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Abstract
HER-2 type breast cancer is one of the most aggressive malignancies found in women. Tucatinib is recently developed and
approved as a potential medicine to fight this disease. In this manuscript, we present the gross structural features of this compound
and its reactivity and wave function properties using computational simulations. Density functional theory was used to optimise
the ground state geometry of the molecule and molecular docking was used to predict biological activity. As the electrons interact
with electromagnetic radiations, electronic excitations between different energy levels are analysed in detail using time-
dependent density functional theory. Various intermolecular and intermolecular interactions are analysed and reaction sites for
attacking electrophiles and nucleophiles identified. Information entropy calculations show that the compound is inherently stable.
Docking with COVID-19 proteins show docking score of − 9.42, − 8.93, − 8.45 and − 8.32 kcal/mol respectively indicating high
interaction between the drug and proteins. Hence, this is an ideal candidate to study repurposing of existing drugs to combat the
pandemic.
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Introduction

Breast cancer is one of the most common type of neoplasm
found in women and it is divided basically into different sub-
types, viz., Luminal A, Luminal B, HER2-enriched, Basal-
like and the human epidermal growth factor receptor-2-
enriched (HER2-E) is indicated by the overexpression of
growth factor receptor–related genes and cell cycle–related
genes along with low presence of oestrogen-related and
basal-related genes [1–3]. Always, there is a risk of metastatic
spread to other interorgans like lungs, brain and bone [4, 5].

HER2 tyrosine kinase inhibitor Lapatinib is widely used for
the management of this disease [6]. Tucatinib is recently de-
veloped as a promising drug for the management of HER2-
positive breast cancer [7]. It is also used along with
trastuzumab in patients with HER2-positive colorectal cancer
[8]. Tucatinib even showed extensive anti-tumour activity and
tumour regression in N87 gastric cancer cell line and HER2-
amplified colorectal, oesophageal and gastric cancers [9, 10].
The drug is also well tolerated in patients also along with
trastuzumab [11].

Recently, the new strain of coronavirus, n-CoV-2, is dev-
astating human life in entire globe which now emerged to the
dimensions of a pandemic and had impacted the life style and
health of almost all the people [12]. Scientists through the
globe are tirelessly working for establishing the pathology
[13], epidemiology [13] and many are try to develop novel
molecules, antibodies and vaccines [14]. As it is difficult to
come with a new magic molecule which could cure this dis-
ease in a short period of time, scientists are looking to reroute
the existing drugs with known pharmacokinetics and pharma-
codynamics for the management of COVID [15–17].
Chloroquine was once highlighted as a wonder medicine for
the management of COVID, in spite of several differences in
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opinions about its effectiveness and now discontinued [18].
Remdesivir is now presently used widely to get rid of the
pneumonia associated with COVID [19]. Lopinavir,
umifenovir, favipiravir and oseltamivir molecules are also
used now as a potentially active compound against the virus
[15]. Thomas and coworkers recently reported that the sleep
hormonemelatonin has preferential binding over the COVID
proteins [20]. As it is time consuming to design and develop a
drug for the treatment, it will be a wise decision to do research
to reroute the existing drugs as a molecular target against the
virus. We also thought in this direction and decided to screen
tucatinib as a potential candidate for the management of
COVID.

Understanding the electronic structure of a compound is
very important for analysing the potential applications of a
compound. Literature analysis showed that no studies have
been reported in this direction. This manuscript attempts to
study the detailed geometry, electronic structure, physical
and chemical properties, orbital characteristics, surface topol-
ogy, non-covalent interactions, electronic excitations, inter-
molecular stabilisations and information entropy analysis. It
is followed by molecular modelling studies of the interaction
of the molecule with four prominent n-CoV-19 proteins. We
believe that this manuscript will be an addition to the scientific
data.

Methods

We report the detailed study of the molecule using molecular
simulations. Tucatinib molecule was optimised using
Gaussian-09 [21] software, a package using DFT methodolo-
gy with ωB97XD [22–24] functional and cc-pVDZ basis set
[25]. We performed the frequency calculations to ensure that
there exists no imaginary frequency such that the obtained
geometry corresponds to a global minimum for reaching the
optimised geometry. We used the same geometry for calcu-
lating frontier molecular analysis, natural bonding orbitals and
non-linear optical studies. For UV-visible spectrum simula-
tion, we used time-dependent density functional theory (TD-
DFT) with long-range corrected CAM-B3LYP functional [26,
27] and aug-cc-pVDZ basis set as the electronic transitions are
time-dependent phenomena with GaussSum [28]. Reaction
sites of tucatinib calculated using Multiwavefunction [29]
software for calculating total electrostatic, average localised
ionisation energy, electron localisation functions, localised or-
bital locator, reduced density gradient, localised entropy inter-
action, electron delocalisation functions, local electron loca-
tor, reduced density gradient and non-covalent interactions for
tucatinib’s anti-coronovirus2 biological activity were
analysed by using suitable proteins in the PDB format
downloaded from RCSB [30] site, the energy received from
SwissDock and the score values received from PatchDock

[31] after docking and the docked results analysed using
bio-discovery studio.

Results and discussion

Geometry structure for tucatinib

Tucatinib molecular structure was optimised by using density
functional theory method for structural confirmation,
DFT-ωB97XD as a method, and cc-pVDZ as a basis set.
The optimised structure for tucatinib is shown in Fig. 1 and
Table 1 shows important bond distances and angles for

Table 1 Structural parameters of tucatinib

Definition Value (in Å) Definition Value (in °)

R(1O–12C) 1.44 A(12C–1O–15C) 105.18

R(1O–15C) 1.36 A(26C–2O–31C) 118.20

R(2O–26C) 1.39 A(11C–3N–15C) 106.35

R(2O–31C) 1.36 A(15C–4N–16C) 127.74

R(3N–11C) 1.48 A(15C–4N–45H) 114.54

R(3N–15C) 1.28 A(16C–4N–45H) 117.67

R(4N–15C) 1.36 A(21C–5N–23C) 131.47

R(4N–16C) 1.39 A(21C–5N–49H) 114.73

R(4N–45H) 1.01 A(23C–5N–49H) 113.77

R(5N–21C) 1.37 A(20C–6N–29C) 115.19

R(5N–23C) 1.40 A(21C–7N–29C) 117.13

R(5N–49C) 1.01 A(10N–8N–33C) 110.27

R(6N–20C) 1.37 A(10N–8N–35C) 126.30

R(6N–29C) 1.31 A(33C–8N–35C) 123.43

R(7N–21C) 1.32 A(33C–9N–36C) 102.33

R(7N–29C) 1.36 A(8N–10N–36C) 101.28

R(8N–10C) 1.35 A(1O–15C–3N) 119.22

R(8N–33C) 1.38 A(1O–15C–4N) 112.02

R(8N–35C) 1.36 A(3N–15C–4N) 128.77

R(9N–33C) 1.33 A(18C–17C–20C) 120.68

R(9N–36C) 1.35 A(18C–17C–21C) 124.02

R(10N–36C) 1.33 A(20C–17C–21C) 115.29

R(24C–30C) 1.50 A(5N–21C–7N) 120.56

R(26C–28C) 1.39 A(5N–21C–17C) 118.20

R(28C–52H) 1.09 A(7N–21C–17C) 121.24

R(31C–32C) 1.37 A(5N–23C–25C) 124.34

A(5N–23C–27C) 116.38

A(25C–23C–27C) 119.28

A(31C–32C–33C) 117.93

A(31C–32C–57H) 122.84

A(33C–32C–57H) 119.23

A(8N–33C–9N) 109.08

A(8N–33C–32C) 118.91

A(9N–33C–32C) 132.01

341    Page 2 of 17 J Mol Model (2020) 26: 341



tucatinib. The molecule possesses three heterocyclic rings,
ether and secondary anime linkages connecting the rings.

The bond distances for 1O–12C, 1O–15C, 2O–26C, 2O–
31C, 3N–11C, 3N–15C, 4N–15C, 4N–16C, 4N–45H, 5N–
21C, 5N–23C, 5N–49C, 6N–20C, 6N–29C, 7N–21C, 7N–
29C, 8N–10C, 8N–33C, 8N–35C, 9N–33C, 9N–36C, 10N–
36C, 24C–30C, 26C–28C, 28C–52H and 31C-32C having
1.44, 1.36, 1.39, 1.36, 1.48, 1.28, 1.36, 1.39, 1.01, 1.37,
1.40, 1.01, 1.37, 1.31, 1.32, 1.36, 1.35, 1.38, 1.36, 1.33,
1.35, 1.33, 1.50, 1.39, 1.09 and 1.37 Å respectively. The bond
angles for 12C–1O–15C, 26C–2O–31C, 11C–3N–15C, 15C–
4N–16C, 15C–4N–45H, 16C–4N–45H, 21C–5N–23C, 21C–
5N–49H, 23C–5N–49H, 20C–6N–29C, 21C–7N–29C, 10N–
8N–33C, 10N–8N–35C, 33C–8N–35C, 33C–9N–36C, 8N–
10N–36C, 1O–15C–3N, 1O–15C–4N, 3N–15C–4N, 18C–
17C–20C, 18C–17C–21C, 20C–17C–21C, 5N–21C–7N,
5N–21C–17C, 7N–21C–17C, 5N–23C–25C, 5N–23C–27C,
25C–23C–27C, 31C–32C–33C, 31C–32C–57H, 33C–32C–
57H, 8N–33C–9N, 8N–33C–32C and 9N–33C–32C, having
105.18, 118.20, 106.35, 127.74, 114.54, 117.67, 131.47,
114.73, 113.77, 115.19, 117.13, 110.27, 126.30, 123.43,
102.33, 101.28, 119.22, 112.02, 128.77, 120.68, 124.02,
115.29, 120.56, 118.20, 121.24, 124.34, 116.38, 119.28,
117.93, 122.84, 119.23, 109.08, 118.91 and 132.01°
respectively.

Frontier molecular orbital (FMO) properties for
tucatinib

Frontier molecular orbitals can provide valuable information
the energy band gap and using the HOMO and LUMO ener-
gy, one can predict various physical and chemical descriptors
of the molecule, which enables us to comment on the reactiv-
ity, stability and biological activity [32]. The energies are cal-
culated in the DFT-ωB97XD/cc-pVDZ basis set and the re-
lated data is presented in Table 2. HOMO is the molecule is
found to have energy − 5.59 eV and LUMO − 1.50 eV. The
energy gap is only 4 eV. The ionisation energy [33, 34] is
5.50 eV and electron affinity 1.59 eV [35–38]. Global hard-
ness [39, 40] and softness [41] are widely regarded as an
indicator of the reactivity of compounds, whose values are
2.00 eV and 0.50 eV respectively. The softness value is high
such that the compound is polarisable and hence more chance
to be biologically active. The chemical potential, which is the
average of ionisation energy and electron affinity is found to
− 3.59 eV, which indicates that the molecule is reactive [42].
The electronegativity [43] was 3.59 eV. The compound is
electrophilic (see the [44, 45] and nucleophilicity index
[46–49] values) in nature with a negative electrondonating
power. This is in agreement with the high electron affinity
values. Hence, it can be concluded that the compound is

Fig. 1 Geometry structure for tucatinib
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inherently reactive and this feature is responsible for various
biological activities.

Time-dependent density functional theory study for
tucatinib

Being a time-dependent phenomenon, the electronic transi-
tions and consequently the electronic spectra of compounds
cannot be modelled by DFT simulations, instead has to use
time-dependent (TD-DFT) simulations which employs
Tamm-Dancoff approximations [50, 51]. We used TD-DFT
simulations with CAMB3LYP functional and cc-pVDZ as a
basis set using IEFPCM [52] solvation model with methanol
as solvent. The ultraviolet-visible spectrum and the different
orbitals involved in the transition are given in Figs. 2 and 3
and Table 3.

Simulation shows that there are three electronic transitions
possible and among them, only two are significant. The first
peak was observed at wavelength is 309.24 nm with oscillator
strength is 0.44. It is with singlet asymmetry and the major
reasons of this peak is the transition from higher occupied
molecular orbital (HOMO) to lower unoccupied molecular
orbital (LUMO) with 90 percentage contribution. The second
significant peak was at 267.56 nm with oscillator strength of
0.26, and singlet asymmetry. This peak is due to electronic
transitions from second last higher occupied molecular orbital

(HOMO-2) to lower unoccupied molecular orbital (LUMO)
with contribution 12 percentage, and from higher occupied
molecular orbital (HOMO) to second lower unoccupied mo-
lecular orbital (LUMO+2) with 60 percentage contribution.
For the first transition, oscillator strength ( f ) is 0.4431, which
means, the molecule is having good light-harvesting efficien-
cy (LHE), which is expressed as a function of the oscillator
strength related as LHE = 1–10–f [53–56]. The value is 0.6395
for the first transition, which indicate that the compound can
absorb 63.95% of the incident light energy for electronic ex-
citation at that particular wavelength [57, 58].

Non-linear optical properties for tucatinib

Study of light matter interactions is very important especially
for organic molecules. Recently, a large number of organic
non-linear optical (NLO) compounds have been extensively
studied using various computational tools for their potential
industrial use [59–61]. The ability of the molecule to bend the
linear light can be done using the polarisability and
hyperpolarisability values obtained from the Raman spectrum
simulation. This type of non-linear optical activity is very
important for using the compound in organic electronics in-
dustry [62–64]. The simulation is carried out in the same the-
oretical level as of the optimisation and is compared with a
standard non-linear optically active substance urea and p-
nitroacetanilide (PNA) [65, 66]. The non-linear optical prop-
erty parameters for tucatinib are shown in Table 4. Tucatinib is
found to have dipole moment (μ) of 2.74 D, which is 1.58
times greater than urea and 3.01 times greater than p-nitro
acetanilide. Hyperpolarisability (β) is 51.60*10−31 e.s.u.,
which is 6.79 times greater than urea and 0.21 times than p-
nitro acetanilide. The high values of values are due to the
highly non-symmetric structure of the compound (Cs point
group).

Nature bond orbital analysis for tucatinib

Intramolecular electron displacements are very important as
they decide the inherent stability of a compound. Natural bond
orbital analysis is an excellent tool to study such interactions
via hyperconjugation [67–72]. The occupancy values of the
natural bond orbitals and their deloclaisation energy provide
valuable information about the above-mentioned
stabilisations. Nature bond orbital (NBO) calculations were

Table 2 Frontier molecular orbitals properties for tucatinib

Property Values

HOMO (eV) − 5.59
LUMO (eV) − 1.59
Energy gap ΔE (eV) 4.00

Ionisation energy (I = ɛHOMO= -HOMO) (eV) 5.59

Electron affinity (A = ɛLUMO= -LUMO) (eV) 1.59

Global hardness (η = (I − A)/2) (eV) 2.00

Global softness (S = 1/η) 0.50

Chemical potential (μ = − (I + A)/2) (eV) − 3.59
Electronegativity (χ = − μ) (eV) 3.59

Electrophilicity index (ω = μ2/2η) 3.22

Nucleophilicity index (N = 1/ω) 0.31

ΔNmax 1.79

Electroaccepting power ω + = A2/2(I −A) 0.31

Electrodonating power ω + = I2/2(I − A) − 37.63

Table 3 Electronic transitions in tucatinib

No. Wavelength (nm) Osc. Strength Symmetry Major contributions

1 309.24 0.44 Singlet-A HOMO → LUMO (90%)

2 267.56 0.26 Singlet-A H-2 → LUMO (12%), HOMO → L + 2 (60%)

3 265.44 0.0032 Singlet-A H-6 → LUMO (84%)
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done using the NBO suite available within the Gaussian 09
software.

Table S1 shows the natural atomic orbital (NAO) occupan-
cies for tucatinib. In general, the decreasing order of atomic
orbitals by the occupancies are core orbital > valence orbital >
Rydberg orbital. Table S1 shows the number of atomic or-
bitals, the symbol of atoms, number of atoms, angular mo-
mentum, type of atomic orbital, occupancies, and energy in
a.u. unit Tucatinib having 624 nature atomic orbitals (NAOs),
the oxygen atoms label numbers from 1 to 2 atoms nature
atomic orbital numbers are 6, 18 having py, and px angular
momentum with atomic orbital type is valence 2p,

occupancies are 1.40 and 1.11, and energies are −0.37 and −
037 a.u. respectively, the nitrogen atoms label numbers from 3
to 10 are having atomic orbital numbers are 34, 46, 60, 78, 90,
102, 118 and 134 having py, px, px, pz, py, px, py and pz
angular momentum with atomic orbital type is valence 2p,
occupancies are 1.31, 1.41, 1.36, 1.24, 1.25, 1.28, 1.29 and
1.08, and energies are −0.20, −0.29, −0.28, −0.19, −0.20,
−0.30, −0.18 and − 0.15 a.u. respectively, the carbon atoms
label numbers from 11 to 36 are having atomic orbital num-
bers are 146, 160, 174, 190, 198, 216, 230, 242, 258, 272,
284, 298, 312, 326, 340, 354, 370, 382, 398, 412, 428, 442,
456, 466, 484 and 498 having py, py, py, pz, S, py, py, px, py,

Fig. 2 Simulated UV-Visible
spectrum of tucatinib using TD-
DFT CAM-B3LYP/cc-pVDZ

Fig. 3 Major and minor
contributions for tucatinib

Page 5 of 17     341J Mol Model (2020) 26: 341



py, px, px, px, px, px, px, py, px, py, py, pz, pz, pz, px, pz and
pz angular momentum with atomic orbital type is valence 2p,
occupancies are 0.87, 0.79, 1.18, 1.09, 0.71, 0.93, 1.11, 1.09,
1.06, 0.95, 0.97, 1.08, 0.89, 1.08, 1.06, 0.78, 1.11, 1.07, 1.00,
1.16, 0.94, 1.09, 0.89, 1.06, 0.84 and 1.03, and energies are
−0.15, −0.06, −0.06, −0.09, −0.08, −0.08, −0.03, −0.07,
−0.06, −0.06, −0.01, −0.03, −0.05, −0.01, −0.05, −0.03,
−0.01, −0.06, −0.05, −0.02, −0.08, −0.03, −0.07, −0.01,
−0.07, −0.01 and − 0.02 respectively, and the hydrogen atoms
label numbers from 37 to 60 are having atomic orbital num-
bers are 505, 510, 515, 520, 525, 530, 535, 540, 545, 550,
555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 605, 610,
615 and 620 having S angular momentum with atomic orbital
type is valence 1S, occupancies are 0.79, 0.78, 0.77, 0.77,
0.76, 0.77, 0.77, 0.76, 0.56, 0.74, 0.76, 0.74, 0.57, 0.72,
0.76, 0.75, 0.79, 0.76, 0.75, 0.75, 0.72, 0.73, 0.74 and 0.78,
and energies are 0.07, 0.07, 0.08, 0.09, 0.09, 0.09, 0.08, 0.09,
0.11, 0.11, 0.07, 0.10, 0.12, 0.13, 0.08, 0.09, 0.09, 0.10, 0.09,
0.09, 0.11, 0.09, 0.08 and 0.09 a.u. respectively.

Table S2 provides the summary of natural population
charge analysis for tucatinib. Each atom having particular nat-
ural charges and population charges is core, valence and
Rydberg populations. Tucatinib molecule's total natural
charge is zero, and total natural populations in the core is
71.97, valence is 179.24 and the Rydberg population is 0.79
and the total population is 252.00. Table S3 shows the natural
populations between natural minimal basis and natural
Rydberg basis for tucatinib. Total core population is 71.97
out of 72 basis, which is more than 99.50 percentage; valence
population is 179.24 out of 180 basis, which is more than
99.50 percentage; the natural minimal basis (NMB) is
251.21 out of 252 basis, which is more than 99.50 percentage;
and natural Rydberg basis (RYB) is 0.79 out of 252 basis,
which is below 0.50 percentage. Table S4 shows the electron-
ic configurations for all the elements in tucatinib. Table S5
explains natural bond analysis by occupancy threshold energy
for in tucatinib. For the cycles 1 and 2, having the same occu-
pancy threshold energy 1.9, Lewis occupancy is 238.24, non-
Lewis occupancy is 13.76 and deviation is 0.63. Table S6
shows the total Lewis and non-Lewis contributions for
tucatinib. The contributions for core orbital are 71.97 out of
72 basis, which is more than 99.50 percentage, valence Lewis
orbital is 173.56 out of 180 basis, which is 96.42 percentage

and total Lewis contribution is 245.53 out of 252 basis, which
is 97.43 percentage. The contribution of valence non-Lewis
orbital is 5.92 out of 252 basis, which is 2.35 percentage,
Rydberg non-Lewis orbital is 0.55 out of 252 basis, which is
0.22 percentage and total non-Lewis contribution is 6.47 out
of 252 basis, which is 2.57 percentage.

Table S7 explains nature bond orbitals (NBOs) using
second-order Perturbation theory analysis of Fock matrix in
NBO Basis. This table explains various electrons transfers
from donor natural atomic orbitals to acceptor natural atomic
orbitals by labels and absorption energies. All these electron
delocalisations lead to inherent stability of the molecule [73].

Average localised ionisation energy for tucatinib

The local I(r) average energy of ionisation is the energy need-
ed to remove an electron from point r the system. The lowest
values show the positions of the least tightly held electrons
and therefore the chosen reaction sites by electrophiles or
radicals [74–77]. The 2D representation of average localised
ionisation energy (ALIE) of tucatinib is given in Fig. 4.

The colour greenish-blue is denoted delocalised electrons
appearing in 4,4-dimethyloxazole, 4,4-dimethylozazolamin,
quinazolin, quinazolinamin and triazolepyridin groups; these
are giving the number of resonance structure and explain sta-
bility of tucatinib. The colour blue is denoted sigma or stable
bonds occur in all the carbons, which are having protons. The
colour red indicates multiple bonds; fortunately, there are no
multiple bonds present in the tucatinib.

Electron localised function for tucatinib

This study explains the electronic structure for tucatinib. The
higher value of electron localisation function is strongly local-
ised and low value is strong delocalisation of electron in this
molecule [78–80]. The electron localised function (ELF) for
tucatinib is shown in Fig. 5. Tucatinib has the range between
− 16.34 and 16.34 Bohr3, the probability value between 0.000
and 1.000, and the colour blue to red shown in Fig. 5.

The red in colour shows that high probability to strong п-
localised electrons occurs on the carbon, nitrogen and oxygen
atoms core and lone-pair of electrons, and all the protons in the
molecule. The blue in colour shows that high probability to

Table 4 Non-linear optics property for tucatinib

Non-linear property Tucatinib Urea p-nitro acetanilide Comparison of tucatinib with urea and PNA

Dipole moment (μ) 2.74 D 1.73 D 0.91 D 1.58 times urea and 3.01 times PNA

Hyperpolarisability (β) (esu) 51.6*10−31 7.60*10−31 237.67*10−31 6.79 times urea and 0.21 times PNA

Mean polarisability (α0) 373.08*10−23 24.30*10−23 113.86*10−23 15.5 times greater than urea and 3.27 times PNA

Anisotropy of the polarisability (Δα) (esu) 897.38*10−23 0.85*10−23 5.29*10−23 1055 times greater than urea and 169 times PNA

Molar refractivity (MR) (esu) 9412.26 613.31 2873.74 15.34 times greater than urea and 3.2 times PNA
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strong п-delocalised electrons occurs on carbons and nitrogen
atoms in 4,4-dimethyloxazolamin and quinolinamin rings,
and 4,4-dimethyloxazolamin, quinolinamin andmethylphenyl
rings.

Localised orbital locator for tucatinib

Localised orbital locator (LOL) study explains the orbital lo-
cations for tucatinib [81, 82] and is represented in Fig. 6. The
value ranges between − 16.34 and 16.34 Bohr3, values

between 0.000 and 0.800, and colour from blue to red shown
in Fig. 6.

The colour red denotes strongly localised п-orbitals which
occur between carbons and oxygens, carbons and nitrogens,
and carbons and carbons in 4,4-dimethyloxazolamin,
quinolinamin, methylphenyl and triazoxylpyridin groups.
The colour blue denotes strong delocalised п-orbitals which
occurs in 4,4-dimethyloxazolamin, quinolinamin,
methylphenyl, triazoxylpyridin rings and all the hydrogens
in the whole molecule.

Fig. 4 Average localised
ionisation energy for tucatinib

Fig. 5 Electron localised
functions for tucatinib
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Molecular electrostatic potentials (MESP) from elec-
tronic charges for tucatinib

The electrostatic potential V(r) generated around a molecule
by its nuclei and electrons which are treated as static charge
distribution is a very useful property for studying and
predicting molecular reactive actions [83–87]. The capacity
has been especially useful as an indication of the positions
or regions of the molecule to which the advancing electrophile
is initially drawn, and has also been effectively extended to the
analysis of associations requiring a certain optimal relative
orientation of the reactants, such as between the product and
its cellular receptor. Tucatinib molecule’s MESP was gener-
ated using the data obtained in the previous calculation and is
represented in Fig.7. Figure 7 shows those sites within the
range between − 16.26 and 16.26 Bohr3, the numerical value
from − 0.100 to 0.100 and the colour from blue to red.

The colour blue on all the nitrogen atoms in amin-oxazole
and amin-quinazolin groups is electron-rich sites, and there-
fore electrophiles can easily attack these sites. The colour red
on all the carbons which are having protons in 4,4-dimethyl-
ozalol, quinazolin, 2-methylphenolat and triazolepyridine
groups is electron-poor sites, and therefore nucleophiles can
easily attack these sites.

Molecular electrostatic potentials (MESP) from nucle-
ar charges for tucatinib

The electrostatic potentials from nuclear charges [85, 87] for
tucatinib are shown in Fig. 8. Tucatinib has the range between
− 15.88 and 17.67 Bohr3, values between 0.000 and 0.800,
and colour from blue to red shown in Fig. 8.

The colour red denotes negative electrostatic potentials be-
tween the range 47.000 and 50.000 and shows strong attrac-
tion between protons and nuclei core and lone-pair of elec-
t rons in carbons, ni t rogens and oxygens in 4,4-
dimethyloxazolamin, quinazolinamin and triazoxylpyridin
groups. The colour blue denotes positive electrostatic poten-
tials between the range 15.000 and 23.000 and shows strong
repulsions between protons and nuclei in all the hydrogens in
the whole molecule.

Reduced density gradients (RDG) for tucatinib

The reduced density gradient is directly proportional to the
electronic density of the molecule. Which means a small re-
duced density gradient is low electronic density [88–92].
Figure 9 shows the reduced density gradient for tucatinib.
Tucatinib has the range between − 14.88 and 16.34 Bohr3,
values between 0.000 and 1.000, and colour from blue to
red shown in Fig. 9.

The colour red range between 0.800 and 1.000 shows the
most probability of the reduced density gradients which occur
in higher molecular weight elements which are oxygens, ni-
trogens and carbons in 4,4-dimethyloxazolamin,
quinolinamin, methylphenyl and triazoxylpyridin groups.

Local information entropy (LIE) for tucatinib

This study explains the stability of the molecule. Entropy is a
feature of probability distributions and can take to be a qual-
ification of uncertainty. The high value of local information
entropy is directionally proportional to the uncertainty of elec-
trons in spatial distribution [93, 94]. Figure 10 shows local

Fig. 6 Localised orbital location
for tucatinib
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information entropy for tucatinib. Tucatinib has the range be-
tween − 16.34 and 16.34 Bohr3, values between 0.000 and
0.100, and colour from blue to red shown in Fig. 10.

The colour blue shows the entropy value between 0.000
and 0.015 which denotes low uncertainty regions in 4,4-
dimethyloxazolamin, quinolinamin, methylphenyl and
triazoxylpyridin groups. The colour bluish-green shows the
moderated entropy values between 0.035 and 0.045 which
denotes moderated uncertainty of the elements which are car-
bons, nitrogens and oxygens in 4,4-dimethyloxazolamin and
quinolinamin groups.

Non-covalent interactions (NCI) for tucatinib

A non-covalent interaction differs from a covalent bond
by not involving the sharing of electrons but involving
more dispersed variations of electromagnetic interactions
between molecules or within a molecule. The three-
dimensional arrangement of large molecules, such as
protein and nucleic acids, is important to non-covalent
interactions. Additionally, they are also involved in
many biological processes where large molecules bind
to each other specifically but transiently. These

Fig. 7 Molecular electrostatic
potentials for tucatinib

Fig. 8 Molecular electrostatic
potentials from nuclear charges
for tucatinib
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interactions also have a strong impact on drug design,
crystallinity and material design, self-assembly and the
design of synthesis of tailor-made organic molecules
[89, 95]. The non-covalent interactions for tucatinib
are shown in Fig. 11.

This study explains the non-covalent bonds which oc-
cur in the molecule. Figure 11 shows the non-covalent
bonds which are hydrogen-bond, van der Waals and steric
force type of bonds which occurs in the tucatinib; a graph
plotted energy against reduced density gradient.

The hydrogen bonds appear between the range − 0.020 and
− 0.005 a.u. from secondary amin-nitrogen attached in 4,4-
dimethyloxazol to hydrogens in methyl in 4,4-dimethyloxazol
and quinazolin groups, and from secondary amin-nitrogen
attached in quinazolin to hydrogens in quinazolin and 2-
methylphenoate groups, the van der Waals force between
the range − 0.005 and 0.003 a.u. from oxygen in 2-
methylphenolat to hydrogens in methyl in 2-methylphenoate
and triazolepyridin groups, and steric force between the range
0.004 and 0.050 a.u. within the rings for 4,4-dimethyloxazol,

Fig. 9 Reduced density gradient
for tucatinib

Fig. 10 Local information
entropy for tucatinib
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quinazolin, 2-methylphenoate and triazolepyridin groups, and
between 4,4-dimethyloxazol and quinazol, quinalolin and 2-
methylphenolat, and 2-methylphenolat and triazolepyridin
groups.

Molecular docking study for tricatinib

Scientists around the globe are looking medicines for manag-
ing the COVID pandemic. It is always better to reroute the
existing drugs for this pandemic as it could save lot of pre-
cious time for new drug discovery. We also thought in this
direction and checked the activity of this drug against known
COVID proteins. Molecular docking can be used as a tool to
screen the biological activity of a compound [96, 97].
Molecular docking explains the structure relative activity of
tucatinib against coronovirus2 proteins (PDB IDs: 6M03 [98],
6W63 [99], 6LZG [100] and 6LU7 [99]) deposited in the RSC
database [30].

Table 5 shows the docking result from SwissDock server,
tucatinib with coronovirus2 proteins are 6LU7, 6W63, 6M03
and 6LZG having full fitness values are −1276.22, −1238.58,
−1243.04 and − 3497.47 kcal/mol respectively, and estimated
ΔG are − 9.42, − 8.94, − 8.45 and − 8.32 kcal/mol respective-
ly. The interactions tucatinib with 6LU7 having greater
interfull fitness, intrafull fitness, ΔG ligand solvent non-
polar and ΔG van der Waals force energies than other com-
pared proteins, and protein 6LZG having greater energy, sim-
ple fitness, solvent full fitness, surface full fitness, ΔG com-
plex solvent polar,ΔG complex solvent nonpolar,ΔG protein

solvent polar, ΔG protein solvent non-polar and ΔG ligand
solvent polar energies than other compared proteins.

The results from the docking of tucatinib and coronovirus2
proteins with PDB IDs: 6LU7, 6W63, 6M03 and 6LZG using
PatchDock gives the docking score values as 5640, 5594,
5470 and 6182 respectively. The interacting areas are
706.70, 74,840, 573.90 and 716.40 Å2 respectively; minimum
atomic contact energies are − 348.62, − 416.91, − 151.45 and
− 128.30 kcal/mol respectively; and molecule solvent accessi-
bilities are 3158.43, 2819.61, 2753.54 and 3748.54 Å2

respectively fpr different proteins used. Figure 12 shows the
skeletal structure and residues with labels of interactions be-
tween tucatinib with coronovirus2 proteins, and Table S8 ex-
plains the coronovirus2 protein labels, name, hydrophobicity,
pKa, average isotropic displacement, secondary structure, res-
idue solvent accessibility, sidechain solvent accessibility, per-
cent solvent accessibility and percent sidechain solvent acces-
sibility values.

Table S9 explains the non-covalent bonds which occur
between tucatinib with coronovirus2 proteins are favourable
non-bond, unfavourable non-bond and unsatisfied bond with-
in tucatinib interacting with coronovirus2 proteins. Table S8
explains the non-covalent bonds are hydrophobicity, hydro-
philicity, neutral, acidic and basic group label interactions
between tucatinib with coronovirus2 proteins.

Figure S1, Table S2 and Table 4 explain the water-resistant
as well as called hydrophobic interactions between tucatinib
with coronovirus2 proteins. Figure S2, Table S9 and Table 6
show water-loving groups of interactions between tucatinib
with coronovirus2 proteins. Table S9 and Table 6 with

Fig. 11 Non-covalent
interactions for tucatinib
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Fig. S3, S4 and S5 explain the neutral, acidic and basic groups
of interactions between tucatinib with coronovirus2 proteins
respectively.

Conclusions

Tucatinib molecule having good HOMO-LUMO values,
which show good chemical parameters energy gap, ionisation
energy, electron affinity, global hardness, global softness,
chemical potentials, electronegativity, electrophilicity index
and nucleophilicity index. From the UV-Visible spectrum re-
sult, tucatinib has shown absorption peaks at 309.1468 and
267.5687 nm with 0.4431 and 0.2633 oscillator strengths.

From the NLO property of tucatinib, the dipole moment is
2.1797 times greater than urea and 7.9092 times greater than
p-nitro acetanilide, hyperpolarisability is 10.9881 times great-
er than urea and 1.2032 times greater than p-nitro acetanilide,
mean polarisability is 15.3529 times greater than urea and
3.0367 times greater than p-nitro acetanilide, the anisotropy
of the polarisability is 16.9187 times greater than urea and
2.5999 times greater than p-nitro acetanilide, andmolar refrac-
tivity (MR) is 15.3494 times greater than urea and 3.0360
times greater than p-nitro acetanilide. The NBO result ex-
plains the molecular bonding property of tucatinib having
suitable occupancies with energies. The reaction site proper-
ties were electrostatic potentials, average localised ionisation
energy and non-covalent interactions mostly occur on 4,4-

Table 5 Docking result for tucatinib with coronovirus2 proteins

Parameters 6LU7 6W63 6M03 6LGZ

Energy 58.0421 kcal/mol 54.9743 kcal/mol 60.3017 kcal/mol 61.3409 kcal/mol

Simple fitness 58.0421 kcal/mol 54.9743 kcal/mol 60.3017 kcal/mol 61.3409 kcal/mol

Full fitness − 1276.2 kcal/mol − 1238.6 kcal/mol − 1243 kcal/mol − 3497.5 kcal/mol

Interfull fitness − 68.14 kcal/mol − 58.674 kcal/mol − 59.893 kcal/mol − 62.734 kcal/mol

Intrafull fitness 11.7314 kcal/mol 5.60706 kcal/mol 9.84711 kcal/mol 9.53814 kcal/mol

Solvent full fitness − 1439 kcal/mol − 1405.4 kcal/mol − 1413.6 kcal/mol − 3978 kcal/mol

Surface full fitness 219.201 kcal/mol 219.847 kcal/mol 220.597 kcal/mol 533.718 kcal/mol

Extra full fitness 0 kcal/mol 0 kcal/mol 0 kcal/mol 0 kcal/mol

ΔG complex solvent polar − 1439 kcal/mol − 1405.4 kcal/mol − 1413.6 kcal/mol − 3978 kcal/mol

ΔG complex solvent non-polar 219.201 kcal/mol 219.847 kcal/mol 220.597 kcal/mol 533.718 kcal/mol

ΔG protein solvent polar − 1411.4 kcal/mol − 1372.1 kcal/mol − 1385.7 kcal/mol − 3956.8 kcal/mol

ΔG protein solvent non-polar 221.095 kcal/mol 222.123 kcal/mol 221.3 kcal/mol 533.989 kcal/mol

ΔG ligand solvent polar − 62.539 kcal/mol − 61.961 kcal/mol − 64.017 kcal/mol − 63.078 kcal/mol

ΔG ligand solvent non-polar 10.0198 kcal/mol 9.94932 kcal/mol 9.90626 kcal/mol 9.90859 kcal/mol

ΔG van der Waals force − 68.14 kcal/mol − 58.674 kcal/mol − 59.893 kcal/mol − 62.734 kcal/mol

ΔG electric force 0 kcal/mol 0 kcal/mol 0 kcal/mol 0 kcal/mol

Total ΔG − 9.4248 kcal/mol − 8.9381 kcal/mol − 8.4504 kcal/mol − 8.3247 kcal/mol

Fig. 12 Skeletal structure of interactions between tucatinib and coronovirus2 proteins
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dimethyloxazol, amin- in 4,4-dimethyloxazole, quinazolin,
amin- in quinazoline, 2-methylphenolat and triazolepyridin
groups in tucatinib. From the molecular docking result, it ex-
plains types of interactions, hydrophilicity, and hydrophobic-
ity, acidic, basic and neutral group residues of referred
coronovirus2 proteins (6LU7, 6W63, 6M03 and 6LZG) with
tucatinib.
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