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Abstract

Objective

To interrogate the pathogenesis of intrauterine growth restriction (IUGR) and apply Artificial

Intelligence (AI) techniques to multi-platform i.e. nuclear magnetic resonance (NMR) spec-

troscopy and mass spectrometry (MS) based metabolomic analysis for the prediction of

IUGR.

Materials and methods

MS and NMR based metabolomic analysis were performed on cord blood serum from 40

IUGR (birth weight < 10th percentile) cases and 40 controls. Three variable selection algo-

rithms namely: Correlation-based feature selection (CFS), Partial least squares regression

(PLS) and Learning Vector Quantization (LVQ) were tested for their diagnostic perfor-

mance. For each selected set of metabolites and the panel consists of metabolites common

in three selection algorithms so-called overlapping set (OL), support vector machine (SVM)

models were developed for which parameter selection was performed busing 10-fold cross

validations. Area under the receiver operating characteristics curve (AUC), sensitivity and

specificity values were calculated for IUGR diagnosis. Metabolite set enrichment analysis

(MSEA) was performed to identify which metabolic pathways were perturbed as a direct

result of IUGR in cord blood serum.

Results

All selected metabolites and their overlapping set achieved statistically significant accura-

cies in the range of 0.78–0.82 for their optimized SVM models. The model utilizing all metab-

olites in the dataset had an AUC = 0.91 with a sensitivity of 0.83 and specificity equal to

0.80. CFS and OL (Creatinine, C2, C4, lysoPC.a.C16.1, lysoPC.a.C20.3, lysoPC.a.C28.1,

PC.aa.C24.0) showed the highest performance with sensitivity (0.87) and specificity (0.87),

PLOS ONE | https://doi.org/10.1371/journal.pone.0214121 April 18, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bahado-Singh RO, Yilmaz A, Bisgin H,

Turkoglu O, Kumar P, Sherman E, et al. (2019)

Artificial intelligence and the analysis of multi-

platform metabolomics data for the detection of

intrauterine growth restriction. PLoS ONE 14(4):

e0214121. https://doi.org/10.1371/journal.

pone.0214121

Editor: Olivier Baud, Hopital Robert Debre, FRANCE

Received: May 16, 2018

Accepted: March 7, 2019

Published: April 18, 2019

Copyright: © 2019 Bahado-Singh et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The IUGR

metabolomics data have been deposited to

MetaboLights Archive (https://www.ebi.ac.uk/

metabolights/MTBLS860) via the MetaboLights

partner repository with the data set number

MTBLS860.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-9991-0554
http://orcid.org/0000-0001-6874-168X
http://orcid.org/0000-0001-7500-4661
https://doi.org/10.1371/journal.pone.0214121
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214121&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214121&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214121&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214121&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214121&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0214121&domain=pdf&date_stamp=2019-04-18
https://doi.org/10.1371/journal.pone.0214121
https://doi.org/10.1371/journal.pone.0214121
http://creativecommons.org/licenses/by/4.0/
https://www.ebi.ac.uk/metabolights/MTBLS860
https://www.ebi.ac.uk/metabolights/MTBLS860


respectively. MSEA revealed significantly altered metabolic pathways in IUGR cases. Dys-

regulated pathways include: beta oxidation of very long fatty acids, oxidation of branched

chain fatty acids, phospholipid biosynthesis, lysine degradation, urea cycle and fatty acid

metabolism.

Conclusion

A systematically selected panel of metabolites was shown to accurately detect IUGR in new-

born cord blood serum. Significant disturbance of hepatic function and energy generating

pathways were found in IUGR cases.

Introduction

Fetal growth restriction (FGR) or alternatively Intrauterine growth restriction (IUGR) refers

to inadequate fetal growth due to pathological reasons [1]. This is a common pregnancy com-

plication. In the U.S.A. the diagnosis is based on an estimated fetal weight (EFW) less than the

10th percentile for gestational age. While other prenatal assessments are frequently used, for

example Doppler, amniotic fluid volume, or a small abdominal circumference, they are cur-

rently not required to make the diagnosis. Ultimately, the gold standard is confirmation of a

birth weight less that the 10th percentile for gender, ethnicity, and gestational age, termed

small for gestational age (SGA). IUGR is associated with increased risk of stillbirth, and perina-

tal morbidity and mortality [2]. The increased risk extends into childhood and adulthood and

include obesity and vascular disorders such as coronary artery disease [3].

A significant percentage of fetuses and newborns with an estimated fetal weight (EFW) or

birthweight below the 10th percentile is small for non-pathological or constitutional reasons

which is not associated with increased adverse outcomes. Neither current prenatal evaluation

techniques nor birthweight percentile adequately distinguish pathological from constitutional

small stature. False positive diagnosis i.e. mistaking constitutional small stature for IUGR may

be associated with a host of negative consequences including unnecessary fetal testing, and

pregnancy interventions that could culminate in iatrogenic prematurity. Current tests for

IUGR determination lack sufficient diagnostic accuracy.

Metabolomics has the potential to both generate novel biomarkers for IUGR, distinguish

constitutional small stature from IUGR, and provide new insights into its pathogenesis. While

there are limited data on metabolomic profiling in IUGR, small available studies suggest excel-

lent accuracy for discriminating IUGR from appropriate for gestational age fetuses [4]. In

addition, information on the metabolic disturbance involved in IUGR [5] has been generated.

Machine learning or artificial intelligence (AI) refers to the ability of computers to ‘learn’

from past experience and apply lessons learned to new data-set without the need for prior

explicit programming. Artificial Intelligence (AI) models therefore emulate human learning

and decision-making [6] Thus, from a prior data-set of ’experience’ accurate classifications

and predictions can be made [7] Specifically, the computer programs are able to generate mod-

els that predict the likelihood of given outcomes and identifies and clarifies contributory fea-

tures associated with or that gives rise to the outcome of interest and hence pathogenic data.

The unprecedented advances in metabolomic instrumentation accompanied by the genera-

tion of large volumes of data requires the parallel development of state of the art analytic tech-

niques [8].

Metabolomics analysis of intrauterine growth restriction
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Machine learning techniques are better able to handle the high volume of data generated

from a relatively limited number of subjects commonly encountered in systems biology, for

example genomic sequencing. The approach improves identification of important features of a

data set, model performance and the understanding of the significance of such data compared

to traditional analytic approaches [9].

Preliminary results suggest high accuracy for biomarker prediction of disease states and

improved insights into disease biology [8].

There has been limited utilization of AI to analyze genomic data. So far however there are

very few studies that use machine learning techniques for analysis of metabolomic data. An

integrated analytic method using NMR-based blood metabolomics and least squares-support

vector machine reported high predictive accuracy for the detection of major depression [10].

An area under the receiver operating characteristics curve (ROC) of 0.96 was achieved for

depression prediction. Deep neural network, a form of machine learning was found to be sig-

nificantly superior to multivariate classification methods such as principal component analysis

(PCA) and partial least squares (PLS) methods that are currently routinely used [11] Using a

novel approach we combined 1H NMR and direct injection coupled with liquid chromatogra-

phy tandem MS (DI-LC-MS/MS) based metabolomic analyses along with multiple machine

learning approaches to predict IUGR and to help elucidate the biology of this disorder. Fetal

tissue, represented by cord blood obtained immediately after birth, was used for analysis.

Material and methods

Study population and sample collection

A total of 40 pregnant women with suspected IUGR, confirmed at the time of delivery with a

birthweight <10th percentile for the appropriate gestational age and 40 maternal age-matched

controls with uncomplicated term pregnancies were included in this study (S1 Table). Institu-

tional Review Board (IRB) approval was provided by William Beaumont Hospital (approval

#2015–136). Following written consent, venous cord blood samples were collected within the

20 minutes of delivery before the placenta was delivered. At the time of sample collection,

venous blood gasses were analyzed from each sample and were found to be with normal pH

range suggesting no acute fetal metabolic or respiratory acidosis. Blood samples were centri-

fuged at 3,000 g and serum was aliquoted (0.5 ml) and stored at -80˚C freezer within 1 hour.

Complicated pregnancies with multiple fetuses and congenital anomalies were excluded from

the study. The percentile of growth for each IUGR case and control was confirmed after the

delivery with the assessment of infant’s birth weight. Further, we performed subgroup analysis

on fetuses with birth weight <5th %ile. There were15 cases (<5th % ile) and 65 controls (�5th

% ile).

1H NMR sample preparation and data acquisition

Serum specimens were prepared as described by Mercier et al., (2011) [12]. In brief, in order

to remove any residual glycerol 3 KDa cut-off centrifugal filter units (Amicon Microcon YM-

3; Sigma-Aldrich, St. Louis, MO) were seven times rinsed through centrifugation (12,000 g for

30 min) using 0.5 ml of H2O. Subsequently, 250 μl of serum was transferred to the filter units

and centrifuged at 13,000 g for 30 min at 4˚C. 200 μl of filtered serum was mixed with 25 μl of

D2O and 21 μl of a standard buffer solution consisting of 11.7 mM DSS [disodium-2,2-

dimethyl-2-silapentane-5-sulphonate], 1.75 M K2HPO4, and 5.84 mM 2-chloro pyrimidine-

5-carboxylic acid (phasing standard) in H2O. Using an Eppendorf liquid handler, 200 μl of the

final solution were transferred to 3 mm NMR tubes for NMR data collection.

Metabolomics analysis of intrauterine growth restriction
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All 1H-NMR metabolomics data were collected on a Bruker Avance III HD 600 MHz spec-

trometer coupled with a 5 mm TCI cryoprobe (Bruker-Biospin, Billerica, MA, USA) at 300.0 K

(±0.05). All 1D 1H NMR spectra were randomly acquired using a pulse sequence developed by

Ravanbakhsh et al.[13]. Two hundred and fifty-six transients were acquired. Chemical shifts

are reported in parts per million (ppm) of the operating frequency. DSS was chosen as the

internal standard for chemical shift calibration and metabolite quantification All collected

spectra were analyzed using a custom library of 58 metabolites using Bayesil [13].

Combined Direct Injection and LC-MS/MS (DI-MS) compound

identification and quantification

A comprehensive description of this analysis has been described by our group previously [14].

Briefly, an AbsoluteIDQ p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) was used on

a TQ-S mass spectrometer coupled to an Acquity I Class ultra-pressure liquid chromatography

(UPLC) system (Waters Technologies Corporation, Milford, MA, USA) for targeted analysis.

The system provides the accurate quantification of up to 180 endogenous metabolites consist-

ing amino acids, acylcarnitines, biogenic amines, glycerophospholipids, sphingolipids, and

sugars. Serum samples were analyzed using the protocol described in AboluteIDQ manual.

Data processing

The workflow for data processing as depicted in Fig 1 was used to develop inclusion/exclusion

criteria for variables with missing values or concentration values below the limit of detection.

A metabolite was conservatively excluded if it had missing data in >50% of each group. For

all other metabolites, missing measurements were imputed with zero filing. To account for the

Fig 1. Study design from data preprocessing through performance evaluation.

https://doi.org/10.1371/journal.pone.0214121.g001
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variation due to dilution effect sum-to-one normalization for each sample was applied, which

was followed by z-score normalization for each metabolite. This ensures all values were

mapped to a standard scale safeguard compatibility. Finally, principal component analysis

(PCA) was performed on the normalized data to identify any potential outliers.

Feature selection

We performed feature selection analysis on the two groups of cases and corresponding controls:

birthweight (<10th ile and<5th %ile), to develop statistical models for prediction of IUGR. To

reduce the number of metabolites being used to develop the predictive model, a variety of tools

were employed, each offering a different statistical approach. In doing so, we aimed to find the

most informative fifteen features (metabolites) and to determine if a consensus exists between

the different feature selection algorithms. Initially, we applied learning vector quantization

(LVQ) after discarding highly correlated metabolites using the CARET package in R [15]. Sec-

ondly, we employed a correlation-based feature selection (CFS) algorithm [16]-a WEKA [17]

tool. As for the third approach, we used Partial Least Squares Discriminant Analysis (PLS-DA)

to identify the top fifteen important metabolites capable of distinguishing IUGR cases from con-

trols. We then compared the resulting metabolite sets from each method to determine if there is

a common set or a consensus that warrants further investigation.

Incorporating clinical information

Maternal race, age, medical disorder, gravidity, and prior IUGR made up the clinical data

available. These were mapped to the same scale as the metabolomic data and we evaluated

their performance in combination with the optimal metabolite panel.

Support vector machines and parameter optimization

Support Vector Machine (SVMs) classification is a machine-learning algorithm, prominent

for its robustness and capability in handling both linear and non-linear data. In this study, we

adopted a radial basis function (RBF) as the kernel function which is more practical [18]. How-

ever, both RBF and the SVMs parameters were identified following an exhaustive search. This

included finding the best γ for RBF in Eq 1 where x and y represent feature vectors for two

data points.

Kðx; yÞ ¼ expðgkx � yk2
Þ ð1Þ

Additionally, we needed to determine the optimum C value, which is the penalty parameter

in the SVM formulation.

In this current work, we used Scikit-learn [19], a machine-learning library in Python and

performed our exhaustive search to obtain the best C-γ pair on a grid that was laid on expo-

nentially varying C and γ values, i.e., C 2 [e+01, to e+5] and γ 2 [e-01, e-06]. More specifically,

we employed a 10-fold cross validation for all thirty C-γ combinations, aiming for the highest

accuracy, which is the ratio of truly predicted samples as described in Eq 2 below.

accuracy ¼
TPþ TN

TPþ TN þ FP þ FN
ð2Þ

Performance evaluation for SVM models

To assess the performance and the significance of the optimized the model, we performed a

permutation test (1000 iterations). Permutation testing basically shuffles the class labels and

uses the same set of metabolites in the 10-fold cross validation. Distribution of prediction

Metabolomics analysis of intrauterine growth restriction
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accuracies were used to assess the significance of the optimized model. As the final step, we cal-

culated true/false positives and true/false negatives for each round of our 10-fold cross valida-

tion to report average sensitivity (TP/P) and specificity (TN/N) values along with the average

of the area under the curve (AUC).

Metabolite set enrichment and network analysis

Using metabolite set enrichment analysis (MSEA;MetaboAnalyst (v 3.0) [20] we analyzed the

raw data to identify any metabolic pathways which may have been significantly perturbed due

to IUGR. In this workflow the Homo sapiens (human) pathway library was chosen and all of

the compounds in the selected pathways were used when referencing the specific metabolome.

MSEA directly examines if a group of functionally related metabolites are considerably

enriched, with no preselection of compounds based on some arbitrary cut-off value. Poten-

tially, it can identify "subtle but consistent" changes among a group of related compounds,

which may go undetected using conventional approaches [20]. Multiple comparisons were

carried out using the more stringent Holm adjusted p-values.

Results

A total of 40 IUGR cases (<10th %ile) and 40 maternal age-matched controls (�10th %ile) with

uncomplicated pregnancies were included in the study which is reduced to be 39 cases and 39

controls after outlier detection. We accurately identified and quantified 58 metabolites using
1H NMR and 180 metabolites using DI-LC-MS/MS. Some overlap was observed across the

two platforms when measuring metabolite concentrations (n = 24) and as a result we took the

average of both measurements for our analyses. Not all recorded metabolites were found to be

above the LOD and as such we ended up using a total of 207 metabolites. Using PCA we iden-

tified one subject from each group to lie outside the 95th percentile and excluded them from

further analyses (S1 Fig).

Table 1. represents the metabolite panels sorted in descending order of importance for each

feature selection method used i.e., CFS, PLS, and COR-LVQ. The last column lists the overlap-

ping (OL) metabolites identified as being important in all three methods. For each feature set,

we performed a 10-fold cross validation to optimize C-γ pairs among which we report the best

pairs (S2 Table). Among the three methods, the CFS and PLS features led to better average

accuracy rates (0.80) with standard deviations of 0.15 and 0.14, respectively. While the entire

metabolite set was able to reach an accuracy of 0.77, the OL set of metabolites demonstrated

the best performance in terms of average accuracy. Regardless of the choice of feature set,

model accuracies were found be to be statistically significant (p<0.05) using permutation test-

ing (Fig 2A).

Sensitivity and specificity values were calculated for all models and are listed in S2 Table.

Using a 10-fold cross validation method we report each model evaluation as averages and stan-

dard deviations (n = 10 rounds). In Fig 2B we present a ROC curve for the common set of

metabolites which has an AUC = 0.88 with σ = 0.12. We summarized the performance mea-

surements for all variable selection methods in Fig 3 (average AUC = 0.87–0.91). We found

that the CFS selected metabolite panel has the highest AUC (= 0.90) with sensitivity = 0.87 and

specificity = 0.83. However, the OL panel demonstrates the best performance in terms of the

average specificity, thus demonstrating its capacity to correctly classify negative instances with

low FP rate. While the COR-LVQ had the lowest average specificity = 0.79, the model based

on all metabolites did not outperform PLS, CFS, nor OL Further, we found that the variance

observed for each of the average AUC values is substantially less than that of the associated

specificity and sensitivity values.
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Finally, we incorporated all the available clinical data into our model to include prior his-

tory of IUGR, maternal age, gravity and race and evaluated the prediction performance of the

model using a 10-fold cross validation. A combination of the OL metabolites and the clinical

information did not perform as well as the metabolite only model with an AUC = 0.64 (high

standard deviation = 0.21). Clinical data alone produced an AUC = 0.54 (p = 1.0). These results

indicated that metabolites by themselves performed better than some standard clinical risk fac-

tors for predicting IUGR.

In addition to analysis above, we used the same approach to predict severe IUGR cases <5th

ile. We were able to develop highly accurate models. The performance metrics of each

Table 1. Selected metabolites as identified using CFS, PLS-DA, COR-LVQ and their common compounds.

Feature selection schemes

Metabolite Panel CFS PLS COR-LVQ OL

Creatinine lysoPC.a.C16:1 Creatinine Creatinine

C14 C2 lysoPC.a.C16:1 C2

C2 Creatinine lysoPC.a.C20:3 C4

C4 lysoPC.a.C18:2 C2 lysoPC.a.C16:1

lysoPC.a.C16:1 lysoPC.a.C18:1 lysoPC.a.C18:2 lysoPC.a.C2:.3

lysoPC.a.C18:1 lysoPC.a.C20:3 C4 lysoPC.a.C28:1

lysoPC.a.C20:3 PC.aa.C24:0 C12:1 PC.aa.C24:0

lysoPC.a.C20:4 C6.C4:1.DC. EDTAca_N

lysoPC.a.C28:1 C4 C6.C4:1.DC.

PC.aa.C24:0 C10:1 Taurine

PC.aa.C36:4 C16:1 C16:2

PC.aa.C38:4 C12:1 C0

PC.aa.C42:4 C12 Putrescine

EDTAca_N C0 PC.aa.C24:0

Creatine lysoPC.a.C28:1 lysoPC.a.C28:1

CFS: correlation-based feature selection, PLS: Partial least squares regression. COR-LVQ: Correlation based Learning Vector Quantization earning. O: Overlapped

panel

https://doi.org/10.1371/journal.pone.0214121.t001

Fig 2. A) ROC with AUC values, B) permutation test obtained from the OL set.

https://doi.org/10.1371/journal.pone.0214121.g002
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statistical model and selected panel of metabolites based on OL modeling can be found in S3

Table. We found that the PLS and COR-LVQ selected metabolite panels achieved the highest

accuracy with: AUC = 0.90. Using the CFS panel a sensitivity of 1.0 and specificity of 0.88 was

achieved. The COR-LVQ selected metabolite panel yielded the highest specificity = 0.93 with a

sensitivity of 0.92.

Fig 3. Performance evaluation in terms of sensitivity, specificity, and AUC for all metabolite panels obtained different variable selection algorithms.

https://doi.org/10.1371/journal.pone.0214121.g003
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Metabolite set enrichment and network analysis

Metabolite set enrichment analysis (MSEA) showed multiple metabolic pathways that were

significantly dysregulated in IUGR cord blood (p-<0.05). Table 2 presents each perturbed bio-

chemical pathway with number of metabolite hits, p-values, holm-adjusted p-values and false

discovery rates. The column “total” represents the total number of metabolites involved in a

particular metabolic pathway. The column “hits” indicates the number of metabolites in that

particular pathway found to have significant concentration changes in the cord blood. Path-

ways with the highest number of hits and a significant Holm p-values are the most significantly

perturbed in IUGR. Fig 4 highlights the fold enrichment which is obtained when using the raw

Table 2. Pathway analysis of intrauterine growth restriction.

Metabolite Set Total+ Hits^ P value Holm P� FDR

Beta oxidation and very long fatty acids metabolism 14 4 0.00007 0.0034 0.0034

Oxidation of branched chain fatty acids metabolism 14 3 0.00032 0.0014 0.0079

Fatty acid metabolism 19 2 0.012 0.044 0.0155

Phospholipid biosynthesis 13 4 0.018 0.002 0.0245

Urea cycle 15 3 0.032 0.04 0.0493

Methionine Metabolism 24 8 0.042 0.046 0.0490

Lysine degradation 18 1 0.046 0.05 0.0550

Tryptophan metabolism 34 2 0.049 0.05 0.0630

+ Total number of metabolites in given pathway

^ Number of significant metabolites (p<0.05) (FGR vs controls) in given pathway

� Holm-Bonferroni Method is used

https://doi.org/10.1371/journal.pone.0214121.t002

Fig 4. Bar graph: altered pathways in enrichment analysis showing top fifteen metabolic pathways perturbed upon IUGR.

https://doi.org/10.1371/journal.pone.0214121.g004

Metabolomics analysis of intrauterine growth restriction

PLOS ONE | https://doi.org/10.1371/journal.pone.0214121 April 18, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0214121.t002
https://doi.org/10.1371/journal.pone.0214121.g004
https://doi.org/10.1371/journal.pone.0214121


concentration data over conventional metabolic pathway analysis. The color intensity corre-

lates with the level of statistical significance of each pathway while the length of each bar repre-

sents the fold enrichment of each pathway when cases are compared to controls based on the

quantitative concentration data. The p-values of pathways were determined by the difference

of concentration data and the number of participating metabolites. Fig 4 thus visually portrays

the metabolic pathways that were disproportionately affected (over-represented). The top

three most significant pathways included: beta oxidation of very long chain fatty acids, oxida-

tion of branched chain fatty acids and phospholipid metabolism. In addition, lysine degrada-

tion, urea cycle, phospholipid biosynthesis, tryptophan metabolism, and fatty acid metabolism

were also significantly perturbed.

Discussion

We evaluated for the first time the combined use of 1H NMR and DI-LC-MS/MS for biochem-

ical profiling of cord blood serum, representing fetal metabolism, from IUGR patients and

compared them with controls. We performed our analysis based on birth weight <10th ile

which is the current clinical criteria for the management of IUGR. However, in order to vali-

date the strength of our metabolite modeling, we also performed subgroup analysis for severe

IUGR (birth weight <5th ile) which were also supported the value of our predictive modeling.

Briefly, we have exhaustively evaluated numerous variable selection techniques to identify the

most robust panel of potential metabolite biomarkers for the detection of IUGR in cord blood

serum using support vector machine learning algorithms. Previous studies have attempted to

do this but have been limited in their approach (using 1H NMR or tandem MS alone) [21, 22].

To identify the most informative and robust metabolite panel for the confirmation of IUGR at

birth, we began with a comparative approach which used all recorded data/metabolite concen-

trations. We performed a 10-fold CV to optimize the SVM parameters where accuracy or true

prediction ratio was the single criterion. Our parameter space was logarithmically designed

and exhaustively visited to seek the best accuracy. This is common practice when optimizing

SVM models.

We performed SVM immediately after the preprocessing step and found that the complete

data set produced an average diagnostic accuracy of 77% (σ = 0.16) following a 10-fold CV. In

the subsequent experiments, we employed three different feature selection methods and used

the top 15 metabolites from each. We then noticed that even the lowest performing approach,

COR-LVQ, was able to reach 78% with a subset of only 15 features, which still outperformed

the model that utilized whole feature set.

In terms of AUC, the average AUC we got through CFS features was 0.91, which was the

highest performing of all the analytic approaches and showed the utility of a subset over all

available metabolites. We further observed the prediction power of those subsets of features

obtained through different approaches despite their slightly lower AUC values.

In this study we wanted to use metabolites which were common to all variable selection

methods to produce the most robust diagnostic algorithm. We found creatinine, acetyl carni-

tine (C2), butyryl carnitine (C4), three lysophosphatidylcholines (lysoPC.a.C16.1, lysoPC.a.

C20.3 and lysoPC.a.C28.1) and a phosphatidylcholine (PC.aa.C24.0) to overlap across all selec-

tion techniques and used these to develop our diagnostic algorithm. We repeated the CV steps

for optimizing the SVM parameters (average diagnostic accuracy = 88%, sensitivity = 0.83 and

specificity = 87) and demonstrate that this panel was the most accurate for diagnosing IUGR

in cord blood serum. By performing additional variable selection techniques, we believe that

we have developed the most robust and accurate biomarker panel for IUGR diagnosis using

metabolomics-based measurements in cord blood. One implication of this panel is that we
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actually achieved the goal of reducing the number of potential biomarkers, which is definitely

a cost-effective diagnostic approach in a hospital environment. It is also important to note that

while we evaluated two metabolite platforms metabolites measured using DI-LC-MS/MS were

found to be the most useful when developing the final diagnostic panel. The need for only a

single platform would be economically beneficial for clinical testing.

We incorporated standard clinical and demographic information in order to boost the per-

formance of our biomarker panel. The inclusion of these data however decreased the power of

our diagnostic model emphasizing that biochemical markers alone were independent and

accurate predictors of IUGR. While cord blood is not available in most clinical contexts, it is

possible that these panel of biomarkers identified in the cord blood serum, may also be present

in the maternal blood. This is because of the small molecular weights of metabolites and easy

diffusability into other fluid compartments such as maternal blood. The development of simi-

lar markers in maternal blood would aid prenatal diagnosis and interventions that could mini-

mize perinatal morbidities.

A majority of small for gestational age newborns, have constitutional small stature not asso-

ciated with increased perinatal morbidities. In contrast, pathological growth restriction which

increases the risk of perinatal morbidities and even death is often indistinguishable from con-

stitutional causes of small birth weight. There is significant scientific interest in determining

the cellular mechanisms of small size in the fetal period and at birth and in distinguishing

pathological from benign causes of poor fetal growth. Metabolomic analysis has the capability

of interrogating the cellular mechanisms and thus the potential pathogenesis of IUGR. Fig 4

visually portrays the metabolic pathways that were disproportionately affected (over-repre-

sented) or perturbed. The fetal liver plays a central role in many of these metabolic activities

e.g. bile acid, fatty acid synthesis metabolism. The cord blood analysis appears to indicate

abnormal fetal liver function. Significant changes in the liver reflected in small liver size and

abdominal circumference is a well-accepted feature of in-utero growth restriction [23]. Inter-

estingly, significant changes in phosphotidylcholines concentrations in cord blood have been

previously reported to be (S4 Table) positively correlated with birth weight [21]. Abnormal

lipid metabolism could be explained by chronic hypoxia and reduced levels of placental energy

substrates. Moreover, hypoxia can cause significant changes in lipid metabolism [24]. Metabo-

lite set enrichment analysis revealed perturbations in beta oxidation of very long chain fatty

acids and oxidation of branched fatty acids pathways (Table 2). Bartha and colleagues reported

(2012) significantly reduced levels of long-chain 3-hydroxyacyl-CoA dehydrogenase and fatty

acid oxidation capacity in placentas from women with preeclampsia, a disorder that is com-

monly associated with growth restriction [25]. However, in contrast to what we observed per-

turbations in beta oxidation of very long chain fatty acid would be expected to result in the

accumulation of long chain acylcarnitine with a relative decrease or absence of the short chain

acylcarnitine upon perturbation of beta oxidation of very long chain fatty. Metabolites are

known to be in a state of active flux and many pathways affect the levels of individual metabo-

lites. The elevation of short chain acetylcarnitines (C2, C4) is due to increased turnover of

TCA metabolites and their usage for gluconeogenesis, which leads to a decrease in oxaloacetate

levels and accumulation of acetyl-coA. Increased acetyl-coA leads to increased levels of acetyl-

carnitines and ketone bodies such as 3-hydroxybutyric acid and acetoacetate (S4 Table) as was

found in our findings. Hence, the contradictory findings of decreased long chain fatty oxida-

tion and elevated levels of short chain fatty acids and ketone bodies can potentially also be

explained by accumulation of acetyl-coA. However, these findings need to be validated by

future studies.

Ketone bodies are synthesized by the liver and are used as an energy source for the brain,

heart and kidney cortex in the absence of sufficient glucose. It has been shown that the
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diminishing supply of glucose forces the brain and heart to metabolize lactate and ketones as

their primary energy sources [26]. Whether decreased utilization of ketone bodies by other

organs such as muscle and kidney in order to enhance supplies to the brain during starvation

could increase blood levels, is an intriguing possibility.

A study by Huang et al. reported an increase in total phospholipid concentration in addi-

tion to individual phospholipid classes in the placental tissue from pre-eclamptic patients [27].

The elevated placental lipid profile in pre-eclampsia was highly associated with the placental

dysfunction, as such dysregulation of transport across the placental syncytiotrophoblast and

oxidative stress-induced lipid peroxide insult. Preeclampsia is one of the most significant

causes of IUGR [28] and further implicates dysregulation of phospholipid metabolism in the

development IUGR.

We also identified dysregulation of urea metabolism in IUGR in the cord blood. One might

expect lower urea concentrations in neonates and fetuses due to the smaller mass of muscle in

IUGR. Several studies have found evidence of impaired urea production in both IUGR neo-

nates and fetuses. [29] The liver plays an important role in urea production. Studies conducted

on fetal guinea-pigs with IUGR generated by unilateral uterine artery ligation found signifi-

cantly reduced hepatic urea cycle enzymes activity. The urea cycle enzymes are responsible for

the metabolism of ammonia which is toxic in elevated concentrations to urea. The ammonia

concentration in fetal liver slices were almost 16-fold higher than in the IUGR fetuses than in

controls [30]. Furthermore, a progressive decrease in urea production in the ovine IUGR fetus

in late gestation has been demonstrated [31].

Enrichment analysis further identified methionine metabolism to be significantly perturbed

in IUGR which is confirmed by previous studies done by MacKay et. al (2012) [32]. Methio-

nine is considered an essential amino acid and one of the key components of one-carbon

metabolism that through the ubiquitous methyl donor, s-adenosyl methionine, provides the

methyl groups for numerous methyl transferase reactions [33]. Changes to methyl group avail-

ability in utero can lead to epigenetic changes manifested by altered DNA methylation and

ultimately gene transcription. This has been implicated in "fetal programming", a phenome-

non associated with poor nutrition during fetal development that results in low birth weight

and disease in later life.

Finally, we found evidence of significant dysregulation in lysine degradation metabolism.

Perturbation of this metabolic cascade either by nutrient deficiency, or by nutrient, hormonal

and environmental interactions can have a profound impact on the cell function, metabolism,

growth and proliferation [34]. This may have a knock-on effect to the growing embryo and

subsequent fetus. Human fetuses with IUGR have reduced plasma concentrations of α-amino-

nitrogen, an overall measure of amino acid content, which appears to be caused by the lowered

concentrations of a number of essential amino acids [35]. It has been previously reported that

the activity of transporters for essential amino acids in human placentas obtained from IUGR

pregnancies was reduced [36] and could relate to the dysregulation in lysine degradation path-

way that we observed.

One of the main limitations of this study was the relatively sample size and that our findings

were not validated using an independent cohort. However, by applying 10-fold cross valida-

tion on the training data set we assured the generalizability of our findings to other data-sets.

Also, the inclusion criteria for IUGR was babies was birth weight <10th percentile which does

not sufficiently distinguish between constitutional from pathological causes of small fetuses/

newborns. Objective criteria such as subcutaneous fat assessment or body density measure-

ments for the determination of pathological IUGR could have enhanced the insights into the

metabolomic basis of growth restriction.
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Conclusion

In the current study we have for the first-time combined data acquired using 1H NMR and

DI-LS-MS/MS combined with several robust Artificial Intelligence approaches to identify bio-

markers for the detection of IUGR as determined by birth weight criterion. High predictive

accuracies were achieved. In addition, we provide unique and biologically plausible insights

into the metabolic basis of IUGR using actual fetal tissue i.e. cord blood obtained at birth.

There appeared to be marked disturbances in liver function which is consistent with evidence

from other approaches. We believe that metabolite markers as presented herein could have

future clinical utility for the diagnosis of IUGR if they are able to be identified prenatally in

maternal serum. Based on these results further work is warranted to validate these findings in

a much larger cohort.
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