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Abstract

Background: The consequences of preterm birth are a major public health con-

cern with high rates of ensuing multisystem morbidity, and uncertain biological

mechanisms. Common genetic variation may mediate vulnerability to the insult

of prematurity and provide opportunities to predict and modify risk. Objective:

To gain novel biological and therapeutic insights from the integrated analysis of

magnetic resonance imaging and genetic data, informed by prior knowledge.

Methods: We apply our previously validated pathway-based statistical method

and a novel network-based method to discover sources of common genetic

variation associated with imaging features indicative of structural brain damage.

Results: Lipid pathways were highly ranked by Pathways Sparse Reduced Rank

Regression in a model examining the effect of prematurity, and PPAR (peroxi-

some proliferator-activated receptor) signaling was the highest ranked pathway

once degree of prematurity was accounted for. Within the PPAR pathway, five

genes were found by Graph Guided Group Lasso to be highly associated with

the phenotype: aquaporin 7 (AQP7), malic enzyme 1, NADP(+)-dependent,
cytosolic (ME1), perilipin 1 (PLIN1), solute carrier family 27 (fatty acid trans-

porter), member 1 (SLC27A1), and acetyl-CoA acyltransferase 1 (ACAA1).

Expression of four of these (ACAA1, AQP7, ME1, and SLC27A1) is controlled

by a common transcription factor, early growth response 4 (EGR-4). Conclu-

sions: This suggests an important role for lipid pathways in influencing devel-

opment of white matter in preterm infants, and in particular a significant role

for interindividual genetic variation in PPAR signaling.

Introduction

Preterm birth accounts for 11% of all births (Blencowe

et al. 2012), and is the leading global cause of deaths

under 5 years of age (March of Dimes, 2012; World

Health Organization, 2014). Over 30% of survivors expe-

rience cognitive problems (Moore et al. 2012) which last

into adulthood, manifesting in a specific manner with

anxiety, inattention, and social and communication prob-

lems compared to term-born infants (Hack 2009). This is

associated with a higher prevalence of psychopathology

with a three to eightfold increased risk of behavioral

problems in preterm infants, and a three to eightfold

increase in the prevalence of Autism Spectrum Disorders

(ASD) compared to the general population (Baird et al.

2006; Williams et al. 2006; Johnson and Wolke 2013), as
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well as a risk ratio of 7.4 for bipolar affective disorder

among infants born below 32 weeks of gestation (Nosarti

et al. 2012).

White matter myelination in normal growth is typically

restricted to the brain stem, globus pallidus and ventro-

lateral nucleus of the thalamus up to term (Brody et al.

1987; Kinney et al. 1988; Tanaka et al. 1995), then enters

a period of rapid development from 38 weeks’ gestation

onwards. This continues apace particularly in the first

and second years, and extends into adulthood (Yakovlev

and LeCours 1967; Bartzokis et al. 2010; Groeschel et al.

2010; Miller et al. 2012). White and gray matter show

linked yet characteristic trajectories in normal develop-

ment (Groeschel et al. 2010), with brain volume, cortical

thickness, and surface area peaking in growth rate during

late childhood/early adolescence (Lenroot et al. 2007; Nie

et al. 2013), and cortical folding seeming to peak earlier

in childhood (Zilles et al. 1989; Armstrong et al. 1995;

Nie et al. 2013; Li et al. 2014). The effect of prematurity

on these processes as evaluated with MRI indicates wide-

spread alterations of the white matter that correlate with

functional measures (Krishnan et al. 2007; Counsell et al.

2008; Eikenes et al. 2011; van Kooij et al. 2012; Groppo

et al. 2014), paralleled by changes in the overlying gray

matter (Ajayi-Obe et al. 2000; Ball et al. 2013; Vinall

et al. 2013; Smyser et al. 2015).

Preterm brain injury can be considered a broad entity

resulting from various factors such as hypoxia, ischemia,

infection, and inflammation (Volpe 2009; Jablonska et al.

2012) that can have a variable impact on development.

The principal neuropathological mechanisms in the pre-

term infant have been identified as periventricular leuko-

malacia (PVL) and neuronal/axonal disease, forming the

composite of encephalopathy of prematurity. PVL is most

commonly of a diffuse form and involves microscopic

necroses that later form glial scars which are hard to

detect with imaging (Volpe 2009). The more visible aspect

of PVL comprises marked astrogliosis and microgliosis,

alongside fluctuations in numbers of premyelinating

oligodendrocytes and oligodendroglial progenitors (Hay-

nes et al. 2003; Back et al. 2005; Robinson et al. 2006;

Billiards et al. 2008).

Diffusion MRI (d-MRI) provides measures of white

matter structure that are correlated with neurodevelop-

mental outcome (Counsell et al. 2008; van Kooij et al.

2012; Ball et al. 2015) and highly heritable, such that

60% of the variability in d-MRI measures between indi-

viduals in the neonatal period can be attributed to

genetic factors and persists into adulthood (Geng et al.

2012; Shen et al. 2014). The d-MRI measure of fractional

anisotropy FA (the fraction of the magnitude of diffu-

sion that can be attributed to directionally dependent

diffusion), has been shown to increase during the early

(premyelination) stage of white matter development

(Wimberger et al. 1995) and subsequent myelination by

maturing oligodendrocytes leads to further increases in

FA, with early sites including the posterior limb of the

internal capsule and the optic radiations (Huppi et al.

1998; Neil et al. 1998; Drobyshevsky et al. 2005).

Decreased fractional anisotropy FA in preterm infants is

related to cognitive, fine-motor, and gross-motor out-

come at 2 years (van Kooij et al. 2012), and these alter-

ations of white matter persist into adulthood in very

preterm individuals and are associated with cognitive

function (Allin et al. 2011). Imaging endophenotypes

provide a more direct link to genetic underpinnings than

the neurodevelopmental or behavioral features of disease,

demonstrating higher genetic penetrance and informing

on the biological foundation of disease.

Susceptibility to perinatal brain injury is likely to be

modulated by the combined effects of multiple genes of

individually small effect in response to environmental

influences during pregnancy and in the early postnatal

period (Dempfle et al. 2008; Leviton et al. 2015). Com-

mon DNA sequence variation is estimated to account for

up to 50% of additive genetic variation in complex traits,

including neuroanatomical features (Yang et al. 2010;

Toro et al. 2014) as well as neurological disorders includ-

ing autism (Gaugler et al. 2014), epilepsy (Speed et al.

2014), and schizophrenia (Arnedo et al. 2014). Given that

preterm birth poses an extreme challenge to the whole

organism, it is plausible that common variation between

individuals results in differential vulnerability to adverse

stimuli, impacting development.

In this work, we focus on understanding the influence

of common genetic variation on white matter develop-

ment within the preterm population. The stress of prema-

ture extrauterine life leads to a broad range of

neuroimaging changes and related neurological outcomes,

producing contrast between individuals that we are able

to use here in a within-group design. The sparse regres-

sion approaches used in this study have been developed

for the selection of explanatory variables associated with a

quantitative trait within a study cohort, and we employ

these methods here for that purpose.

Statistical genetics and bioinformatics methods allow

the principled joint analysis of the large imaging and

genetic datasets involved, and facilitate the biological inter-

pretation of results. In contrast with a hypothesis-based

approach that aims to test a specific set of assumptions

against a significance threshold, a data-driven technique

seeks a principled and biologically informed way to

uncover the signal within the data, yielding unbiased and

novel insights that can be validated experimentally in a

constructive and iterative manner (Robinson et al. 2014).

A traditional hypothesis-based method is the genome-
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wide association study (GWAS) whereby each single-

nucleotide polymorphism (SNP) is tested for association

with the phenotype, requiring typically hundreds of thou-

sands of hypotheses and stringently adjusted p-values.

The regression modeling approach, in comparison,

involves fitting a predictive model for the phenotype

using all SNPs, while also ranking all SNPs based on their

predictive value. Regression modeling is of particular ben-

efit in imaging genomics studies where the space of possi-

ble hypotheses is vast, encompassing genetic features

(SNPs) multiplied by image features (voxels). This obvi-

ates the need for multiple-testing correction and signifi-

cance thresholds, while producing a meaningful ranking

of results (Silver and Montana 2012b).

In these large datasets, the number of subjects n is

typically much smaller than the number of features p

(e.g., single-nucleotide polymorphisms SNPs), posing a

statistical and analytical problem. Two current

approaches are to either increase n significantly or find

a principled way to reduce p while preserving the under-

lying signal. We have addressed this problem by devel-

oping a pathways-driven sparse regression method

(PsRRR) (Silver and Montana 2012b) which we have

robustly validated (Silver et al. 2013) and extended to

multivariate imaging traits (Silver et al. 2012a). We have

subsequently applied the Graph Guided Group Lasso

(GGGL) to improve SNP and gene selection by integrat-

ing information from grouping SNPs into genes and

organizing genes into a weighted gene network encoding

the functional relatedness between all pairs of genes

(Wang and Montana 2014). We apply these methods to

the preterm population, leveraging prior biological

knowledge by using SNPs and genes grouped into bio-

logical pathways or networks, which allows the detection

of previously unexposed signal (Wang et al. 2010) and

eases the interpretation of results (Cantor et al. 2010).

Common genetic variation within biological canonical

pathways and functional networks is used to explain

interindividual variation in imaging features relevant to

neurodevelopmental outcome.

Patients and Methods

Patient characteristics

Participants’ characteristics: mean GA 28 + 4 weeks,

range 23 + 2 to 32 + 6, mean PMA at scan 40 + 3, range

27 + 4 to 47 + 6 weeks. This cohort has previously been

described in detail (Boardman et al. 2014). Research was

carried out in compliance with the Code of Ethics of the

World Medical Association (Declaration of Helsinki),

with approval from the NHS Research Ethics Committee

and to the standard of the associated granting agencies.

MR Image acquisition and analysis

MR images were acquired for 72 preterm infants (mean

gestational age (GA) 28 + 4 weeks, mean postmenstrual

age (PMA) at scan 40 + 3 weeks). Imaging was performed

on a Philips 3-Tesla system (Philips Medical Systems,

Netherlands) using an eight-channel phased array head

coil. Single-shot echo-planar diffusion tensor imaging was

acquired in the transverse plane in 15 noncollinear direc-

tions using the following parameters: repetition time (TR):

8000 msec; echo time (TE): 49 msec; slice thickness:

2 mm; field of view: 224 mm; matrix: 128 9 128 (voxel

size: 1.7531 9 1.753 9 2 mm3); b value: 750 sec/mm2;

SENSE factor: 2. T1-weighted 3D MPRAGE were acquired

with parameters: TR = 17 msec, TE = 4.6 msec, inversion

delay = 1500 msec, flip angle = 13°, acquisition plane =
sagittal, voxel size = 0.82 9 1.03 9 1.6 mm, FOV =
210 9167 mm and acquired matrix = 256 9 163. T2-

weighted fast spin-echo: TR 9 8700 ms, TE = 160 msec,

flip angle = 90°, acquisition plane = axial, voxel size =
1.15 9 1.18 9 2 mm, FOV = 220 mm, and acquired

matrix = 192 9 186.

Diffusion tensor imaging (DTI) analysis was performed

by using FMRIB’s Diffusion Toolbox (v2.0; RRID:nif-

0000-00305) as implemented in FMRIB’s Software Library

(FSL v4.1.5; www.fmrib.ox.ac.uk/fsl) (Smith and Nichols

2009). Each infant’s diffusion-weighted image (DWI) was

registered to their respective nondiffusion-weighted

(b = 0) image and corrected for differences in spatial dis-

tortion owing to eddy currents. Images were brain

extracted using Brain Extraction Tool (BET v2.1), diffu-

sion tensors calculated voxelwise, and FA maps generated.

Tract-Based Spatial Statistics (TBSS) (Smith et al.,

2006) was performed by using a modified pipeline specifi-

cally optimized for neonatal DTI analysis. This included

an initial low degrees-of-freedom linear registration step

and a second registration to a population-average FA

map, which has been shown to reduce global misalign-

ment between neonatal fractional anisotropy (FA) maps

(Ball et al. 2010). The aligned data were used to create a

mean FA map and a mean FA skeleton that represents

the center of all white matter tracts common to the

group. The FA skeleton was thresholded at FA ≥0.2 before

each infant’s aligned FA data were projected onto it.

Three separate adjustments for clinical variables were

made to the TBSS phenotype using the FSL general linear

model tool, with permutation-based significance testing

using the randomize tool with Threshold-Free Cluster

Enhancement. First, imaging data were adjusted for the

effect of PMA at scan only; second, the imaging data were

adjusted for both PMA and GA, thereby focusing on the

effect of genetic variation and environment. Third, there

was an adjustment for genetic ancestry. In all cases,
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dimension reduction in the phenotype with principal

component analysis was carried out for computational

efficiency.

Saliva genotyping

The concentration of all the genomic DNA samples was

measured using the PicoGreen protocol. 200 ng of genomic

DNA was used for each Illumina HumanOmniExpress-12

array according to the manufacturer’s instructions. Huma-

nOmniExpress-12 arrays have 730,525 markers with a

mean spacing of ~4 kb. 392,197 of those markers are within

10 kb of a known RefSeq gene and there are 15,062 coding

SNPs and 7459 MHC markers included in that total. All

samples successfully passed quality control.

Genome-wide genotyping

Samples were genotyped on Illumina HumanOmniEx-

press-12 arrays. The genotype matrix was recoded in

terms of minor allele counts, including only SNPs with

MAF ≥5% and ≥99% genotyping rate (Purcell et al.

2007). After these filtering steps, 613,186 SNPs remained.

Assessment of population stratification

Whole genome SNP data were used for complete linkage

agglomerative clustering, based on pairwise identity-by-

state (IBS) distance as implemented in PLINK 1.9 (Chang

et al. 2015), to assess whether any two individuals

belonged to the same population. Dimension reduction in

the IBS distance matrix was carried out by principal com-

ponent analysis, and the first principal component was

used as a covariate in TBSS analysis to adjust for popula-

tion stratification.

Information on self-reported ethnicity (as defined in

ISB standard DSCN 11/2008) was collected by asking

mothers (and fathers when present) to define themselves

according to a list of options. The terms were drawn from

Ethnic Category National Codes as in Department of

Health Guidance at the time. Parental self-reported eth-

nicity was summarized into broader categories for the

purposes of data visualization by aggregating all “White”

subcategories into a single group “White”, all “Black”

subcategories into “Black”, and all “Asian” subcategories

into “Asian”. In cases where either one parent self-

reported as “Mixed” or if there was a discrepancy

between maternal and paternal ethnicities, the term

“Mixed” was applied. Where parents were both from an

ASEAN member state (two cases) the individual was clas-

sified by the authors as “SE Asian”. These aggregated eth-

nic categories were used to label the datapoints of the

PCA plot of the first two principal components of the

IBS variance-standardized relationship matrix. This illus-

trates the correspondence between the first two compo-

nents of genetic ancestry and ethnicity, and provides an

overview of the cohort population mixture.

Pathways sparse reduced rank regression

Pathways sparse reduced rank regression estimates the

regression coefficients in the linear model with multivari-

ate responses, subjected to constraints. The model

accounts for potential biasing factors such as pathway

linkage disequilibrium and size by using an adaptive,

weight-tuning procedure. Pathway weightings in the

regression model are adjusted according to the empirical

bias in pathway selection frequencies, obtained by fitting

the PsRRR model with a null response. Depending on the

degree of penalization, some coefficients are driven to

zero, thus performing variable selection so that only SNPs

within associated pathways are retained in the model.

Pathways are ranked in order of importance using a

resampling strategy, with highest ranked pathways having

highest selection frequency and highest correlation with

the phenotype. SNPs were mapped to genes (NCBI

GRCh37) and KEGG pathways (Kyoto Encyclopedia of

Genes and Elements), after excluding cancer-related path-

ways due to high redundancy in gene membership as pre-

viously described (Silver et al. 2012a), which nonetheless

allows the genes to participate in the model as part of

other pathways. Parameters used: Model adjusted for

PMA; k 0.99, 100 subsamples, 20 iterations with

2000 9 10 plus 4000 9 10 model fits per iteration.

Model adjusted for GA and PMA; k 0.99, 100 subsamples,

20 iterations with 2000 9 10 plus 4000 9 10 model fits

per iteration.

Graph Guided Group Lasso

Graph Guided Group Lasso incorporates prior informa-

tion from SNP-gene mapping as well as from the gene

functional interaction network to guide variable selection

(Wang and Montana 2014). The functional relationships

between genes within the top ranked pathway peroxisome

proliferator-activated receptor (PPAR) signaling pathway

were systematically described by clustering the genes

based on their GO BP annotations (Ovaska et al. 2008).

This resulted in an adjacency matrix based on pairwise

semantic similarity of GO terms, which has been shown

to correlate with protein sequence similarity (Apweiler

et al. 2004) and protein family similarity (Couto et al.

2006).

The GGGL approach assumes a linear relationship

between gene function (described here by GO annotation)

and brain imaging features, applying an additional
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penalty function on the regression coefficients that incor-

porates network structure information. The model selects

functionally related genes that are associated with the trait

and identifies important SNPs within the selected genes.

GGGL-1 further imposes that SNPs in functionally related

genes have similar effects on the phenotypic trait.

The regularization parameter l controls the weight of

the prior knowledge added to the squared loss function.

When l is large the model relies more on prior knowl-

edge from the network. Using GGGL-1 with l = 0.1, 1,

and 10 resulted in the same set of genes with selection

probability > 0.4 (a threshold representing a step change

in the probability distribution). Using GGGL-2 with

l = 0.1, 1, 10 also yielded very stable results, with 27 of

the top 30 SNPs appearing in all three lists for different

values of l, and the same genes were selected in the three

instances. Both versions of the method (GGGL-1 and

GGGL-2) produced comparable results, with the same

genes and SNPs being ranked highly by both approaches

(Tables S8 and S9). Genes with more than one occurrence

and a selection probability threshold >0.4 were retained,

at a threshold representing a step change in the probabil-

ity distribution.

Results

Imaging phenotypes

A group white matter skeleton was constructed and used

to extract voxel-wise fractional anisotropy (FA) values for

each of the 72 individuals. These values were serially

adjusted for important clinical variables: effect of

gestational age (GA) at birth, effect of postmenstrual age

(PMA) at scan and genetic ancestry, resulting in three

separate phenotypes. In all instances the phenotypes

underwent dimension reduction with principal compo-

nent analysis (PCA). The elbow of the scree plot was

selected in each case to determine the number of compo-

nents used for the subsequent analysis (scree plots in

Figure S1).

The statistic images (Fig. 1) indicate that GA at birth

had a significant impact on the central white matter in

particular, whereas including correction for PMA resulted

in a more diffuse effect, and correcting for genetic ances-

try in addition to GA and PMA had little effect on the

phenotype (distributions of residuals in Figure S2).

Effect of population stratification

We use the term population stratification to refer here to

allele frequency differences between subpopulations within

a population. Genetic ancestry is a cause of population

stratification, and the term here refers to the use of

empirical methods to assign an ancestry classification

(Ali-Khan et al. 2011). Population stratification of the

cohort was assessed by calculating pairwise identity by

state (IBS) values and using these to perform complete

linkage clustering (Methods). This revealed a degree of

stratification along the first two components, correspond-

ing with parental self-reported ethnicity (Figure S3).

When the effect of genetic ancestry was included in the

imaging phenotype, the PsRRR algorithm did not converge,

suggesting a loss of signal in the relationship between

genetic predictors and imaging phenotype after adjustment

for genetic ancestry. Subsequent analyses therefore refer

only to the models adjusting for GA and/or PMA.

Figure 1. Group white matter DTI

skeleton, showing voxels that vary

significantly between individuals (corrected

P < 0.05 for all voxels, darker blue signifies

lower P-value). Axial views superior to

inferior left to right. Top row: Voxels

varying between individuals adjusting for

PMA at scan. Middle row: Voxels varying

between individuals adjusting for GA at

birth and PMA. Bottom row: Voxels varying

between individuals adjusting for GA, PMA

and genetic ancestry.
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Pathway ranking

SNPs were mapped to genes and pathways from the

Kyoto Encyclopedia of Genes and Elements (KEGG) as

summarized in Table S4.

The PsRRR method was used to identify and rank bio-

logical pathways predictive of white matter integrity.

Pathways were ranked by stability selection in order of

selection frequency, with each adjusted phenotype ana-

lyzed in turn (Table 1). These empirical results were com-

pared with null selection frequencies (Fig. 2, Figure S5,

Table S6, and Table S7).

Lipid pathways were significantly over-represented in

the top ranking pathways adjusted for PMA (P ≤ 0.005)

(Table 1, bold) and although the total number of lipid

pathways decreased with adjustment for GA, the empirical

selection frequency of the most highly ranked lipid path-

way (peroxisome proliferator-activated receptor (PPAR)

signaling) increased from 0.09 to 0.2 (Fig. 3).

Gene relationships

The GGGL method was applied to genes in the most

highly ranked KEGG pathway (PPAR signaling) (Patients

and Methods). This allowed clarification of the associa-

tion between individual genes and SNPs with the pheno-

type, which was constrained to a biological pathway of

interest. Within the PPAR pathway, the GGGL-1 method

selected a subset of genes (5/69) functionally related in

terms of Gene Ontology (GO) Biological Process (BP)

and linearly correlated with white matter FA. These were

aquaporin 7 (AQP7), malic enzyme 1, NADP(+)-depen-
dent, cytosolic (ME1), perilipin 1 (PLIN1), solute carrier

family 27 (fatty acid transporter), member 1 (SLC27A1),

and acetyl-CoA acyltransferase 1 (ACAA1). Of the top

thirty SNPs selected by the GGGL-2 method, all were

found within genes with selection probability >0.4 in

GGGL-1, indicating strong agreement between the two

approaches Table S8, Table S9.

Functional relationships

Analysis of transcriptional regulation using the PASTAA

algorithm (Roider et al. 2007) indicated that expression

of four of these five genes (ACAA1, AQP7, ME1, and

SLC27A1) is controlled by a common transcription factor,

early growth response (EGR-4), hypergeometric P-value

7.7 9 10�4.

The relationships between the five genes highlighted by

GGGL were further characterized using the GeneMANIA

prediction algorithm (Warde-Farley et al. 2010), revealing

close coexpression links as well as physical interactions

between the seed genes and additional interacting genes

(Fig. 4). This interacting set of 25 genes is significantly

enriched for disease associations with fatty liver, hyper-

triglyceridemia, obesity, insulin resistance, and type 2 dia-

betes, adjusted P-value < 5 9 10�6 (WEBGestalt) (Wang

et al. 2013).

Table 1. Top thirty KEGG pathways ranked by PsRRR. Lipid pathways

highlighted in bold. Left column: Results with phenotype adjusted for

PMA. Right column: Results adjusted for GA and PMA.

Pathways adjusted for PMA

Pathways adjusted for GA

and PMA

Glycine Serine and Threonine

Metabolism

PPAR Signaling Pathway

PPAR Signaling Pathway Dilated Cardiomyopathy

Alpha-Linolenic Acid Metabolism Glycerolipid Metabolism

Ether Lipid Metabolism Alpha-Linolenic Acid

Metabolism

Glycerophospholipid Metabolism Pyrimidine Metabolism

SNARE Interactions In Vesicular

Transport

Calcium Signaling Pathway

Hypertrophic Cardiomyopathy HCM Cardiac Muscle Contraction

Glycerolipid Metabolism Hematopoietic Cell Lineage

Basal Transcription Factors Complement and

Coagulation Cascades

Cardiac Muscle Contraction Aminoacyl tRNA Biosynthesis

Hematopoietic Cell Lineage Pancreatic Cancer

Phosphatidylinositol Signaling

System

Renin Angiotensin System

Ubiquitin Mediated Proteolysis Nucleotide Excision Repair

Nucleotide Excision Repair SNARE Interactions in

Vesicular Transport

JAK-STAT Signaling Pathway Glycosylphosphatidylinositol

GPI Anchor Biosynthesis

Adipocytokine Signaling

Pathway

Type II Diabetes Mellitus

Glycosylphosphatidylinositol GPI

Anchor Biosynthesis

Epithelial Cell Signaling in

Helicobacter Pylori Infection

GNRH Signaling Pathway DNA Replication

Starch and Sucrose Metabolism Glycine Serine and Threonine

Metabolism

Long-Term Depression Sulfur Metabolism

ABC Transporters Dorso Ventral Axis Formation

Endocytosis Peroxisome

Fatty Acid Metabolism Bladder Cancer

Antigen Processing and Presentation Primary Immunodeficiency

Ascorbate and Aldarate Metabolism Ascorbate and Aldarate

Metabolism

Lysosome Lysosome

One Carbon pool by Folate One Carbon pool by Folate

Fc Epsilon RI Signaling Pathway Axon Guidance

Viral Myocarditis Vascular Smooth Muscle

Contraction

Complement and Coagulation

Cascades

Fc Epsilon RI Signaling

Pathway

PMA, postmenstrual age; GA, gestational age; PAPR, peroxisome pro-

liferator-activated receptor; KEGG, Kyoto Encyclopedia of Genes and

Elements; PsRRR, pathways-driven sparse regression method
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Discussion

This integrated analysis of multivariate imaging and genetic

data suggests a relationship between lipid pathways, PPAR

signaling particularly, and variability in preterm white

matter development. Functional network methods draw a

specific focus to a subset of five genes within the PPAR

pathway (ACAA1, AQP7, PLIN1, ME1, and SLC27A1),

four of which are under common transcriptional control

by EGR-4.

The focus of this study is on white matter development

among preterm infants, and in this population TBSS

detects variability in white matter features that are related

both to adverse perinatal events and later neurodevelop-

ment (Counsell et al. 2008; Eikenes et al. 2011; van Kooij

et al. 2012). This provides a basis for within-group com-

Figure 2. Empirical and null selection

frequencies for thirty most predictive

pathways, adjusted for PMA (top) and

adjusted for GA and PMA (bottom).

Figure 3. Empirical selection frequencies

for lipid pathways among top thirty ranked

by PsRRR, sorted by rank postadjustment

for GA and PMA. Left: adjusted by

postmenstrual age (PMA); Right: Adjusted

for gestational age (GA) and postmenstrual

age (PMA).
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parison of preterm infants; indeed healthy preterm infants

are the best-matched controls for preterm infants with

less favorable features. However, this design prevents

inferences about differences between preterm and term

infants. Nevertheless, we have detected a possible relation-

ship in brain development that replicates findings in

adults, associating lipid metabolism with variation in

white matter FA in healthy adults (Braskie et al. 2011;

Heise et al. 2011).

Anticipated main effects in the model were gestational

age (GA) at birth, which can be viewed as degree of pre-

maturity and length of early separation from the placenta,

and postmenstrual age at scan (PMA), which captures

ongoing development ex utero. It is known that FA

increases in white matter as part of ongoing development

in term and preterm infants (Huppi et al. 1998; Neil

et al. 1998; Drobyshevsky et al. 2005; Smyser et al. 2015),

and therefore PMA was included as a covariate through-

out the analysis, in an attempt to focus on variability due

to factors other than development. Regarding the implica-

tions of these observations for white matter development

in later life, alterations of white matter including reduced

FA have been shown to persist into adulthood in very

preterm individuals and are associated with cognitive

function (Allin et al. 2011). Given that 60% of the vari-

ability in d-MRI measures between individuals in the

neonatal period can be attributed to genetic factors (Geng

et al. 2012), and that this heritability persists into adult-

hood (Shen et al. 2014) we would hypothesize that a pre-

dictive relationship identified in the neonatal period

would be preserved or even increased in adults (Trza-

skowski et al. 2014). It has also been found in healthy

adults aged 20–78 years that the genetic effects of the

ApoE4 allele on white matter FA were preserved indepen-

dently of age (Heise et al. 2011). To evaluate whether

variation in biological pathways is associated with white

matter structure as a function of degree of prematurity,

we firstly allowed GA to remain in the model while

adjusting for PMA. The impact of lipid pathways is sub-

stantial in this model, as indicated by the significant over-

representation of lipids among the top ranked pathways.

When GA is adjusted for alongside PMA, specific lipid

pathways such as PPAR signaling and glycerolipid meta-

bolism increase in their degree of importance, although

lipid pathways as a group are no longer over-represented.

A possible interpretation of these findings is that

interindividual genetic variability in lipid metabolism has

an effect on white matter structure (FA) and this is linked

to degree of prematurity (GA). On adjustment for GA the

main remaining effects are likely to be genetic influence

and environmental variables. In this latter scenario, key

lipid metabolic pathways remain an important determi-

nant of white matter integrity in the context of a greater

variety of biological processes. It is tenable that the genes

highlighted here are involved in processes contributing to

normal white matter myelination, and that the disruption

of these physiological processes in a subset of preterms

contributes to the observed variability in FA within the

preterm group.

Multiple sources of evidence indicate that a well-

balanced and carefully timed fatty acid supply during the

neonatal period is a determinant of growth, visual devel-

opment, and cognitive development (Fleith and Clandinin

2005; Innis 2007), although there is active debate on how

Figure 4. Functional gene relationships

based on protein–protein, protein–DNA,

and genetic interactions, pathways,

reactions, gene and protein expression

data, and protein domains. Gene function

predictions are based on gene ontology

(GO) annotations patterns.
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this should be addressed clinically (Adamkin and Rad-

macher 2014). We have previously highlighted a member

of the PPAR pathway (fatty acid desaturase 2, FADS2) in

a separate candidate gene analysis of this cohort (Board-

man et al. 2014). FADS polymorphisms have since been

independently associated with behavioral outcomes in

children, suggesting a programming effect of PPAR

genotype (Jensen et al. 2014). Other systemic effects of

FADS2 could be mediated via its role in catalyzing the

conversion of linoleic acid (LA) into arachidonic acid

(AA) and that of alpha-linolenic acid (ALA) into eicos-

apentaenoic acid (EPA). Polymorphisms in FADS1 and

FADS2 have been linked to a proinflamatory phenotype

promoting atherosclerosis and coronary artery disease

(Martinelli et al. 2008; Glaser et al. 2011), and there

appears to be a genetic regulation of the level of desat-

urase activity that varies with ethnicity (Merino et al.

2011; Sergeant et al. 2012; Chilton et al. 2014).

The peroxisome proliferator-activated receptors

(PPARs) are ligand-activated transcription factors belong-

ing to the superfamily of nuclear hormone receptors, with

an important role in nutrient homeostasis. They are

involved in cell membrane structure, signaling, inflamma-

tion and biotransformation (Rosen and Spiegelman

2001), neuronal and glial differentiation and axon polar-

ity, and neuroprotection (Gray et al. 2011; Minghetti

et al. 2014; Quintanilla et al. 2014). Preterm birth is asso-

ciated with an increased cardiometabolic disease risk in

adulthood (Ryckman et al. 2013; Bayman et al. 2014;

Kajantie and Hovi 2014), and PPAR-gamma agonists (thi-

azolidinediones) are widely used in the treatment of Type

2 Diabetes Mellitus (T2DM) and insulin resistance.

T2DM features here among the top 30 pathways adjusted

for GA and PMA, and four of the five PPAR pathway

genes highlighted by GGGL are linked to T2DM.

ME1 has been associated with sex-specific gene regula-

tion in the offspring as a result of peri-conception mater-

nal obesity (Dahlhoff et al. 2014), and identified as a key

regulator of a T2DM-specific gene expression network

(Zhong et al. 2010). PLIN1 regulates droplet formation in

lipopolysaccharide-stimulated microglia (Khatchadourian

et al. 2012) and mutations have been linked to familial

lypodistrophy and severe insulin resistance and T2DM

(Kozusko et al. 2015). SLC27A1 (also known as fatty acid

transport molecule 1, FATP1) is localized to mitochon-

dria (Guitart et al. 2014), is involved in fatty acid trans-

port across the blood–brain barrier (Mitchell et al. 2011)

and has been considered as a therapeutic target for insu-

lin resistance (Matsufuji et al. 2012). There are indica-

tions that AQP7 expression is associated with insulin

resistance and obesity (Lebeck 2014), and missense muta-

tions in humans result in a variety of neurological seque-

lae including severe hypotonia, psychomotor retardation

and/or epilepsy as well as multisystem abnormalities

(Goubau et al. 2013). ACAA1 is involved in neuronal

growth and myelinogenesis (Houdou et al. 1993) and

may modify immune responses via Toll-like signaling

(Sordillo et al. 2011).

ACAA1, AQP7, ME1, and SLC27A1 are jointly regu-

lated by the EGR-4 transcription factor, which is impor-

tant in neuronal maturation (Ludwig et al. 2011) and

synaptic plasticity (Beckmann and Wilce 1997). EGR4

gene expression is induced by cerebral ischemia and

inflammation (Decker et al. 2003; Mengozzi et al. 2012),

key mechanisms in preterm brain injury (Vannucci and

Hagberg 2004; Volpe 2012). EGR4 is also upregulated by

EGFR signaling (Mayer et al. 2009), linked to myelination

and remyelination (Aguirre et al. 2007). Both fatty acids

and EGR signaling have been associated with mental ill-

nesses including schizophrenia (Yamada et al. 2007; Mat-

sumata et al. 2014) and the interaction of EGR-1 and the

PPAR pathway has been described in relation to cardio-

vascular risk (Fruchart 2009).

Additional considerations

In this analysis we have performed a within-group com-

parison, using the contrast between preterm infants with

different values of white matter FA to highlight differ-

ences in genetic profile that could add to the biological

understanding of white matter development following

premature birth. This is driven in part by the paucity of

comparable linked imaging and genetic data from healthy

term infants, but as a corollary allows us to specifically

ask why preterm infants of a similar gestation and at a

similar stage of postnatal development have different

white matter features that are expected to be functionally

relevant. Adjustment for genetic ancestry appeared to

leave no independent associations detected by the PsRRR

algorithm, suggesting a role for ethnicity and genetic

background (the complete genotype of an organism

across all loci) in modifying the phenotypic consequences

of an allele and its association with disease risk. The

impact of alleles may be modified by the local genetic

architecture (Jing et al. 2014), and it could be that the

effect of ancestry is acting through differences in lipid

metabolism. In view of the small sample size involved it

would be beyond the scope of this work to make state-

ments about the significance of this observation, but this

suggests an exciting avenue for further study.

Conclusion

In this hypothesis generating work, interpretation of our

findings suggests that genetic variation in lipid pathways

might influence white matter development among pre-
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term infants. The relationship between imaging measures

of brain development and genetic profile appears to be

modulated by degree of prematurity. Given that preterm

infants are at increased risk of both mental illness and

cardiovascular morbidity in later life, this work suggests a

unifying mechanism through which these systemic effects

might be mediated.
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Figure S1. Scree plots of PCA for TBSS phenotype

adjusted for PMA (left) and GA plus PMA (right).

Figure S2. Frequency density distributions of residuals in

TBSS phenotypes adjusted for PMA, GA and PMA, or

GA, PMA, and ethnicity.

Figure S3. First two components from principal compo-

nent analysis of population stratification based on pair-

wise identity by state (IBS).

Table S4. Mapping of SNPs to genes and pathways.

Figure S5. Null selection frequencies for all KEGG path-

ways in the PsRRR model.

Table S6. PsRRR pathway rankings with null and empiri-

cal selection frequencies adjusted for PMA.
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cal selection frequencies adjusted for GA and PMA.
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