used to visualize and calculate the level of convergence between the Polar H10 and Faros 180. A strong
correlation of threshold of R2 ≥0.9 of IBI time series was determined as a target representing strong agreement [43].
For each HRV component measure a GEE model was conducted using PROC GENMOD in SAS 9.5 (SAS
Institute, NC, USA) to estimate group mean differences (95% CIs) for HR monitor methods (Polar H10 vs Faros)
and session (BL, R1, R2, STEP, PU). This allowed evaluation of the effects of method of HR measurement on
HRV components.

Clinical feasibility was assessed by participant completion of the tasks and the ability to record HRV at baseline,
during exertion and throughout recovery. Physiological responses were assessed using HR and RPE measurements.
HR was measured during both tasks with the exertional range (60–85% of age-predicted HRmax) as the primary
target for a successful exertional task. Self-reported RPE between 12 and 16 (moderate exertion range) during the
tasks was considered an appropriate physiological response.

Results
Participants
Fifteen healthy adults completed our testing protocol, 13 were active reservists for the US Marine Corps. Four
of the Marine participants had a history of concussion, and nine had been deployed serving an average of 2.8
deployments (SD = 0.8). Full demographics are presented in Table 1.

Reliability and accuracy of Polar H10
A subset of 10 participants had complete data for both the Polar H10 and the Faros 180. The Faros 180 was less
able to detect HR peaks during pushups than the Polar H10, requiring more than 5% editing of total IBIs, beyond
the recommended editing standard from HRV Task Force guidelines [18]. Therefore, the reliability analysis is based
on data collected during STEP. Visual inspection of the B-A plot (Figure 2A) indicated excellent agreement and
minimal bias between the sequential IBIs measured with Polar H10 and Faros 180. The mean of the differences
between sensors was -0.0231 ms (SD = 3.197; t(23352) = -1.105 [95% CI: -0.064 to 0.017; p = 0.27]) with
limits of agreement of -6.28 to 6.24 and no significant proportional bias (B = 0.0; t = 1.07; p = 0.28). The t-test
results confirm that the pairs of sensors were measuring the same parameter. The mean of the differences was
not significantly different from zero, indicating that there was no fixed sensor bias. The B-A plots suggested that
error magnitude was driven by few participants and the IBI differences were closer to zero with longer IBIs (lower
exertion). A scatterplot with regression analyses contrasting the sensor pair with linear regression of IBIs provide
excellent fit to the IBI data with R2 of 1.00 driven by large amount of IBIs for the model of y = 0.03+x (Figure 2B).
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Table 1. Demographic characteristics of all participants: military and health history for service mem-
bers.
Demographic characteristic n = 15

Age (years) 29.33 (6.36)

Sex
Women
Men

2 (13.3%)
13 (86.7%)

Race/ethnicity
Caucasian
Hispanic/Latino
African–American
Native American

7 (46.7%)
4 (26.7%)
2 (13.3%)
2 (13.3%)

Education
High school
Trade school
Some college/associate’s degree
Bachelor’s degree
Advanced degree

1 (6.7%)
1 (6.7%)
8 (53.3%)
4 (26.7%)
1 (6.7%)

Military affiliation
US Marine Corps
None

13 (86.7%)
2 (13.3%)

Military & health history n = 13

Time serving (years) 10.0 (5.5)

Military rank/pay grade
E1–E5
E6–E9
O1–O3

4 (30.8%)
6 (46.1%)
3 (23.1%)

Deployment history
Yes
No

9 (69.2%)
4 (30.8%)

Concussion history
Yes
No

4 (30.8%)
9 (69.2%)

Behavioral health history
Combat stress
Posttraumatic stress
Anxiety
Depression

1 (7.7%)
2 (15.3%)
2 (15.3%)
1 (7.7%)

Caffeine (drinks/supplements in past 24 h) 1.9 (2.0)

Sleep (hours in past 24 h) 5.7 (1.2)

Values are n (%) or mean (SD).
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Figure 2. Bland-Altman and scatter plot for inter-beat interval from the Faros 180 electrocardiogram and Polar H10.
(A) Plot of the IBI differences versus the means for the Faros 180 and Polar H10. Outer lines indicate the 95%
confidence interval. (B) Scatter plot of the Faros versus Polar H10 IBIs with regression and R2.
IBI: Inter-beat interval.
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Figure 3. First row: Scatterplots between sensors for heart rate variability components, color-coded by time point with regression and
R2. (A) RSA. (B) LF. (C) HP. D–F: Mean of HRV measures at baseline, exertion, and rest after exertion for Faros 180 electrocardiogram and
Polar H10. (D) RSA. (E) LF. (F) HP.
BL: Baseline; ECG: Faros 180; HP: Heart period; HRV: Heart rate variability; LF: Low-frequency; POLAR: Polar H10; R: Recovery period after
STEP; RSA: Respiratory sinus arrhythmia; STEP: Step task.
*Statistically significant at p < 0.05.

After HRV analyses were completed for the IBIs from both sensors, a scatterplot with regression analysis
contrasting the derived HRV components from Polar H10 and Faros 180 confirmed excellent fit with R2 >0.95
(Figure 3A–C). GEE was used to demonstrate the sensitivity of both sensors regarding the change across time
points in each HRV parameter (Table 2). For each HRV component (RSA, LFHRV, HP), sensor type was not a
significant predictor, indicating that methods of HR recording were comparable (Figure 3D–F). STEP compared
with other time points (BL, R1, R2) was a significant predictor of lower RSA, LFHRV and HP (Figure 3D–F).

Clinical & physiological feasibility
All 15 participants were able to complete both tasks as instructed without the examiner having to stop based
on safety criteria. None of the participants reported symptom exacerbation during either task. HRV analysis was
feasible for all of the phases (BL, ST, R1, PU, R2) based on IBI recordings from the commonly available Polar H10.

Both STEP and PU tasks evoked appropriate exertional physiological responses. All participants reached the
exertional range (60–85% of age-predicted HRmax) during the 6-min step test and the 2-min push-ups. During
STEP all participants reported a RPE between 12 and 16 at least once during the task. Fourteen of 15 participants
reported a RPE in the exertional range (12–16) for PU.

Discussion
The development of clinically feasible, standardized exertional tasks for PCPs to administer to SMs after an
acute mTBI is an important step in the treatment and management of mTBI in accordance with TBI CoE
recommendations. Our two exertional tasks were ecologically valid for SMs because they build on familiar tasks
and are in use to test aerobic capacity and strength [29,33]. Our exertional task protocols appear feasible, induce
adequate physiological responses and can be used to characterize HR recovery with an affordable HRM.
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Table 2. Generalized estimating equations analyses for the Polar H10 sensor compared with ECG and for each resting
time point compared with exertion (STEP).
HRV component Parameter � SE 95% CI Z Pr > |Z|
RSA Sensor ECG 0.086 0.048 -0.007 0.180 1.81 0.071

POLAR 0.000 0.000 0.000 0.000 – –

Time point BL 0.976 0.490 0.016 1.936 1.99 0.046*

R1 2.048 0.428 1.208 2.887 4.78 �0.0001*

R2 1.235 0.402 0.447 2.023 3.07 0.002*

STEP 0.000 0.000 0.000 0.000 – –

LFHRV Sensor ECG 0.026 0.025 -0.022 0.074 1.05 0.295

POLAR 0.000 0.000 0.000 0.000 – –

Time point BL 2.355 0.310 1.748 2.962 7.61 �0.0001*

R1 2.347 0.356 1.649 3.044 6.59 �0.0001*

R2 1.764 0.341 1.096 2.432 5.18 �0.0001*

STEP 0.000 0.000 0.000 0.000 – –

HP Sensor ECG 1.427 0.748 -0.039 2.892 1.91 0.063

POLAR 0.000 0.000 0.000 0.000 – –

Time point BL 284.089 36.562 212.430 355.749 7.77 �0.0001*

R1 123.924 28.618 67.835 180.013 4.33 �0.0001*

R2 103.123 28.129 47.991 158.256 3.67 0.0002*

STEP 0.000 0.000 0.000 0.000 – –

BL: Baseline; HP: Heart period; ECG: Faros 180; LFHRV: Low frequency heart rate variability; POLAR: Polar H10; R: Recovery period following step task; RSA: Respiratory sinus arrhythmia;
STEP: Step task.
*Statistically significant at p � 0.05.

We found the Polar H10 recordings of beat-to-beat HR data for the exertional protocol collected through
Bluetooth to be accurate and reliable compared with ECG recordings during the STEP, suggesting that it is a
reasonable alternative for clinical use. Hernado et al. found HRM and ECG methods to be interchangeable when
analyzing HRV at rest [19], but we also found excellent reliability and agreement indices of the HRV components
between sensors under exertion. The use of clinically available HRM allows for straightforward administration and
may increase utility for PCP.

Both the STEP and PU were feasible to perform during a PCP appointment, requiring less than 10 min, space
consistent with a standard exam room and minimal or easily accessible equipment. Besides the Polar H10 HRM,
the STEP requires a 12-inch step and metronome app, while the PU only requires a hand counter. Both tasks
were easily conducted by one tester and could be completed in our largely military population without stopping
for safety reasons. Previous studies have tested mTBI targeted assessments in healthy individuals before completing
testing in a clinical cohort [44,45].

All participants demonstrated an appropriate HR exertion range during each task, indicating that these tasks
were sufficiently challenging to cause the targeted physiological stress. RPE ratings also supported the use of the
tasks, with only one participant rating below 12 on the RPE scale for pushups (participant stopped pushups at
30 s). Both exertional tasks are of greater difficulty than current commonly used concussion balance assessments,
which may reduce test ceiling effects [4].

Exploratory analyses showed there were significant differences in HRV for the stepping task compared with
the baseline and recovery time periods, indicating that HR monitors could sufficiently detect changes in all three
HRV components induced by brief exertion. Similar to previous studies, we found a decrease in RSA when under
exertion, consistent with the parasympathetic withdrawal that occurs upon initiation of exercise [46,47]. We also
found a decrease in the LFHRV and HP [48,49].

As with any research, this study had limitations. First, we tested exertional tasks in a healthy population, therefore,
future studies need to investigate tolerance of these exertional tasks for individuals who have sustained a concussion
to characterize possible HRV impairments compared with healthy controls. However, our majority military study
cohort supports the feasibility of tasks and physiological response in our target population. Second, comparisons
between Polar H10 and Faros 180 did not include the pushup task because of concerns with peak detection in the
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Faros 180 leading to overediting. This finding further supports the use of the Polar H10 because it may be more
reliable at recording valid IBI data during pushups and similar exercises, as well as being commercially available.
In addition, only ten participants were used in reliability calculations due to initial Bluetooth technical difficulties
leading to missing data. Yet with more than 15 min of IBI data for each participant, the sample size reflects previous
studies, and the total number of IBIs supports adequate power in reliability analyses [40]. Furthermore, inclusion
of a commercial Bluetooth dongle resolved connectivity dropout with Polar H10 and improvement to our data
platform allows for continual saving to minimize any data loss due to technical issues.

Feasibility testing in a healthy, largely military population allowed improvements to the protocol for future
studies. For instance, the duration of the baseline and recovery time periods was increased from 3 to 5 min.
Although 3-min recovery between tasks was sufficient for these healthy participants to return to RPE of 6, we
expect that individuals with concussion may need longer to recover. Additionally, we will add measures of medicine
and alcohol intake, which can also influence HRV values.

Conclusion
The implementation of standardized exertional tasks that includes an objective physiological measure may improve
the standard of care for military mTBI. Monitoring symptoms, RPE, and HR during exertional tasks assesses
physiological recovery and informs activity recommendations [35]. The treatment and management of concussion
remains a priority for TBI CoE and the armed forces. Further research is needed to determine the utility of such
measures with acute concussion in order to facilitate clinical implementation of exertional testing by PCPs.

Future perspective
Research about concussion and the ability to begin activity after 24–48 h of rest after injury is increasing.
Military PCPs are in a position to offer guidance about progressive activity by considering more than self-reported
symptoms if they have validated performance-based tests that are feasible in the office setting. Wearable sensors are
increasingly used by civilian and military populations and may provide additional evidence for activity progression
after concussion.

Summary points

• The Department of Defense Traumatic Brain Injury Center of Excellence guidelines for Primary Care Providers
treating concussion recommends brief exertional testing before return to duty, yet there is currently no
standardized task validated for that purpose.

• Heart rate variability (HRV) is an objective measure of autonomic nervous system activity and may be useful in
assessing physiological impairments after concussion.

• Comparing reliability of an affordable commercially available heart rate monitor (Polar H10) to the gold standard
electrocardiogram (ECG) under exertional conditions and verifying the sensitivity of HRV changes with new test
protocols was a necessary step toward development of new clinical tests.

• With input from military medical providers, two brief exertion tests were developed that could be easily
administered in a primary care office environment requiring minimal space, equipment and time: a 6-min
metronome-paced step test and a 2-min pushup test.

• A sample of largely military healthy participants successfully completed both tasks, with a 3-min baseline and a
3-min rest after each task with the order counterbalanced.

• Both tasks evoked the targeted physiological response of 60–85% of predicted heart rate maximum and
moderate rate of perceived exertion.

• The reliability of the Polar H10 was better than the ECG during the pushup task and comparable during the step
task, favoring the use of the Polar H10 as an affordable and easier to use device to capture HRV.

• Both the step and pushup task are brief, clinically feasible assessments that could be used in primary care practice
as measures of recovery.

• A standardized test incorporating HRV measurement could be used with self-report of symptoms to aid clinicians
in prescribing activity and managing recovery.
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