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Abstract

Over the past 30 years (the timespan of a generation), advances in genomics technologies have revealed tremendous and
unexpected variation in the human genome and have provided increasingly accurate answers to long-standing questions of
how much genetic variation exists in human populations and to what degree the DNA complement changes between
parents and offspring. Tracking the characteristics of these inherited and spontaneous (or de novo) variations has been the
basis of the study of human genetic disease. From genome-wide microarray and next-generation sequencing scans, we now
know that each human genome contains over 3 million single nucleotide variants when compared with the ∼ 3 billion base
pairs in the human reference genome, along with roughly an order of magnitude more DNA—approximately 30 megabase
pairs (Mb)—being ‘structurally variable’, mostly in the form of indels and copy number changes. Additional large-scale
variations include balanced inversions (average of 18 Mb) and complex, difficult-to-resolve alterations. Collectively, ∼1% of
an individual’s genome will differ from the human reference sequence. When comparing across a generation, fewer than
100 new genetic variants are typically detected in the euchromatic portion of a child’s genome. Driven by increasingly
higher-resolution and higher-throughput sequencing technologies, newer and more accurate databases of genetic variation
(for instance, more comprehensive structural variation data and phasing of combinations of variants along chromosomes)
of worldwide populations will emerge to underpin the next era of discovery in human molecular genetics.

Introduction
Perhaps the greatest paradigm shift for genetics research in
recent years has been the move from analyzing just one gene
at a time to being able to interrogate the entire genome at
once—every gene, be it coding or non-coding, along with all the
DNA in between (1–3). Driven by extraordinary innovations in
laboratory technology and information sciences, this advance
has led to the (re)-birth of the field of genomics (4), particularly
as it impacts health care (5). We consider it a re-birth because,
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from the earliest studies of chromosomes 60–70 years ago, the
first direct vantage point of genetics was the morphological
anatomy of the genome, not the gene (6–8). As summarized
in Figure 1, the classes of genetic variation being described at
that time (e.g. aneuploidies; large translocations and deletions)
were those that could be seen from cytogenetically stained
chromosomes. Although higher-resolution banding eventually
enabled the detection of subtler changes, all of these exper-
iments were inextricably linked to the limits of microscopic
observation (9).

http://www.oxfordjournals.org/
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Figure 1. Types of variation found in the human genome and the primary technologies used to detect them (43). The types of variation, and various (sometimes

synonymous) terms used to describe them, are grouped as ‘sequence variation’ and ‘structural variation’, the latter encompassing chromosomal/genome variation.

The lower end-size of structural variation is typically defined to fall in the 50–1000 nt range, but definitions vary (9,172). FISH, fluorescence in situ hybridization (here also

encompassing spectral karyotyping); PFGE, pulse field gel electrophoresis; NGS, next-generation sequencing (including both short-read and long-read technologies, the

latter being particularly useful for identifying intermediate-size structural variation). There are many other important technologies used to discover and map genetic

variation and we include those that have been most impactful for the original discoveries discussed in this review, including those that are still used by clinical

diagnostic laboratories. Important references are provided in Tables 1 and 2 and the main text.

Modern genomics arguably began with the elucidation of the
structure of DNA in the 1950s (10) and the determination of
the genetic code and the modern concept of the gene in the
1960s (11,12). The next three decades saw the development of
a plethora of revolutionary DNA sequencing and recombinant
DNA cloning technologies that allowed the decoding of individ-
ual genes at the nucleotide level, leading to the identification of
point mutations and more complex di-, tri- and tetra-nucleotide
variants (13–15). Together, the new genomics technologies con-
solidated genetic (14,16,17) and physical linkage (18,19) strategies
and provided the basis for generating the first holistic descrip-
tions of chromosomes and the genome. The decade bridging
the year 2000 brought forward chromosomal microarray analysis
[CMA; (20–26)], which afforded truly global genotyping capability,

including assessment of submicroscopic deletions and duplica-
tions in disease samples, as well as the discovery of a previously
unrealized amount of DNA copy number variation (CNV) in
all individuals (27–29). Moreover, the implementation of auto-
mated fluorescence-based DNA sequencing, including clone-
end and full-clone ‘shotgun’ sequencing, led to the 2001 release
of working draft assemblies of the human genome (1,2), with
the first ‘full’ reference sequence, denoted GRCh35, published
in 2004 (3). The availability of a high-quality reference assem-
bly provided an entry point for concurrent personal genome
sequencing and the generation of integrated maps of genetic
variation (30). Recognition of the importance of accurate human
genome sequencing at scale led to the (ultimately canceled)
$10M ‘Archon Genomics X PRIZE’ to the first group able to
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sequence haplotype-resolved genomes satisfying what turned
out to be then (and still remain) unreachable criteria for cost
and accuracy (31). Perhaps the single most important technology
underpinning the current state of genomics is massively parallel
DNA sequencing, which was first developed in the late 2000s
(32–36). These ‘next-generation sequencing’ (NGS) technologies
can be used to study the human genome at population scale
with unprecedented resolution. Augmented by NGS, the latest
release of the human reference genome, GRCh38, includes over
97 million more sequenced bases than GRCh35 (3,37–39).

In formulating this review, we aimed to examine two ques-
tions fundamental to our understanding of human genetics and
its application to medicine—namely, how much variation exists
in our diploid genome, and with this baseline, how does its
nucleotide composition change from one generation to the next?
At the inauguration of the important journal Human Molecular
Genetics some 30 years ago, having (mostly) accurate answers
to these vital questions would have seemed unattainable. Circa
2021, however, for the historically well-studied chromosomal-
and sequence-level variation, this information is nearing per-
fection, at least in most euchromatic DNA. In contrast, data for
intermediate-sized structural variation (9,40–46), the last broad
class of variation to be characterized (Fig. 1), are now catching up
as new technologies and algorithms are developed (47,48).

Genetic Variation at the Level of the Individual
Human
In 2001, two separate groups, the International Human Genome
Sequencing Consortium and Celera Genomics, published
initial haploid drafts of the human genome. Both sequences
were derived from composites of individuals, and they were
generated using highly automated fluorescence-based Sanger
DNA sequencing (49) from clone-based and random whole-
genome sequencing (WGS), respectively (1,2). In 2007, the ‘HuRef’
genome—the first genome sequence of an individual human
(Craig Venter)—was assembled (50), providing a pivotal starting
point to query how much genetic variation exists within a
‘diploid’ human genome. For this once-in-a-generation project,
which built upon Celera Genomics’ original efforts (and cost
∼$70M), ∼ 1000 bp reads were generated from over 30 million
random DNA fragments using Sanger sequencing. These reads
were then assembled into 4528 scaffolds, with the assembly
strategy enabling alternate alleles in the diploid genome to be
defined.

Comparison of this accurate assembly to the reference
genome of the time revealed 3 213 401 single nucleotide
variants (SNVs) and 851 575 insertions/deletions (indels),
which collectively encompassed 12.3 Mb of DNA (Table 1). The
observation that non-SNV variants comprised 22% of events in
HuRef but 74% of modified base pairs, implying a substantial
contribution of larger genetic variants to overall variation,
set the standard for how future personal genomes might be
characterized, irrespective of the technology used. Further
analysis of the HuRef assembly, combined with CMA (22,23),
identified 12 178 structural variants (SVs); combined with the
non-SNV alterations identified in the initial study, this yielded
an estimated total of 39.5 Mb of non-SNV unbalanced variation,
along with 90 inversions encompassing 9.3 Mb (51). Thus, the
HuRef genome differs from the reference by only ∼ 0.1% when
considering SNVs alone, but by a far larger amount (∼1.3%) when
considering all forms of unbalanced variation. A compelling
lesson from this and other early studies of the human genome

was that no single sequencing (or other) technology could
accurately reveal all of the classes of genetic variation shown
in Figure 1 (52).

Additional early studies used direct (clones not required)
massively parallel sequencing technologies to generate personal
genome sequences for two other pioneers of genome research—
James Watson and James Lupski, both of European ancestry
(53,54). These million-dollar projects utilized 454 pyrosequenc-
ing (32,33) and massively parallel sequencing by ligation (35),
yielding 3 322 093 and 3 420 306 SNVs, respectively, with only
a few SVs being reported. Concurrently, using what would
become a mainstay technology in genomics (Solexa, eventually
becoming Illumina sequencing), Bentley et al. (34) analyzed the
genome of a male Yoruban individual using massively parallel
sequencing-by-synthesis. Their data revealed nearly 1 million
more SNVs compared with the previously-mentioned genomes
of individuals of European ancestry (50,53,54), as well as >400 000
indels and 5000 SVs, many of which were previously unknown.
A separate analysis of African hunter-gatherers, the oldest
lineages of modern humans, revealed a similar number of SNVs
(∼4 million) as reported by Bentley, with the trend being that
more genetic variation tends to be found in ‘older’ populations
[(55); Table 1].

Published in 2009, the sequencing of the first Korean genome
(AK1) used an integrated approach with Illumina shotgun
sequencing, bacterial artificial chromosome sequencing and
CMA, reporting 3 453 653 SNVs, 170 202 indels and 1237 SVs
(56). Interestingly, only 37% of the non-synonymous SNVs in
AK1 were also found in both the previously-sequenced African
(34) and Chinese (57) genomes. A de novo assembly of the AK1
genome with haplotype phasing was subsequently generated
(58) using Pacific Biosciences (PacBio) long-read sequencing
(59), Illumina short reads (34) and 10x Genomics linked-read
technology (60–62). A similar number of SNVs were detected
(3 472 576 versus 3 453 653) along with more refined SV data
afforded by the long-read technology, including many sequences
not found in the human reference genome. Other notable
projects sequencing the genomes of individuals of Asian descent
include a high-coverage phased Chinese genome [HX1; (63)] and
a haploid Japanese genome reference assembled through the
consensus among three donors (64) using high-coverage PacBio
long reads (59) and Bionano Genomics optical mapping (65).
Approximately 2.5 million new SNVs and over 14 000 SVs were
reported in the composite Japanese genome, many of which
were found to be common in the Japanese population (Table 1).
The Japanese study also demonstrated that population-specific
reference genomes may facilitate the identification of disease-
associated variants compared with using the standard reference.
Given that analysis pipelines often ignore sequence reads that
do not map to the GRCh38 reference sequence, the construction
of this and other population-specific reference genomes (66–
69) will surely prove to be important in accurately capturing
the full spectrum of DNA sequence (including complex and
repetitive elements), as well as genetic variation, in diverse
human populations. Additional strategies for improving the
reference genome include adjusting all alleles to the major allele
form (70).

De novo Mutation Across a Generation
Cataloguing the nature and extent of inherited genetic variation
in human populations is important from an evolutionary per-
spective (71–74), and determining the presence of new variants
(de novo mutations or DNMs) is critical in medical genomics
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(75–77). Early estimates of mutation rates were made using
cross-species comparisons (78), small numbers of human
genetic loci (79) or—in a seminal paper in Human Molecular
Genetics—specific tandem repeat loci (14). However, the direct
measurement of genome-wide mutation rates requires WGS of
biological parent–child trios, which has only become feasible
at scale, with increasing completeness and accuracy, over the
last 10 years. Therefore, the first such studies included small
numbers of trios (80,81), with more recent studies involving
orders of magnitude more families, often as part of disease
studies (Table 2). For reasons of cost (a 30x coverage genome
today at ∼$1000) and accuracy (at least for SNVs), the sequencing
method of choice has been Illumina short-read technology, so
accordingly, most of the DNM data presented are limited to SNVs.
As discussed in Table 1, comprehensive and accurate detection
of larger variants is challenging with short-read data alone, so
until recently, much of the information for de novo CNVs has
come from CMA (Table 2).

Considering SNVs alone, studies have revealed 35–82 DNMs
per generation within the mappable genome [(80–94); Table 2].
Although reasonably consistent, these estimates are not per-
fectly comparable across studies due to differences in the pro-
portion of the genome assessed. After adjustment, studies con-
sistently report a mutation rate of ∼ 1.2 × 10−8 per nucleotide
per generation (83,84,88,92–94). Interestingly, mutation rate esti-
mates from trios are highly concordant with earlier estimates
(78,79). By comparing DNMs in monozygotic twins, it has been
estimated that ∼97% are germline in origin, whereas 3% are
somatic (87). Although some studies in Table 2 include individu-
als ascertained for specific diseases, little difference has been
observed in the total number of constitutional de novo SNVs
compared with healthy individuals (95).

Many DNM studies have examined the parental age effect—
the number of additional DNMs per year of parental age. This
effect is greater in fathers, with estimates ranging from 0.64 to
2.0 additional DNMs per additional year of age versus 0.24–0.42
for mothers (Table 2). As a result, fathers contribute more DNMs
per generation than mothers; paternal/maternal ratios of 3–5
have been reported (83,84,88,92), an observation increasingly
made in studies of autism (90,91,96,97). Although DNMs in
general are more likely to be of paternal origin, some genomic
regions exhibit a significant bias toward maternally-derived
DNMs (89).

Although most DNM studies have examined homogeneous
population groups [e.g. Dutch, Icelandic or Danish citizens;
(87,92,93)] or have not investigated the effect of ancestry, one
study found that mutation rates were generally consistent
across populations, but were ∼7% lower in Amish individuals
(94). The same study found that the contribution of additive
genetic effects to mutation rate is non-existent (94); thus,
variation in mutation rate not explained by parental age
is likely due to some combination of non-additive genetic
effects and environmental factors. In the case of the Amish, it
seems plausible that the observed difference could be partially
accounted for by some combination of consanguinity and
lifestyle factors, such as reduced exposure to mutagens.

Interestingly, WGS studies have revealed no clear impact of
extreme environmental exposure on DNM rates, including in
children of parents exposed to dioxin (98) or to radiation from
the atomic bombings of Hiroshima and Nagasaki (99) or the
Chernobyl nuclear accident (100).

DNMs do not occur with equal probability throughout the
genome; rather, their frequency is influenced by sequence
context. Trio studies have shown that ∼2/3 of DNMs are

transitions and that these events occur 20x more frequently
at CpG sites (83). DNMs from younger fathers are more likely to
occur in late-replicating genomic regions, whereas no such effect
has been observed in mothers or older fathers (87). Because
early-replicating regions are more gene-rich (101), this bias may
further increase the probability of a deleterious DNM originating
from an older father. Representing ∼2% of all DNMs, DNM
clusters have been observed, typically within 20 kb windows,
and appear to have distinct mutational signatures compared
with non-clustered DNMs (87,89). The number of DNM clusters
increases with parental age at an approximately equal rate
for mothers and fathers; this suggests that they arise from a
different mutational mechanism (compared with non-clustered
DNMs) that is common between mothers and fathers (89),
although some differences in paternally- versus maternally-
derived clusters have been observed (92). Studies of autism
have also observed clustered DNMs (82,90), which are mainly
maternally-derived and are often found adjacent to de novo CNVs
(90). A comprehensive review of mutational patterns, as well as
the disease implications of de novo variants, is published (102).

Recent studies have estimated that 4–13 de novo indels occur
per generation (90–93,95). Deletions were found to be more com-
mon than insertions, and even-sized indels were more common
than odd-sized indels (93). Specialized algorithms for identifying
de novo indels within tandem repeat loci have detected ∼55
events per genome in healthy individuals (103), along with a
paternal origin bias and age effect. The corresponding tandem
repeat de novo rate, estimated at 5.6 × 10−5 per generation
per locus, is far lower than much earlier estimates for tandem
repeats based on a few loci and PCR-based tests (14), reflecting
changes in accuracy afforded by better technology and genome-
wide genotyping ability. However, that so many de novo indels
were detected in tandem repeat regions over and above those
detected in non-repetitive regions suggests that the total degree
of de novo variation has been underestimated—not only for
indels, but also for other classes of variation shown in Figure 1.
As new technologies and algorithms improve our ability to inter-
rogate repetitive and difficult-to-map regions of the genome,
measured de novo rates for all types of variation will rise.

Compared with SNVs and indels, de novo rates for CNVs and
SVs have been less well-characterized. CMA has revealed that
CNV mutation rates differ depending on CNV size and that large
de novo CNVs are substantially more frequent in individuals with
autism compared with unaffected individuals (104–107), some of
which are recurrent and clinically relevant (108). Another autism
study estimated the rate of de novo CNVs > 10 kb at 0.05 per
generation (90). Recently, Collins et al. (109) used WGS to estimate
mutation rates for SVs > 50 bp, with each generation averaging
0.15 de novo deletions, 0.1 insertions, 0.04 duplications and 0.001
inversions. Yet another recent study found ∼0.16 de novo SVs per
healthy individual, along with a significantly higher rate (0.21)
in individuals with autism (110). Interestingly, the latter study
found that most de novo SVs originated from the father but did
not find statistical evidence for a parental age effect on de novo
SV rate, which is in contrast to the well-established parental age
effect for de novo SNVs (82,83,87–89,92,94).

Redefining Genomic Variation Using
Short- and Long-Read WGS
As affordable WGS has become commonplace, the ability to
comprehensively detect the many classes of genetic variation
in large, diverse sets of individuals (111–117) has improved
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considerably, aided by the development of variant benchmarking
resources (118–120). These studies have, in turn, enabled the
study of disease (109,121,122), human migration and adaptation
patterns (123) and evolution (124). As genetic variation becomes
better defined across different ancestry groups (93,125–128),
including in archaic genomes (Denisova, Neanderthal) (129,130),
an increasing amount of genetic variation is being found
among lineages. Personal genome sequencing of diverse
populations with different technologies is also revealing novel
DNA sequences (and therefore genetic variation) not currently
present in the human reference genome and corresponding
databases (55,58,67,131). In perhaps the most astounding
example of the power of sequencing technology to map
variants across a generation, an ‘F1’ offspring of a Homo
sapiens neanderthalensis and Homo sapiens denisova was discerned
(132). Most of the aforementioned studies concentrate on
SNVs, since they are the easiest to discover from the current
industry-standard short-read sequencing technology.

Recently, papers describing ‘end-to-end’ chromosome
assemblies have been published, focusing on using long-read
sequencing technologies to enable SV discovery and mapping
[Table 1; (133,134)]. In a tour de force effort, PacBio long-read (59)
and strand-specific (135,136) sequencing technologies were used
to generate haplotype-resolved de novo assemblies of 32 diverse
individuals at an estimated cost per genome of ∼$20 000 (124).
With this approach, 107 590 SVs were found, representing an
average of 16 Mb of structural variation per individual, of which
68% were not discovered using standard short-read sequencing.
In a parallel effort using a multi-platform approach [PacBio (59)
and Oxford Nanopore (137–140) long-read sequencing, Illumina
short-read sequencing (34), 10x Genomics linked reads (60–62)
and Bionano Genomics optical mapping (65)], three trios of Han
Chinese, Puerto Rican and Yoruban ancestry were sequenced,
yielding SV sets 3–7x larger than most other standards (141).
As shown in Table 1, the unbalanced SVs impacted 31.6, 39.3
and 39.8 Mb in admixed American, East Asian and African
ancestries, respectively, all closer to what was found using
the integrated approach in the HuRef/Venter project (50,51).
The impact of balanced inversions is also shown in Table 1.
Although giving near chromosome-level resolution, these long-
read sequencing studies emphasize limitations in assembly
and discrimination, particularly at gene-rich regions harboring
complex structural variation. Given the current error rate of
these technologies, accurately detecting SNVs still requires
‘filling in’ using short-read sequence data, highlighted by the
fact that some trio studies do not overtly report DNM rates or
SNV quality (124,141). In studies using cell line-derived DNA, the
transforming viral integration process and culturing can cause
modest but detectable changes in the genome (142,143), which
may also be a confounder.

Many studies, including one describing the use of Oxford
Nanopore long-read technology to study the Icelandic popu-
lation (117,144–148), reaffirm the need to consider large-scale
copy number and structural variation in disease study design. In
our own recent research, developing novel computational and
statistical methods to analyze existing short-read sequence data
for expanded tandem repeats led to the discovery of specific
loci associated with autism (149), an intriguing finding given
that most known disorders associated with tandem repeat
expansions are monogenic (150). The same study also discovered
extensive polymorphism in repeat motif size and sequence,
often correlated with cytogenetic ‘fragile site’ variation along
chromosomes (149). Moreover, 158 991 ultra-rare SVs were
recently found through the study of 17 795 population controls,

with 2% of individuals carrying megabase-scale SVs (117). The
same study found reciprocal translocations at a rate of 1 in
1000 individuals, a number similar to that found using classical
cytogenetics (151,152).

There are two fundamental steps to identifying associations
between genotypes and health: variant detection and variant
interpretation. With the combination of long-read technology
and other sequencing methods now enabling the ‘complete’
sequencing of chromosomes (133,134,153), making further
improvements for variant detection essentially represents an
engineering problem. Although significant challenges remain,
including cost reductions in long-read sequencing, accurate
phasing of diploid genomes and scaling the end-to-end assem-
bly process to entire populations, it seems plausible that variant
detection will eventually become a fait accompli. To the contrary,
variant interpretation is still in its early days, perhaps even
reminiscent of examining chromosome banding in the 1960s
(154–158). Although our ability to interpret the impact of copy
number changes and loss-of-function sequence-level variants
is somewhat mature, understanding the effects of most other
alterations, such as missense variants and variants impacting
regulatory elements, remains largely unresolved. The rapidly
increasing pace by which sequencing data are now generated,
along with the move to examining populations at scale and
the use of multi-omics technologies, ultimately promise to
reduce the time from data generation to data interpretation
(159–167).

Conclusions
The current assembly of the human genome (GRCh38) comprises
3 099 706 404 bp. Comparing any other genome to it yields ∼3–4
million SNVs and (with comprehensive multi-technology test-
ing) ∼10 times as many nucleotides impacted by unbalanced
structural variations, most notably indels and CNVs (Table 1).
Notwithstanding the many complexities in whole-genome anal-
ysis, it can be conservatively stated that ∼ 1% variation exists
between each of our DNA when compared with the reference,
with those genomes arising from African and other ancestral
populations exhibiting more genetic variation than those arising
more recently in human history. A consistent message from the
literature is that no single technology or method can detect all
genetic variation, and knowledge of how the data (and databases
housing it) were derived is essential to correctly interpreting it.
The number of DNMs found in the mappable euchromatic DNA
in a single individual is modest (fewer than 100), but this value
may increase as more complex sequences are considered in
tallies of genetic variation—noting, however, that nomenclature
and reporting of SVs, in particular in repetitive regions, is chal-
lenging (159,168–170). Newer WGS technologies (e.g. long-read
sequencing) that facilitate the discovery and genotyping of com-
plex variants will have a growing impact in disease studies and
population sequencing as their costs begin to compete with the
more prevalent short-read technologies. When analyzing larger
sample sizes for their genomic architecture, cost considerations
mean that short-read sequencing studies will prevail, likely for
a while, even when considering structural variation. Drawing
from the fundamental genomic data presented in Tables 1 and
2, we calculate that from 4 billion births (171) and ∼71 de novo
SNVs/indels/CNVs per individual, >284 billion DNMs have arisen
over the past 30 years of human history. Such a wellspring
of genetic variation, once characterized, will power the next
generation of studies in human molecular genetics.
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