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Micro-exons are a set of ultrashort exons with lengths ≤ 51 nucleotides.

Our previous study revealed that micro-exons were enriched in AP2

domains and K-box domains, which are crucial components of AP2/ERF

(APETALA2/ethylene-responsive element-binding protein) and MADS-box

(an acronym of MCM1, AGAMOUS, DEFICIENS and SRF) genes,

respectively. In this study, we analyzed micro-exons in the AP2/ERF family

from 63 species and demonstrated that 76.8% of micro-exons are concen-

trated in AP2 domains. Most micro-exons appeared in the AP2 subfamily

of all the terrestrial plants, but not algae. In addition, micro-exons and

AP2 domains are conserved and under negative selection. The MIKC gene

is a typical MADS-box gene family in terrestrial plants and includes one

MADS-box domain and one K-box domain. A total of 92.3% of micro-ex-

ons were observed in K-box domains, and two micro-exons usually

encoded a region of K-box domain, which is the key to MADS-box pro-

tein polymerization. Furthermore, the micro-exons of the K-box domain

had higher ratios of nonsynonymous mutations than those of the AP2

domains. Overall, here we explored the relationships and differences among

micro-exons in AP2/ERF and MADS families, and revealed potential func-

tional roles of micro-exons in these domains.

Introduction

Micro-exons are a class of exon with lengths no more

than 51 nucleotides, which exist in plants, insects,

mammals, etc. [1–3]. A previous study showed that the

dysregulation of the splicing level of human neural-

specific micro-exons was associated with autism [3]. In

our earlier work, we systematically identified micro-ex-

ons in rice and made a brief exploration of the struc-

ture and function of micro-exon genes by using RNA

sequencing (RNA-seq) data [4]. However, the role of

micro-exons in plants remains unclear. It is reported

that 58% of the micro-exons in rice are enriched in

functional domains, such as the AP2 domain and

K-box domain [4]. The AP2 domain and the K-box

domain are the crucial components of the

APETALA2/ethylene-responsive element-binding pro-

tein (AP2/ERF) family and the MADS family, respec-

tively. Both of them are key transcription factors in

the ABCDE model [5]. Therefore, the study of the

AP2/ERF gene family and the MADS gene family is

important to further comprehend the role of micro-ex-

ons in plants.

The AP2/ERF gene family is a large family of tran-

scription factors that are widely distributed in plants

and regulate the spatiotemporal specific expression of

genes. Recent studies have indicated that the AP2/ERF

genes play a certain role in many biological processes,
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such as plant growth and development, biotic stress

response, high salinity stress response and drought

stress response [6–8]. The AP2/ERF genes mainly exist

in plants, whereas genes containing AP2 domains are

also found in protozoa, such as Tetrahymena ther-

mophila and Apicomplexa [9,10]. Magnani et al. [11]

explored the origin of the AP2/ERF genes, suggesting

that the AP2/ERF genes in plants were associated with

HNH endonucleases in bacteria and viruses. The

sequence similarity of AP2 domains between HNH

endonuclease and AP2/ERF genes of plants was more

than 40%. According to phylogenetic analysis, they

speculated that the AP2/ERF genes of plants were

derived from horizontal moving of HNH endonuclease.

Supporting this hypothesis, the AP2/ERF genes were

found in the green algae, but not in red algae [11]. The

AP2/ERF genes have at least one AP2 domain, which

is generally composed of 60 to 70 amino acids with

DNA binding function. In line with the type and quan-

tity of functional domains, they are divided into four

subfamilies: ERF/DREB subfamily with only one AP2

domain, AP2 subfamily with two AP2 domains, RAV

subfamily with one N-terminal AP2 domain and one

C-terminal B3 domain, and other type of gene [7,12].

The ERF/DREB subfamily is the largest of the AP2/

ERF family containing few introns in its AP2 domain,

and the AP2 subfamily is the second largest subfamily.

Studies showed that the HNH endonuclease gene with

an AP2 domain could be replicated and transferred in

the genome like a transposon in bacteria, suggesting

that AP2/ERF genes originated from intron insertion

and impaired transposition/homing of the HNH

endonuclease genes [11]. As for the AP2 subfamily, it

suffered an extra tandem replication of AP2 domain.

Generally, the AP2 domains consist of one alpha helix

and three antiparallel beta sheets. These three beta

sheets contact with the major groove of the DNA dou-

ble helix and guide the DNA to follow the beta sheet,

while the alpha helix is composed of 18 core amino

acids and acts as protein-protein interactions [13].

Recent studies have revealed that some AP2/ERF genes

play crucial roles in regulation of oil biosynthesis, and

some key sites are exposed by site-directed mutation

experiments [7,14]. In addition, AP2/ERF genes are

regulated by post-transcriptional modifications, such as

phosphorylation and ubiquitination [8,15]. In contrast,

some studies have demonstrated that three AP2 sub-

family genes in Arabidopsis play a regulatory role in

the phyllotaxy development [16], SNB gene regulates

the transformation process from spikelet meristem to

floral meristem and participates in the formation of

inflorescence structures [17], and RSR1 gene regulates

the synthesis of starch in rice [18].

MADS (MCM1, AGAMOUS, DEFICIENS and

SRF) is abbreviated from the major members of the

gene family in yeast, Arabidopsis thaliana, snapdragon

and humans. The MADS-box gene family is a class of

transcription factor that exists in almost all eukary-

otes, such as fungi, plants and animals [19]. However,

there are only a few MADS genes in the fungal and

animal genomes, but up to 100 in flowering plants

[20]. MADS-box genes play regulatory roles in plant

growth and reproduction [5,21,22]. The typical feature

of the MADS-box gene family is the N-terminal

MADS-box domain that has 56–60 amino acids. The

earliest MADS gene was the ARG80 identified in Sac-

charomyces cerevisiae [23]. The MADS-box family is

divided into two types in plants: type I (M type),

which usually contains only one MADS-box domain

with DNA binding motif, is composed of a small num-

ber of exons; and type II (MIKC type), which includes

a MADS-box domain, an Intervening (I) domain, a

Keratin-like (K-box) domain and a C-terminal

domain, is typically constituted of 5–8 exons [5,24].

The MADS genes in plants are normally MIKC type,

and they have conserved functions, even in specific

species, some of which have acquired novel functions

during evolution [5]. In general, MADS-box proteins

function as a tetramer. When MADS-box domain

plays a role in DNA binding, the K-box domain is

involved in polymerization. The micro-exons are

mainly concentrated in the K-box domain, which has

approximately 80 amino acids. Based on sequence

studies, it is considered that the K-box domain con-

tained three segments of alpha helix, named K1, K2

and K3 [25]. The K-box domain is a coiled-coil struc-

ture, which might be related to protein-protein interac-

tion. Previous studies have illustrated that K1 and K2

are involved in DNA binding, while K3 is associated

with polymerization [25–27]. The three-dimensional

structure of the K-box domain in SEPALLATA3

(SEP3) protein had been determined by X-ray crystal

diffraction, and the results showed the K-box consist-

ing of two alpha helices [28]. Actually, the two

assumed alpha helix structures, K2 and K3, constitute

a long-chain alpha helix, and the K-box domain of

two homologous SEP3 proteins could be joined into a

tetramer by the second helix (K2 and K3). Studies

have revealed that MADS-box genes are involved in

floral organ differentiation and responded to a variety

of biotic and abiotic stresses [22]. Some genes are

related to the formation of meristem and flowering

time in rice, such as OsMADS14 [29]. OsMADS2 and

OsMADS4 genes regulate the development of stamen

and petal [30], and OsMADS25 and OsMADS27 genes

are involved in the response of osmotic stress [31].
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In this study, the AP2/ERF and MADS genes were

identified from multiple species (2 rice species and

another 61 species from Ensembl Plants). Based on the

species tree, we compared and analyzed the emergent

time and distribution of AP2/ERF genes, MIKC genes

and micro-exons. The evolutionary analysis was per-

formed on the AP2 domain and the K-box domain

sequences, respectively. We also focused on the rela-

tionship between the micro-exons and the protein

domains and explored the characteristics of the micro-

exons in the gene structures and functions. In addition,

the micro-exons were preliminary classified by the

position, length and Ka/Ks values of different types of

micro-exon, and their domains were calculated to

understand their characteristics in evolutionary selec-

tion.

Results

AP2/ERF gene family in plants

A total of 10,617 AP2/ERF genes were identified from

63 plant species, including Chlorophyta, Bryophyta

and Magnoliophyta. However, there was no AP2/ERF

gene in three of the algae species: Chondrus crispus,

Galdieria sulphuraria and Cyanidioschyzon merolae. In

general, the AP2/ERF genes are classified into four

subfamilies: AP2 subfamily, ERF/DREB subfamily,

RAV subfamily and others. Among the 60 species with

AP2/ERF genes, the ERF/DREB subfamily and the

AP2 subfamily are the first two largest subfamilies,

respectively (Table S1). Furthermore, we also observed

that 76.8% of the micro-exon regions overlapped with

AP2 domains, whereas other regions outside the

domains have only a few micro-exons (Table S2), sug-

gesting that the micro-exons may be associated with

the function of the AP2 domain.

We observed that there are 19 and 8 AP2/ERF

genes in algae Chlamydomonas reinhardtii and Ostreo-

coccus lucimarinus, respectively, whereas the other spe-

cies generally contained 100–300 AP2/ERF genes,

indicating that the AP2/ERF genes might appear dur-

ing the differentiation of the algae ancestors (about

1.66 billion years ago), and the number of genes grew

rapidly in terrestrial plants (about 1.16 billion years

ago) (\* MERGEFORMAT; Fig. 1A). Triticum aes-

tivum, Triticum dicoccoides and Brassica napus embod-

ied 566, 314 and 517 AP2/ERF genes separately

because of the different numbers of their polyploid

genomes (hexaploid, tetraploid and tetraploid, respec-

tively). Besides, some diploid species with normal gen-

ome size had a large number of AP2/ERF genes, such

as Musa acuminata and Glycine max. On the whole,

approximately 13% of the AP2/ERF genes contained

micro-exons. Among the five algae species, only

Chlamydomonas reinhardtii had six micro-exons in

their AP2 domains of AP2/ERF genes (\* MERGE-

FORMAT; Fig. 1A).

Phylogenetic analysis of AP2/ERF genes

To understand the characteristic of AP2/ERF genes in

rice, we extracted the AP2 domain sequences from all

of the AP2/ERF genes of Oryza sativa spp. indica

(MH63) for phylogenetic analyses. Considering that

the AP2 subfamily genes have two AP2 domains, they

are labeled as R1 and R2, respectively, according to

the position from the N terminus to C terminus. In

total, MH63 had a total of 141 AP2/ERF genes,

including 113 ERF/DREB, 22 AP2, 4 RAV and 2

other types of AP2/ERF subfamily gene. Like most

plant species, the ERF/DREB subfamily had the lar-

gest number of AP2/ERF genes. The AP2 subfamily

was the second largest, whose domains R1 and R2

were clustered separately on the phylogenetic tree

(Fig. 1B). But these two domains were still relatively

close in evolution compared with the AP2 domains of

other subfamilies. Besides the AP2 domains of two

ERF/DREB genes that had micro-exons, the other

micro-exons were in the two AP2 domains of the AP2

subfamily genes, which might indicate a relationship

between the micro-exons and the AP2 subfamily.

Based on the expression heatmap by RNA-seq data

of MH63 and Oryza sativa spp. indica (ZS97), some

genes in each subfamily had relatively higher expres-

sion levels (Fig. 1B). Besides, the AP2/ERF genes were

in tissue-specific expression , while the changes in tem-

perature or light conditions had a marginal effect on

the gene expression. In the phylogenetic tree, the AP2

domains of four ERF/DREB subfamily genes were

clustered together with the AP2 domains of the AP2

subfamily genes, while the RAV subfamily genes were

aggregated with other ERF/DREB subfamily genes.

These results demonstrated that the AP2 domains of

the ERF/DREB gene had the sequence diversity and

also had similar structures to the AP2 domains of the

RAV subfamily and the AP2 subfamily separately.

During further study for exploring and comparing

the gene structures of AP2/ERF genes, we selected 20

ERF/DREB subfamily genes, 22 AP2 subfamily genes,

4 RAV subfamily genes and 2 other types of AP2/ERF

gene from MH63 as examples (Fig. 1C). This showed

that the composition of the ERF/DREB subfamily

genes was diverse, which included single-exon genes,

genes consisting of several long exons and genes con-

taining multiple short exons. However, the ERF/DREB
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subfamily genes contained few micro-exons. Addition-

ally, the AP2 subfamily genes were more consistent in

composition than other subfamilies, and they had mul-

tiple short exons and generally included one to two

micro-exons. Furthermore, three RAV subfamily genes

were single-exon genes, whereas the other one had two

long exons. The coding sequence (CDS) regions of

these four genes were all in a single exon. It is worth

mentioning that the two AP2 subfamily genes,

MH06g612600 and MH05g27800 (RSR1), had similar

exon composition, but MH06g612600 had two micro-

exons in tandem, while MH05g27800 had one micro-

exon and one longer exon in the same position. Con-

sistent with this result, ZS97 also had these genes.

We then identified 10 motifs from all of the AP2/

ERF genes of MH63, and some genes of four subfami-

lies were selected to display and compare (Fig. 2A).

The results declared that most of the ERF/DREB sub-

family genes contained a tandem combination (Motif

5, Motif 2, Motif 1 and Motif 4), which covered the

AP2 domain. The genes not containing this motif com-

bination were closer to the AP2 subfamily in evolu-

tion. In addition, the AP2 subfamily genes typically

had a seven-motif tandem. The first three motifs

(Motif 5, Motif 8 and Motif 6) covered the first AP2

domain (R1), while the second three motifs (Motif 7,

Motif 1 and Motif 4) covered the other (R2), and

Motif 3 was in the spacer between the two AP2
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middle circle illustrates four subfamily types of AP2/ERF gene. The outside circle illustrates the gene expression level, the Z score of

log2(TPM + 1). From inside to outside, it represents gene expression in flag leaf, panicle, root and shoot, in high and low temperature and in

long and short daytime. (C) Gene structures of AP2/ERF genes in MH63. Forty-eight AP2/ERF genes from four subfamilies are shown by

different colors; blue, yellow and red indicate UTRs, CDSs and micro-exons, respectively.
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domains. We also observed that R1 had the same

Motif 5 as the one in the ERF/DREB subfamily, and

R2 had the same combination of Motif 1 and Motif 4

as that of the ERF/DREB subfamily, suggesting that

R1 and R2 might have the uniform origin as the AP2

domain of the ERF/DREB subfamily. This is in
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Fig. 2. The analyses of micro-exons and the AP2 subfamily. (A) Motif analysis of AP2/ERF genes in MH63. The genes from the 4

subfamilies are marked in 4 different colors, and 10 motifs are marked in 10 different colors. (B) Phylogenetic analysis of the AP2 subfamily

among nine species based on AP2 domains. The inside circle illustrates AP2/ERF genes in nine species, and the outside circle illustrates

micro-exon regions in AP2 domains. (C) Comparison of Ka/Ks values between micro-exons and AP2 domains. *** P <0.001. The blue color

represents Ka/Ks values of AP2 domains, and the orange color represents Ka/Ks values of micro-exons (R2M1), Wilcoxon signed-rank test,

one-sided, n = 266, P < 0.001.
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accordance with a previous evolutionary model of

AP2/ERF genes in plants [11]. Furthermore, the RAV

subfamily genes also had the same combination of

Motif 5, Motif 1 and Motif 4, while the two other

types of genes had the same motif combination as the

AP2 domain of the ERF/DREB subfamily.

For further study of the relationship between AP2

subfamily genes and micro-exons, we collected 134

AP2 subfamily genes from MH63, ZS97 and other

seven species for phylogenetic analysis. The results

revealed that most of the R1 and R2 domains in dif-

ferent species were clustered explicitly on the phyloge-

netic tree, respectively (Fig. 2B). Meanwhile, some R1

domains of Chlamydomonas reinhardtii, Zea may and

Solanum lycopersicum were in a block with the R2

domain of other species, and no micro-exons were

found in these domains, reflecting a close evolutionary

relationship.

Micro-exons in AP2 domains

According to the position and length of the micro-ex-

ons in the AP2 domains, there are three main types of

micro-exon in the R1 domain, which are 9, 26 and

31 bp and labeled as R1M1, R1M2 and R1M3,

respectively. There is only a 45-bp micro-exon in the

R2 domain, labeled as R2M1.

The micro-exons in the R1 domain had smaller

length than that in the R2 domain, and the R1M1

appeared only in the R1 domain. The tandem of

R1M2 and R1M3 and the R2M1 were generally paired

in the same type of AP2 subfamily gene. Hence these

genes could have analogical structures and functions.

Besides, there was another type of micro-exon located

in the upstream boundary of the R2 domains, and it

widely existed in many species, such as Physcomitrella

chinensis.

In fact, we discovered that the amino acid sequences

of R1M1 were highly conserved among multiple spe-

cies, and their corresponding nucleic acid sequences

were also consistent in lengths and positions in their

coding frame (Fig. S1). However, these sequences had

several synonymous mutations among the species, sug-

gesting that R1M1 was under a strong purification

selection during evolution. Moreover, the amino acid

sequence VYLG of R1M1 was also conserved in

R1M2 and R2M1, and tyrosine (Y) was predicted as a

DNA binding site [32]. It might reveal the role and sig-

nificance of the micro-exons in their conserved

sequences and functions of the AP2 domain. In addi-

tion, R1M2, R1M3 and R2M1 were merely found in

Arabidopsis, rice, maize and tomato, declaring that

these micro-exons may be generated in a relatively late

period. It was also found that such genes had high

expression levels, such as RSR1, a transcriptional fac-

tor regulating starch synthesis in rice.

We then calculated and compared the Ka/Ks values

of the micro-exons and their AP2 domain sequences.

Generally, it is believed that Ka/Ks > 1 means posi-

tive selection, Ka/Ks = 1 means neutral selection and

Ka/Ks < 1 means purification selection. We observed

that all of the Ka/Ks values of the four types of

micro-exon and AP2 domains were less than 1, indi-

cating that all of them were under purification selec-

tion. Furthermore, the sequences of R1M1, R1M2

and R1M3 mainly represented synonymous muta-

tions or complete uniformity among different species,

illustrating that the micro-exons in the R1 domain

were also under strong purification selection. In con-

trast, the Ka/Ks values of R2M1 were slightly higher

than that of the AP2 domains. It demonstrated

higher ratios of nonsynonymous mutations occurred

in R2M1 than that of the AP2 domains (Fig. 2C,

Wilcoxon signed-rank test, one-sided, n = 266,

P < 0.001).

MADS-box genes in plants

Apart from the analysis of AP2/ERF genes, we also

identified 2122 MIKC types of MADS gene from all

of the 63 species and found that most species had 20–
60 MIKC genes. Among the five algae species

(Chlamydomonas reinhardtii, Chondrus crispus, Cyanid-

ioschyzon merolae, Galdieria sulphuraria, Ostreococcus

lucimarinus), no MIKC genes were recognized. In

agreement with the results of the AP2/ERF family,

the MIKC subfamily genes were also concentrated in

Triticum aestivum (125 genes, hexaploid), Triticum dic-

occoides (60 genes, tetraploid) and Brassica napus (138

genes, tetraploid) because of their polyploid genomes.

Additionally, some diploid species, such as Glycine

max (85 genes) and Brassica rapa (79 genes), also had

an enormous number of the MIKC genes. However,

in terrestrial plants, Cucumis sativus and Daucus car-

ota had quite a small number of MIKC genes, which

had only six and five genes, respectively. Combining

the species tree of 53 species, the results suggested

that the MIKC genes might originate from the ances-

tor of terrestrial plants about 532 million years ago

(Fig. 3A). Besides, most K-box domains of the MIKC

genes contained two micro-exons, so the ratio of

micro-exons to MIKC genes in each species was close

to 2 : 1. The micro-exons of the MIKC genes (92.3%)

were enriched in the K-box domain, but only a few

micro-exons were outside the K-box domains

(Table S3).
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Phylogenetic analysis of MADS-box genes

To investigate the evolutionary relationship between

the micro-exons and the MIKC subfamily genes, we

collected the sequences of K-box domain from eight

species to construct a phylogenetic tree. The phyloge-

netic tree illustrated that the MIKC genes of Physcomi-

trella patens and Selaginella moellendorffii were less

abundant and accumulated only in several clusters,

whereas the MIKC genes of the other six species were

evenly distributed (Fig. 3B). This result indicated that

the MIKC genes of these six species had extensive cat-

egories and functions. Based on the gene symbol of

Arabidopsis and rice, the MIKC genes were classified

into 15 major subfamilies: SEPALLATA1 (SEP1),

SEP2, SEP3, AP1, AP3, OsMADS32, AGAMOUS

LIKE6 (AGL6), AGL12, AGL17, SHORT VEGETA-

TIVE PHASE (SVP), FLOWERING LOCUS C

(FLC), Bsister, AGAMOUS (AG)/SEEDSTICK (STK),

PISTILLATA (PI) and a class of undefined genes

(Table 1). Most subfamilies had two tandem micro-

exons at the C terminus of the K-box domain, except

AGL17, which had only one micro-exon at its corre-

sponding position. Additionally, there were also two

micro-exons in the N terminus of the MIKC genes.

Two types of MIKC genes existed in Physcomitrella

patens, including K-box domains with two micro-exons

and without micro-exons.

We further focused on the MIKC genes in MH63.

Based on the genomic annotation, we found that the

MIKC genes typically contained five to nine exons and

one to three micro-exons, most of which had various

lengths of UTRs (Fig. S2). In addition, the expressions

of MIKC genes were tissue specific, whereas the

expression differences were not significant under differ-

ent daytime or temperature conditions (Fig. 3C). The

genes in the same subfamily generally had a similar

expression pattern. Besides, we constructed two Neigh-

bor-joining (NJ) trees of MH63 based on MADS-box

and K-box domains separately, demonstrating that the

genes from the equal subfamily were clustered together

in both trees. However, we also observed that the
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clade of OsMADS32 was close to that of AGL12 in

the tree of K-box domains, but not in the tree of

MADS-box domains (Fig. 3C and Fig. S3).

Micro-exons in K-box domains

To determine the composition of the K-box domains,

we obtained 10 conserved motifs of the K-box domain

from the eight species by using MEME. Nine of these

motifs were found in MH63 (Fig. 4A). The K-box

domains were normally composed of three motifs in

tandem. Moreover, the K-box domains could be fur-

ther classified based on the various motifs. Motif 1

was more conserved in several types, and the Motif 2

mainly embodied Motif 1. But two genes of the K-box

domain have Motif 5, suggesting that Motif 5 is simi-

lar to Motif 1. In addition, Motif 2 mostly made up

the third motif of the K-box domains (Motif 2,

NQLLLEZIEELQRKEQLLQEENKDLRRKL). This

motif was present in approximately 73% of the K-box

domains and consisted of exactly two micro-exons in

tandem. Previous research has revealed that this region

is the key to the polymerization of MADS-box pro-

teins. Therefore, the sequences of the two micro-exons

may be closely related to polymerization.

In addition, we calculated the Ka/Ks values of the

two major types of micro-exon and the K-box

domains in the eight species. The results showed that

the K-box domains had lower Ka/Ks values than those

of the two types of micro-exon (Fig. 4B). We specu-

lated that higher ratio of nonsynonymous mutations

was in the micro-exons than that of the K-box

domains. In particular, the Ka/Ks values of the micro-

exons in some gene pairs were even higher than 1,

indicating a strong positive selection in evolution.

Besides, the results also revealed that the micro-exons

of Physcomitrella patens and Selaginella moellendorffii

possessed relatively low Ka/Ks values, whereas many

micro-exons of Arabidopsis thaliana had rather high

values (Fig. 4C).

Discussion

Our previous study revealed that micro-exons are con-

centrated in AP2 domains and K-box domains, corre-

sponding to the AP2/ERF family and MADS family

genes [4]. These genes are rarely found in algae but

wildly distribute in terrestrial plants. Some species

have a large number of genes because of polyploidiza-

tion.

AP2 subfamily genes are one type of AP2/ERF gene

containing two AP2 domains (R1 and R2). R1 clus-

tered with R2 in some species on the phylogenetic tree,

proclaiming the relationship between R1 and R2. The

motif analysis of AP2/ERF genes also suggested that

the two AP2 domains might derive from a single AP2

domain, consistent with a previous evolutionary model

[11]. Most micro-exons existed in AP2 subfamily

genes, although there were also AP2 subfamily genes

without micro-exons, especially in primitive species,

such as moss. This indicated that micro-exons might

emerge after the duplication of the AP2 domain. There

were several kinds of micro-exon in the two AP2

domains of AP2 subfamily genes. Some micro-exons

were widely distributed among terrestrial plants,

whereas other micro-exons were restricted to some

specific species, such as rice, maize and tomato. It is

speculated that micro-exons might appear in different

periods or they would lose in some species. Further

study showed that AP2 domains and micro-exons were

highly conserved, and the nucleotide sequences of

micro-exons were more conserved than that of AP2

Table 1. MIKC genes of MH63 and the corresponding gene

symbols.

Gene ID in MH63 CGSNL gene symbol TAIR gene symbol

MH01g0115100 OsMADS58 AG/STK

MH01g0577700 OsMADS32 OsMADS32

MH01g0730200 OsMADS2 PI

MH01g0733300 OsMADS21 AG/STK

MH02g0012700 – –

MH02g0074400 OsMADS29 ABS

MH02g0443900 OsMADS27 AGL17

MH02g0546200 OsMADS6/MFO1 AGL6

MH02g0600000 OsMADS57 AGL17

MH02g0626300 OsMADS22 SVP

MH03g0087600 OsMADS47 SVP

MH03g0114800 OsMADS1/LHS1 SEP1

MH03g0660600 – –

MH04g0256600 OsMADS25 AGL17

MH04g0449000 OsMADS26 AGL12

MH04g0595500 OsMADS17 AGL6

MH04g0626000 OsMADS31 ABS

MH05g0106500 OsMADS58 AG/STK

MH06g0016400 – –

MH06g0081500 OsMADS5 SEP1

MH06g0310100 OsMADS59 AGL17

MH06g0697000 OsMADS16/SPW1 AP3

MH07g0016900 OsMADS15/RAP1A AP1

MH07g0474300 OsMADS18 AP1

MH08g0018300 OsMADS26 AGL12

MH08g0423400 OsMADS23 AGL17

MH08g0528700 OsMADS7 SEP3

MH09g0414200 OsMADS24 SEP3

MH12g0114200 OsMADS33 AGL12

MH12g0114400 OsMADS13 AG/STK

MH12g0325000 OsMADS20 AP1
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domains. The results also revealed that micro-exons in

R2 had a relatively higher ratio of nonsynonymous

mutations than that of R1. Therefore, we considered

that the mutations of micro-exons in R2 might relate

to adaption of molecular function in various AP2 sub-

family genes.

WRI1, an AP2 subfamily gene, is a key regulator of

fatty acid synthesis. Also, the orthologs of WRI1

reveal a conserved 9-bp micro-exon encoding the

amino acids VYL [14]. Furthermore, Ji et al. [33] have

demonstrated that there are two isoforms of RcWRI1

in castor bean, one of which lacks three amino acid

residues VYL encoded by a 9-bp micro-exon, and it

appears to be more active than the other one. Actu-

ally, it has been reported that four WRI1 genes

(OsWRI1-1, OsWRI1-2, OsWRI3 and OsWRI4) are

found in Nipponbare. The OsWRI1-1 gene contains

GCL, while the OsWRI1-2 gene contains VYL, which

is encoded by a micro-exon [34]. The high activity of

OsWRI1-1 is verified in Arabidopsis, and amino acid
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Fig. 4. The analyses of the micro-exons and K-box domains. (A) The Motif analysis of K-box domains in MH63. The left tree demonstrates

the genes with or without micro-exons, the middle strips demonstrate different motifs in K-box domains, and the right chart demonstrates

the 10 motifs. (B) Comparison of Ka/Ks values between micro-exons and K-box domains. ***P < 0.001. The blue color represents Ka/Ks

values of K-box domains, the orange color represents Ka/Ks values of micro-exon (M1), and the green color represents Ka/Ks values of

micro-exon (M2); Wilcoxon signed-rank test, one-sided, n = 8515, M1 and the K-box domains: P < 0.001, M2 and the K-box domain:
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2572 FEBS Open Bio 10 (2020) 2564–2577 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Identification of micro-exons in two gene families Q. Song et al.



replacement or deletion would reduce its activity. We

found three WRI1 genes in MH63/ZS97, except

OsWRI1-1. It may be the difference between these two

subspecies, indica and japonica, and this difference

might lead to different regulations in fatty acid

synthesis.

MIKC genes are typical MADS-box genes in

plants, which contain a MADS-box and a K-box

domain, and micro-exons were concentrated on the

K-box domains. Among eight selected species, the

genes of Physcomitrella patens occurred in only one

subclade (means have one subfamily gene), whereas

the genes from other species generally contained sev-

eral subfamilies, indicating that the MIKC genes

might get a rapid differentiation both in sequences

and functions. Previous studies have reported that

these genes are crucial regulators of gametophytic

and embryo development in plants; for instance,

AGL80 and AGL61 genes could control the differenti-

ation of the central cell by forming a protein dimer

in Arabidopsis thaliana [5]. Besides, we compared the

phylogenetic trees of MH63 based on MADS-box

and K-box domains, and found that all of the sub-

clades were consistent, suggesting a good correspon-

dence of these two domains. In addition, MIKC

proteins function as a tetramer, and K-box domain is

related to polymerization. Our study discovered that

K-box domains were comprised of three motifs, and

the third one (K3) was the key role in polymerization

[25]. Also, K3 had two micro-exons, suggesting that

these two micro-exons might carry out this function

together. Furthermore, these two micro-exons had a

significantly higher ratio of nonsynonymous muta-

tions than that of the K-box domains, reflecting that

micro-exons were under positive selection among part

gene pairs of Angiospermae. It can be considered

that the micro-exons might gain broad sequence

diversity among Angiospermae and relate to the

novel functions. Further research is required to

understand the relationship between various functions

and the micro-exon sequences.

Overall, we explored micro-exons in the two related

gene families and revealed the relationship between

micro-exons and domains in function and evolution.

We then confirmed that the micro-exons were enriched

in the functional domains in plants, and they might

occur in different stages. Some types of micro-exon

were highly conserved as the domains, while some

others had high ratios of nonsynonymous mutations,

which might adapt to the gene diversity. This work

will facilitate the study of micro-exons in plants and

enhance our understanding of the relationship between

micro-exons and functional domains.

Materials and methods

Data collection

We collected all of the protein sequences and genomic

annotations of MH63 and ZS97 from Rice Information

GateWay (RIGW, http://rice.hzau.edu.cn/rice_rs1; version

RS1; accessed on July 4, 2016). Furthermore, the sequences

and genomic annotations of another 61 species from

Ensembl Plants (http://plants.ensembl.org; Release 43) were

downloaded. The RNA-seq data of MH63 and ZS97 were

obtained from our laboratory and used for gene expression

analysis [Illumina HiSeq 2000 Wuhan, Hubei province,

China, 101-nucleotide reads, pair end; four tissues (flag

leaf, panicle, seedling shoot and root)] under different con-

ditions: high temperature and long day, high temperature

and short day, low temperature and long day and low tem-

perature and short day. Each one had two replicates: high

temperature: 28–32 °C; low temperature: 22–25 °C; long

day: 14 h light and 10 h dark; short day: 10 h light and

14 h dark.

Identification of AP2/ERF and MADS-box genes

First, we collected all of the protein sequences in MH63,

ZS97 and another 61 species. As to the gene with multi-

ple transcripts, the longest protein sequence was chosen.

Then InterProScan was applied to search domains in the

sequences based on the Pfam database [32]. Depending

on different domains, the detailed methods were as fol-

lows.

AP2/ERF genes are a set of genes with AP2 domains.

The proteins with AP2 domains (PF00876) were identified

in all species. Generally, the AP2/ERF gene family can be

divided into four subfamilies in line with the number of

AP2 domains and some other domains: ERF/DREB sub-

family with only one AP2 domain, AP2 subfamily with two

AP2 domains, RAV subfamily with one AP2 domain and

one B3 domain, and the others with one AP2 domain and

other domains. Then the identified genes were classified

into the above four types of subfamily.

MADS-box genes usually contain a MADS-box domain

and a K-box domain in plants, which is known as the

MIKC subfamily. Actually, our previous research revealed

that micro-exons are mainly enriched in K-box domains.

Hence this study focused on the MIKC genes in plants. As

far as we know, the MADS-box domain is recorded as

SRF-type transcription factor (SRF-TF, PF00319) in the

Pfam database. The protein sequences containing one SRF-

TF domain and one K-box domain (PF01486) were

retained, and these genes were regarded as candidate MIKC

genes.

The last was the graphic display. According to the spe-

cies names of Ensembl Plants, we got 53 species tree and

divergence times from TimeTree (http://timetree.org/). Then
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we annotated the species tree by the number of the genes

and micro-exons in the domains.

Phylogenetic analyses of the two gene families

We constructed a phylogenetic tree of the AP2/ERF genes

through all the AP2 domain sequences of MH63. For the

AP2 subfamily, the two AP2 domains were labeled as R1

and R2 according to the order from the N terminus to the

C terminus. The sequences of all of the AP2/ERF genes in

MH63 were integrated into one file and aligned by using

Clustal Ω with the default parameters [35]. Based on the

aligned results, MAGE-CC (7.0.26) was applied to con-

struct the NJ tree by the Jones-Taylor-Thornton model

with 2000 bootstraps [36,37]. Then iTOL (https://itol.emb

l.de/) was used to annotate the phylogenetic tree [38]. Every

gene in the tree was annotated by the expression level, sub-

family classification and presence/absence of the micro-ex-

ons. To obtain the expression level of the AP2/ERF genes

in different tissues and conditions, we used HISAT2 [39] to

map the RNA-seq data of MH63 to its genome and used

StringTie [39–41] to assemble and generate the information

of transcriptome abundance based on the genome annota-

tion. The gene abundances [transcripts per million (TPM)]

were also calculated by StringTie. Because micro-exons

were concentrated on AP2 domains of the AP2 subfamily,

we gathered and analyzed the AP2 domain sequences in

nine species (MH63 and ZS97, Chlamydomonas reinhardtii,

Physcomitrella patens, Selaginella moellendorffii, Arabidopsis

thaliana, Solanum lycopersicum, Oryza sativa spp. Japonica

and Zea mays) for further studying the relationship

between the AP2 domains and the micro-exons. The genes

of these nine species were labeled by different colors, and

the locations of the micro-exons in the AP2 domains were

also marked in the phylogenetic tree. In addition, selected

ERF/DREB subfamily genes (20 genes), all of the AP2 sub-

family genes (22 genes), all of the RAV subfamily genes (4

genes) and other AP2/EFR genes (2 genes) were chosen to

display the gene structures based on genomic annotations,

of which the UTRs, CDSs and micro-exons were marked.

Besides, we also collected the sequences of all the AP2/ERF

genes in MH63 and predicted their motifs using MEME

(5.0.5). The parameter of the motif numbers was set to 10,

and the length was set to 6–50 amino acids [42].

As for MIKC genes, eight species (MH63 and ZS97,

Physcomitrella patens, Selaginella moellendorffii, Arabidopsis

thaliana, Solanum lycopersicum, Oryza sativa spp. japonica

and Zea mays) were applied for evolutionary analysis. K-

box domain sequences were collected and used to construct

a NJ tree with Jones-Taylor-Thornton model by MEGA-CC.

The genes and the positions of the micro-exons in the K-

box domains were displayed. In addition, the MIKC genes

were divided into 15 subfamilies in line with the subfamilies

in Arabidopsis [43]. OsMADS32 was considered as an

exceptional subfamily, which can be distinguished from the

genes in Arabidopsis. Then the absence of MIKC genes in

Arabidopsis and rice were treated as other undefined genes.

Furthermore, we also extracted the sequences of K-box

domains and MADS-box domains in MH63 to construct

the NJ trees for understanding the expression levels of

MIKC subfamily genes under different conditions. Also, all

of the MIKC genes in MH63 were labeled as CGSNL gene

symbols and the 15 subfamilies. In addition, the gene struc-

tures of all 31 MIKC genes in MH63 were also predicted

and shown.

Analyses of micro-exons in the domains

We chose four major types of micro-exon in AP2 domains

for further analysis. Three were in the R1 domain labeled

as R1M1, R1M2 and R1M3, respectively, and the remain-

ing one was in the R2 domain labeled as R2M1. The pro-

tein sequences of these micro-exons were collected and

aligned, and the positions of micro-exons were marked.

Furthermore, the functional sites were predicted by using

InterProScan [32]. After alignment correction, KaKs Calcu-

lator 2.0 [44,45] was used to calculate the Ka/Ks values of

these micro-exons and the AP2 domain with the Yang-

Nielsen approach [29] for determining and comparing their

selection in evolution.

For the MIKC genes, we first collected all of the 225 K-

box domains from the eight species and identified the

motifs of K-box domains by using MEME. Then the 31

MIKC genes in MH63 were used to display the motifs of

the K-box domains. We determined the location of micro-

exons in K-box domains based on the above information.

After that, we appraised the two types of micro-exon in K-

box domains according to the length and location of

micro-exons. These two kinds of micro-exon were generally

in tandem and labeled as M1 and M2, respectively. Last,

the sequences of the micro-exons and K-box domains of

eight species were collected and aligned, and then the Ka/Ks

values of them were calculated.
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Table S1. The summary of AP2/ERF genes in 63

plants.

Table S2. The summary of micro-exons in AP2

domains and AP2/ERF genes.

Table S3. The summary of MIKC genes and micro-ex-

ons in 63 plants.

Fig. S1. The summary of MIKC genes and micro-ex-

ons in 63 plants.

Fig. S2. The gene structures of MIKC genes in MH63.

Thirty-one MIKC genes are shown.

Fig. S3. The gene expressions and domains in MIKC

genes via MADS-box domains.
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