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ABSTRACT

The surprising observation that virtually the entire
human genome is transcribed means we know
little about the function of many emerging classes
of RNAs, except their astounding diversities.
Traditional RNA function prediction methods rely
on sequence or alignment information, which are
limited in their abilities to classify the various collec-
tions of non-coding RNAs (ncRNAs). To address
this, we developed Classification of RNAs by
Analysis of Length (CoRAL), a machine learning-
based approach for classification of RNA molecules.
CoRAL uses biologically interpretable features
including fragment length and cleavage specificity
to distinguish between different ncRNA populations.
We evaluated CoRAL using genome-wide small RNA
sequencing data sets from four human tissue types
and were able to classify six different types of RNAs
with �80% cross-validation accuracy. Analysis by
CoRAL revealed that microRNAs, small nucleolar
and transposon-derived RNAs are highly discernible
and consistent across all human tissue types
assessed, whereas long intergenic ncRNAs, small
cytoplasmic RNAs and small nuclear RNAs show
less consistent patterns. The ability to reliably
annotate loci across tissue types demonstrates
the potential of CoRAL to characterize ncRNAs

using small RNA sequencing data in less well-
characterized organisms.

INTRODUCTION

One of the most significant biological discoveries of the
past decade includes the discovery of new types of RNAs
and their specific functions in eukaryotic cells (1,2). For
instance, non-coding RNAs (ncRNAs) are transcripts that
are not translated into proteins but serve other important
biological functions. ncRNAs have highly diverse func-
tions including protein translation [transfer RNAs
(tRNAs) and ribosomal RNAs], regulation of gene expres-
sion [microRNAs (miRNAs) and long intergenic non-
coding RNAs (lincRNAs)] (3,4), pre-mRNA splicing
[small nuclear RNAs (snRNAs)] (5), RNA modification
[small nucleolar RNAs (snoRNAs)] (6) and the list is still
expanding. Advances in high-throughput sequencing
technologies have led to the unexpected discovery that
up to 93% of the human genome is transcribed in some
tissues (7). Thus, it is not surprising that the ncRNA
database (8) includes 135 different ncRNA classes.
Unfortunately, the classification of most RNAs in this
database is more representative of the historical process
by which the ncRNAs were discovered, such as sedimen-
tation coefficient (e.g. 4.5S RNA) or cellular location (e.g.
snoRNA), than of their true cellular functions. This gap
highlights the fact that most transcribed regions are still of
unknown molecular function and biological significance.
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Given that little is known about most ncRNAs, a poten-
tial approach is to gather an enormous amount of
experimental data efficiently and systematically using
RNA sequencing (RNA-seq) and to analyse these data
using sophisticated computational approaches. Unlike
microarrays, RNA-seq does not rely on target probe hy-
bridization, and thus one does not need to know in advance
which regions are being transcribed. These properties make
RNA-seq a promising tool to study ncRNA biology.
Additionally, RNA-seq is highly versatile in that it can be
modified to study specific properties, e.g. small RNA-seq
(smRNA-seq) (9) where gel-based size selection is used to
enrich RNAs with particular sequence lengths.
While traditional methods predict RNA function using

primary sequence or alignment information, new
approaches using RNA-seq data have been proposed.
For example, the miRDeep2 algorithm (10) searches for
genomic regions that fold into hairpin structures and are
enriched for sequenced reads next to the hairpin loop
region (the expected location of mature miRNAs) to iden-
tify potential miRNA loci. Additionally, Langenberger
et al. (11) pioneered the use of smRNA-seq features such
as abundance and block length distribution to classify
ncRNAs. Their method DARIO (12) uses random forest
(RF) classifiers to differentiate between miRNA, snoRNA
and tRNA, loci with reasonable performance. However,
features generated from DARIO are not normalized
by transcript-wide abundance, and as a result, the most
informative feature for miRNA identification is their
overall abundance. This does not generalize to other
ncRNAs and is simply a result of the fact that miRNAs
are highly abundant in human smRNA-seq data sets.
Erhard and Zimmer (13) used similarities between RNA

transcripts to classify ncRNAs. Their similarity measure
was created based on the relative positions and lengths
obtained from sequencing experiments. However, relative
positions of reads require good knowledge on the start- and
end-points of transcripts within a genome sequence, which
is a challenge for newly discovered classes of ncRNA.
Evaluation of their method on two classes of RNA
(miRNAs and tRNAs) yielded performance with recall
values of 98% and precision of 60% for miRNAs and
�80% for tRNAs, which leaves room for improvement.
To address the limitations of these previous RNA

function classifiers, we have developed a framework for
classifying RNA transcripts by functional categories
using smRNA-seq data (Figure 1), which can then be
applied to identify unannotated RNAs with similar func-
tions in other organisms in the future. To do this, we first
designed algorithms to generate several types of features
from smRNA-seq data based on read length distribution,
strand specificity and the secondary structure of the tran-
script for transcribed genomic regions. We then applied a
multi-class classification algorithm with feature selection
and cross-validation schemes included to train classifiers
among a collection of known RNA functional classes
including lincRNAs, miRNAs, small cytoplasmic RNA
(scRNAs), C/D box snoRNAs, snRNAs and trans-
poson-derived RNAs. For each RNA class, we identified
the most informative features that might be associated
with the molecular mechanisms and metabolic processes

of the functional classes. Trained models, informative
features and annotation results have been validated
using (i) external datasets, (ii) SAVoR, a visualization
tool for RNA structures (14), and (iii) curation of the
primary literature.

MATERIALS AND METHODS

Processing of small RNA-seq data

The smRNA-seq data used for our analysis came from
four sources: human brain data generated as part of this
study (GSE43335), a previously published data set from
human skin (GSE31037) (15) and published data sets from
human liver (SRR040571) and muscle (SRR040572) (16)
(Table 1). The human brain data were obtained by
sequencing small RNAs (smRNAs) extracted from the
dorsolateral prefrontal cortex of four deceased human
patients with no apparent pathology. All reads were
trimmed to remove the Illumina 30 adapter sequence
using cutadapt (17), and only those reads containing the
adapter were taken as true smRNA reads. Reads were
mapped to the reference genome GRCh37/hg19 using
Bowtie (18) and those mapping to multiple loci were dis-
carded. To merge reads into transcribed loci, we used the
RSEQTools’ (19) bgrSegmenter tools.

Figure 1. The analysis workflow for differentiating between six differ-
ent classes of ncRNAs in smRNA-seq data sets.
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Labelling training data

Functional categories were assigned to loci by overlapping
their coordinates with RNA annotations from the UCSC
Genome Browser (20). Although there are many different
types of ncRNA described, we focused on a subset of
functional classes where sufficient numbers of confirmed
loci were available to train predictive models.

For quality control purposes, loci covered by fewer
than 15 reads were discarded. This value was chosen as
a compromise between selecting high-quality sufficiently
transcribed regions and identifying significant levels of
loci for each class (Supplementary Figure S1). Based on
these criteria, the following six RNA classes were selected:
lincRNAs, miRNAs, scRNAs, C/D box snoRNAs,
snRNAs and transposon-derived RNAs (Figure 2). We
excluded ribosomal RNAs and tRNAs because they are
easily identifiable by sequence homology alone.

Feature generation

We noted that features used for classification purposes
should be flexible, comprehensive, efficient and scalable.
Therefore, we developed features that would most likely
be used to reflect the underlying biological properties of
small ncRNAs. For example, miRNAs are consistently
processed into their mature form of 22 nucleotide (nt)
fragments as a consequence of Dicer’s activity on the
stem-loop structure of pre-miRNAs (21). It is reasonable
to assume, then, that the lengths of smRNAs are consist-
ent with some aspects of their biogenesis, which should
also be consistent within classes sharing the same molecu-
lar function. Thus, for a transcribed locus i that starts at
genomic position a and ends at position b, we define the
length features as:

siL ¼
Xb
k¼a

NLk

LengthðiÞ

for read lengths 14 � L � 30, where NLk is the number of
reads of length L mapping to base k and Length (i) is the
length of locus i. The values of these 17 features are then
transformed into log-odds ratios via the following normal-
ization procedure:

piL ¼
1+siLP

14�L�30

siL
, xiL ¼ log

piL
1=17

� �

In addition to the read lengths, we introduced a feature
based on the abundance of antisense transcription. The
numerical value of this feature reflects the number of

reads mapped to the antisense strand of the transcribed
locus. This feature is generated based on the assumption
that the presence of antisense transcription at a locus is
relevant to the biogenesis of smRNAs from this region.
Another important feature that is likely to be specific to
smRNA biogenesis is the specificity of cleavage positions.
We encode this as two features: 50 and 30 positional
entropy. The entropy is computed based on the distribu-
tions of the 50 and 30 end positions of all smRNA reads
mapped to a given locus, respectively. This entropy feature
is designed to capture the specificity (or degeneracy) of
RNA cleaving enzymes specific to the production of dif-
ferent types of smRNAs. For example, the processing of
mature miRNAs from pre-miRNAs tends to produce
fragments with a more stable 50 cleavage position (low
entropy) and more variable 30 end (higher entropy).
We also generate features corresponding to the base
composition of the reads, weighted by their expression:
these are the four nucleotide frequencies transformed
into a log-odds ratio relative to equal base frequencies.
Additionally, we compute the predicted minimum free
energy (MFE) of the genomic region surrounding the
transcribed locus (40 bp on either side) using RNAfold
with default parameters (22).

Feature selection and classification framework

To identify features that are most representative of the
six ncRNA classes, we used the R package varSelRF
(version 0.7-3) (23), which selects a small optimal set of
non-redundant features for each class. When computing
the feature importance, we used varSelRF with

Table 1. Number of reads in the four smRNA-seq data sets at various stages of processing, ordered from left to right

Tissues Raw reads 3’ adapter trimmed reads Uniquely mapped reads smRNA loci,� 1 read smRNA loci,� 15 reads

Brain 104 120 855 51 929 478 (50%) 15 401 850 (30%) 6246 4525 (72%)
Skin 307 025 425 188 417 173 (61%) 85 443 864 (28%) 11 423 8638 (76%)
Liver 3 374 986 1 477 497 (44%) 1 152 829 (78%) 269 216 (80%)
Muscle 3 793 410 3 417 173 (90%) 368 271 (11%) 218 178 (82%)

Figure 2. Percentage of small ncRNA loci identified by smRNA-seq
for two human tissue types: (a) brain and (b) skin.
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parameters (mtryFactor=4, vars.drop.fac=0.35,
ntree=1000). For the number of variables mtryFactor
setting, we tried various values and saw no difference in
performance; therefore, we used a value corresponding to
the square root of the number of features as recommended
in the literature (24). Similarly, the number of trees did not
greatly affect accuracy but had a large impact on running
time. The selected variable drop factor yielded classifiers
with the highest training accuracy. RF was used as a clas-
sifier to distinguish between multiple RNA classes. The
feature selection portion uses both backwards variable
elimination and selection based on the variable import-
ance index outputted by the RF model. When training
the models, 100 RF models comprising 1000 trees were
built to determine the stability of results.

Evaluation of performance

Typically, the performance of a binary-class classifier is
evaluated by comparing values of the confusion matrix,
including rates of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). Other
commonly used measures for binary classification are
accuracy, recall/sensitivity and positive predictive value
(PPV). Measures for multi-class classification are
generalized from measures used in binary classification.
ACCk is the overall accuracy, which is the proportion of
predictions that are correct: ACCk= (TPk+TNk)/
(TPk+TNk+FPk+FNk). For every class Ck, the class-
specific evaluation measures are defined by recall (RECk)
and PPVk, derived from counts of Ck from the confusion
matrix. RECk is defined as the proportion of positive
labelled samples that are predicted as positive:
RECk=TPk/(TPk+FNk), whereas PPVk is defined as
the proportion of positive samples that are correctly
identified: PPVk=TPk/(TPk+FPk).

RESULTS AND DISCUSSION

Visualization of the length features

We hypothesized that the lengths of some small ncRNAs
are specific to particular classes of precursor ncRNAs.
Therefore, we tested the distribution of the read length
feature for three of the ncRNA classes in the human
brain and skin data sets (Figure 3, Supplementary
Figure S2). miRNAs demonstrated a strong peak at
22 nt in length (Figures 3a and d and 4a), which is con-
sistent with what is known about the length of mature
miRNAs in animals. Products coming from C/D box
snoRNAs tend to be depleted of shorter RNAs and
enriched for longer RNAs (Figures 3b and e and 4b).
Transposon-derived smRNAs appear to show slightly
different distributions depending on the tissue type. For
example, they show a weak broad peak �19–23 nt in the
brain data and a flatter, weaker bias towards 16–22 nt in
the skin data (Figures 3c and f and 4c).
In addition, we examined the correlations between the

features in the brain data set (Supplementary Figure S3).
Unsurprisingly, features corresponding to adjacent
lengths correlate strongly. Interestingly, there appear to
be four clusters of lengths: 14–18, 19–20, 21–23 and

24–30 nt. These results suggest that specific classes of
smRNAs tend to have coherent lengths. We also found
that positional entropy at both ends of human brain
smRNAs strongly correlate. This suggests that smRNAs
with high 50 cleavage specificity also tend to have high
30 cleavage specificity.

Discriminative power of features

Owing to the varying number of loci within each ncRNA
class, it was challenging to visualize all loci in a data set.
To determine how well the length features were able to
separate the loci, we built RF trees by classifying one
ncRNA class versus all other classes. We then applied
multidimensional scaling (MDS) to the proximity matrix
obtained from the RF trees. miRNA, C/D box snoRNAs
and transposon-derived RNAs were the most visually
distinguishable classes of smRNAs using our features
(Figure 5), and this pattern was found to be consistent
between the two (brain and skin) data sets.

Comparison with existing classification approaches—
DARIO and miRDeep

We compared our method with a published method
(DARIO), which was designed for classifying smRNAs
by their precursor ncRNA loci. As DARIO only uses
three classes of ncRNAs (miRNAs, C/D box snoRNAs
and tRNAs) for building its classification model, we ran
Classification of RNAs by Analysis of Length (CoRAL)
while limiting the data to those three classes only (Table 2).

CoRAL gives the best results for all three classes, with an
improvement of�3–4% for miRNAs and tRNAs. DARIO
reported none of the loci as being annotated as snoRNAs,
and so that class was unable to be compared, but demon-
strates that CoRAL is able to identify these RNAs that
cannot be distinguished by DARIO. When restricting the
comparison with miRNAs and tRNAs, CoRAL’s predict-
ive performance is 91%, which is a 4% improvement over
the same analysis performed by DARIO.

Additionally, we compared our results with those
produced by miRDeep2 on the brain data (ran with
default parameters). miRDeep2 had a recall of 81% and
PPV of 98%,whereas CoRALhad a recall of 88%and PPV
of 91% for miRNAs while also predicting five other RNA
classes. Thus, CoRAL has increased functional classifica-
tion capabilities as well as improved overall performance
compared with the currently available classifier options.

Building a classification model using six classes of
ncRNAs

There are currently >135 classes of ncRNAs in the
NONCODE database. Here, using the two high-depth
data sets, human brain and skin, we focused on a subset
of functional classes where sufficient numbers of confirmed
loci were available for us to build our predictive models.
A total of six classes were included: lincRNAs, miRNAs,
scRNAs, C/D box snoRNAs, snRNAs and transposon-
derived smRNAs. Performance measures were averaged
over 100 different seeds of RF classifiers (Table 3).

For both high-depth data sets, the overall accur-
acy is �80%, which is a significant improvement over
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the baseline of 33%. The best performing classes are
miRNA, C/D box snoRNA and transposon-derived
RNAs. The performance of these three classes is also con-
sistent between the two tissue types. In contrast, the
lincRNA, scRNA and snRNA classes performed more
poorly. The lower performance of these classes can
possibly be attributed to their smaller representation
among loci, as there were fewer smRNA loci present
from these regions for both tissue types. Another potential
reason for the lower performance is that these classes
are less cohesive than the other classes. lincRNAs gener-
ally do not share any structural properties and are known
to have diverse functional roles (25). The scRNAs are
an umbrella group for two distinct types of RNAs:
human Y RNAs and the BC200 scRNA (26), which

have different secondary structures and likely different
functions in the cell. Finally, the snRNA class is a
highly incoherent group owing to the structural diversity
among its members. For example, although the U1 and
U2 RNAs are both small, localized to the nucleus, and
involved in pre-mRNA splicing, they perform different
functions and have different secondary structures (22).
Therefore, it is reasonable to expect more diversity in
the properties of smRNAs being produced by cleavage
of snRNAs as opposed to the three better performing
RNA classes.

Features that can discriminate between classes of smRNAs

Although we were interested in comparing the reproduci-
bility of the smRNA features for various ncRNA classes,

Figure 3. Feature spectrum plots for three of the ncRNA classes (as specified in the figure), in the (a–c) brain data and (d–f) the skin data. Each box
corresponds to one length feature, and each grey line represents one locus. The red dots are outside of the 99th percentile of each distribution.
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an important biological question to ask is which features
are specific to which ncRNA classes. To determine this, we
counted the number of times a feature is selected out of
the 1000 RF models (Figure 6). To provide potentially
biologically informative insights, we also marked
features as being lower- or higher-valued in one class
than in the others. We found that smRNAs from C/D
box snoRNAs often have a higher positional entropy at
their 50 end and are short (<16 nt) or long (>25 nt).

Interestingly, the length bias for these smRNAs is more
marked in the brain data than in the skin data, but the
entropy bias is consistent between tissues. The snRNAs do
not have many discriminative features in the skin data set,
but in the brain, they seem to preferentially produce
shorter RNAs. Transposon-derived RNAs show low pos-
itional entropy—suggesting that their cleavage positions
tend to be consistent. They also seem to be depleted of
miRNA-length products (22–24 nt) while being enriched

Figure 4. smRNA-seq reads plotted on the predicted RNA secondary structures using SAVoR (14) for (a) an miRNA, (b) a C/D box snoRNA and
(c) a transposon-derived RNA. The miRNA and C/D box snoRNA structures are as reported by RFAM, and the transposon-derived RNA structure
is as predicted by RNAfold.

L24-L30

nuc_G

nuc_AL20-L23

pos_entropy5p
nuc_C

an�sense

nuc_Tpos_entropy3p

mfe

L24
pos_entropy5p
nuc_C

L21-L23 nuc_A, nuc_G, nuc_T

L14-L20 L25-L30

mfe L14-L19(a) (b)

Figure 5. MDS based projections of the data for (a) brain and (b) skin. The three most discriminative classes are miRNA (yellow), C/D box
snoRNA (blue) and transposon-derived RNAs (grey).
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for shorter products (<19 nt) and having high MFE values
for their secondary structure (Figure 6).

We found the class-specific features were largely consist-
ent across the two tissues (human brain and skin) but
vary widely for the ncRNA classes under study.
For instance, lincRNAs show a propensity to produce
shorter RNAs (14–17 nt), with slightly longer RNAs
being produced in the skin data. Additionally, miRNAs
were broadly distinguished by the production of fragments
between 20 and 23 nt long, and this was consistent

between the two tissue types. They also display a strong
bias for low 50 positional entropy and high 30 entropy
(Figure 6). This mirrors what is already known about
lower variability of miRNA cleavage at the 50 end and
higher variability at the 30 end (27).
The scRNA-derived smRNAs demonstrated a broad

peak of discrimination at 27 nt for both tissue types,
with skin RNAs showing longer lengths. It has previously
been shown that Y RNA (a type of scRNA) fragments do
produce miRNA-like smRNAs, but their potential
function is still unclear (28). The scRNA-derived RNAs
are moderately consistent between the two tissue types,
but consistently show a preference for longer products
with high MFE values (Figure 6).
Similar to scRNAs, C/D box snoRNAs were found to

produce longer fragments. In both tissues, the positional
entropy at both ends of the resulting smRNAs tended to
be high, indicating a great degree of variability in cleavage
positions. The pattern for snRNAs was less clear because
their processing was highly inconsistent between the tissue
types, with the exception of the production of 14 nt frag-
ments, which was seen in both the brain and skin data sets
(Figure 6). This may be due to the heterogeneity in the
properties (especially structural) of RNAs that are collect-
ively referred to as snRNAs. In contrast, we found that
the features distinguishing transposable element-derived
smRNAs were almost entirely consistent between the
two tissues, with the most discriminative features being
high cleavage specificity, high MFE, smaller products
and the absence of miRNA-sized products (Figure 6).
Thus, determining the mechanism of transposon-derived
smRNA processing and their functions will likely be an
interesting future research direction.
To determine whether a subset of features was the most

useful for overall classification, we selected the first five
dimensions from the MDS analysis. This resulted in a
drop in overall accuracy of 8% (data not shown). This
suggests that although a small number of features
capture most of the differences between the classes,
many other features are still highly informative. More im-
portantly, results obtained from the original features are
more conducive to interpretation than a model that is only
generated based on a projection of the original features.

Validation of the classification models between data sets

To evaluate the robustness of our classification models,
we performed validation using independent data sets. To
do this, we trained RF models on the brain data and
applied them to the skin data and vice versa. Overall,
the models were found to work fairly well, showing an
accuracy of �80% in both cases (Table 3). This suggests
that patterns of smRNAs produced from ncRNAs are
generally consistent and mostly non-tissue specific.
However, we found that the degree of consistency varies
among the classes of smRNAs. The miRNAs, C/D box
snoRNAs and transposon-derived RNAs show the most
consistent results both within and between tissue types.
However, the lincRNA and snRNA classes display
tissue-specific patterns of smRNA processing (Table 3).
This is expected for lincRNAs, given their tissue-specific

Table 3. Comparison of training (cross-validated) performance of RF

models using the six ncRNAs studied in human brain and skin data

Brain Skin

CoRAL Baseline CoRAL Baseline

lincRNA
Count 13 34
Recall (%) 16 0 1 1
PPV (%) 62 0 38 2

miRNA
Count 397 465
Recall (%) 91 78 89 71
PPV (%) 88 43 86 42

scRNA
Count 93 41
Recall (%) 78 1 29 0
PPV (%) 81 7 49 0

C/D box snoRNA
Count 209 176
Recall (%) 94 14 88 5
PPV (%) 79 22 81 15

snRNA
Count 87 113
Recall (%) 28 1 57 1
PPV (%) 67 7 67 9

transposon
Count 187 361
Recall (%) 77 5 80 24
PPV (%) 74 15 77 28

Overall
Count 986 1190
Accuracy (%) 81 33 79 33

Count is the number of loci present in that ncRNA class. Baseline
performance is the performance obtained by randomly permuting the
labels 100 times while keeping the class sizes the same.

Table 2. Comparison of the performance of classification models

built on three classes of ncRNAs in the brain data

DARIO CoRAL

miRNA
REC (%) 90 94
PPV (%) 92 95

C/D box snoRNA
REC (%) N/A 88
PPV (%) N/A 91

tRNA
REC (%) 84 90
PPV (%) 81 87

Overall accuracy (%) 87 91
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patterns of expression. Besides tissue specificity, one other
potential reason why certain classes perform much better
across tissue types may be the number of loci present
within the tissues being used for analysis. As we are
using a fixed minimum of 15 reads mapping to each
locus, differences in overall expression between the tissue
types will result in a different number of loci in each class
(Supplementary Figure S4). Therefore, although the cross-
tissue classifier performs well overall, it is limited by not
only the number of loci in each class but also the consist-
ency in these numbers across the tissue types being
studied.
To further validate the robustness of the classifier when

applied to different data sets, we tested additional publicly
available smRNA-seq data sets for human liver and
muscle (Table 4). We restricted the classes to those repre-
sented by at least 10 loci in all four data sets (miRNA,
C/D box snoRNA and tRNA). For each pair of data sets,
we trained the model on one and tested on the other.
Overall, the accuracies (65–93%) suggest that the model
can classify across tissue types fairly well, conditional on
the training data set having high enough sequencing depth
to fully characterize the lower-abundance smRNAs. For
example, the liver data set has far fewer reads than the
others and thus performed poorest (<70%) when used as
the training data set. Despite this, the model was able to
classify liver smRNAs fairly well (77–93%) when tested on
the other tissue types. Overall, our results suggest that
CoRAL is a comprehensive and robust method for clas-
sifying RNAs using smRNA-seq data sets.

CONCLUSIONS

Patterns of cleavage in human ncRNAs appear to be non-
random and reflect specificity in the processes that
produce smRNAs from the corresponding precursors.
This is despite the fact that the classes of ncRNAs
studied here are defined based on differing criteria
(sequence homology, secondary structure homology, bio-
logical function, cellular localization and transcript
length). Although it is unknown whether these fragments
or the cleavage of the precursors have any biological func-
tions, the non-random nature of the cleavage events hints
at some role.

We also found that the classification features that
distinguished each class of ncRNA are generally consist-
ent across tissue types in humans, suggesting there are

Figure 6. Selected features in each of the two data sets (as specified) for the six-class classifier: antisense expression (antisense), 50 and 30 smRNA
positional entropy (pos_entropy5p and pos_entropy3p), nucleotide preference (nuc_A, nucC, nuc_G and nuc_T), MFE value and the smRNA length
features from 14 to 30 nt (L14–L30). The sign of the value indicates whether the feature was larger (positive) or smaller (negative) within that class,
on average, than the other classes (by difference of means).

Table 4. Accuracy results for training classifiers on one tissue type

and testing on another using the three-class model (miRNA, C/D

box snoRNA, tRNA)

Test

Brain Skin Liver Muscle

Train Brain 91%a 87% 93% 91%
Skin 81% 89%a 81% 90%
Liver 71% 67% 93%a 92%
Muscle 63% 67% 93% 100%a

aTraining accuracy.
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as yet unknown biological pathways regulating their bio-
genesis. We also demonstrated that some types of
ncRNAs show more tissue specific properties (lincRNAs,
scRNAs and snRNAs). However, the other three RNA
classes (miRNAs, C/D box snoRNAs and transposon-
derived RNAs) are highly reproducible and consistent
across two of the tissue types (brain and skin) tested in
our study.

As compared with previous work like DARIO, one of
the significant contributions of CoRAL is the develop-
ment of biologically interpretable features such as
fragment length, cleavage specificity and antisense tran-
scription, which are able to capture the essence of
ncRNAs (i.e. how they are processed into smaller frag-
ments). It seems likely that the features revealed by
CoRAL can serve as a basis for further exploration and
validation.

The ability of CoRAL to consistently annotate loci
between tissue types suggests that it may be useful in
annotating ncRNAs in other organisms and even more
tissue types using only smRNA-seq data. Thus, it will be
a powerful tool for the annotation of future non-coding
transcriptomes in this era of genomic progress, which
complements other currently available comparative
genomics methodologies. Our approach may even outper-
form homology-based methods, given the lower homology
owing to compensatory evolution in many classes of
RNAs (29).

SOFTWARE AVAILABILITY

The CoRAL source code, required genome annotation
files, and prediction results are available at http://
wanglab.pcbi.upenn.edu/coral.
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