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Abstract 

The unprecedented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global sequencing effort has suffered from an analyt-
ical bottleneck. Many existing methods for phylogenetic analysis are designed for sparse, static datasets and are too computationally 
expensive to apply to densely sampled, rapidly expanding datasets when results are needed immediately to inform public health 
action. For example, public health is often concerned with identifying clusters of closely related samples, but the sheer scale of the 
data prevents manual inspection and the current computational models are often too expensive in time and resources. Even when 
results are available, intuitive data exploration tools are of critical importance to effective public health interpretation and action. 
To help address this need, we present a phylogenetic heuristic that quickly and efficiently identifies newly introduced strains in a 
region, resulting in clusters of infected individuals, and their putative geographic origins. We show that this approach performs well 
on simulated data and yields results largely congruent with more sophisticated Bayesian phylogeographic modeling approaches. We 
also introduce Cluster-Tracker (https://clustertracker.gi.ucsc.edu/), a novel interactive web-based tool to facilitate effective and intuitive 
SARS-CoV-2 geographic data exploration and visualization across the USA. Cluster-Tracker is updated daily and automatically identifies 
and highlights groups of closely related SARS-CoV-2 infections resulting from the transmission of the virus between two geographic 
areas by travelers, streamlining public health tracking of local viral diversity and emerging infection clusters. The site is open-source 
and designed to be easily configured to analyze any chosen region, making it a useful resource globally. The combination of these 
open-source tools will empower detailed investigations of the geographic origins and spread of SARS-CoV-2 and other densely sampled 
pathogens.
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Introduction
The massive scale of the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) sequencing effort has revealed deep inad-
equacies in our current methodology for phylogenetic analysis. 
Tools designed to work on small, sparse, static datasets have 
adapted poorly to the demands of a pandemic where tens of thou-
sands of new genome sequences are generated and shared daily 
(Hodcroft et al. 2021). Some have made progress by adopting gen-
eralized statistical methods built for large data such as random 
forest regression (O’Toole et al. 2021), while others have contin-
ued to improve on existing methods (Gill et al. 2020; Vöhringer 
et al. 2021), but phylogenetic solutions capable of scaling to 
millions of samples need to be developed. While our group, 
among others, has laid the groundwork for pandemic-scale phy-
logenetics (de Bernardi Schneider et al. 2020; Dellicour et al. 
2021; Maio et al. 2021; McBroome et al. 2021; Shchur et al. 
2021; Turakhia et al. 2021; Ye et al. 2021), much remains to be 

done to translate inferences to public health understanding and
action.

The unprecedented scale of the genomic sequencing effort 
requires novel approaches to evolutionary, medical, and pub-
lic health inference. Some groups have developed phylogeneti-
cally informed statistics for identifying mutations associated with 
increased transmissibility and other fitness-related parameters 
(van Dorp et al. 2020; Richard et al. 2021). In other cases, simple 
methods—such as the assaying of groups of identical samples—
have been successfully applied to identify super-spreader events 
and similar infection clusters (Gomez-Carballa et al. 2020; Bello 
et al. 2022). Unfortunately, many analyses still lack scalable or 
phylogenetically informed approaches.

Phylogeography, the intersection of geography and phylogenet-
ics, has often relied on heavily downsampled and static trees or 
been limited to the early stages of the pandemic (Lemey et al. 2020, 
2021; Rito et al. 2020; Dellicour et al. 2021; du Plessis et al. 2021; 
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Lemieux et al. 2021; Ragonnet-Cronin et al. 2021). Some authors 
have analyzed several tens of thousands of samples with a divide-
and-conquer approach, subdividing the overall tree by lineage and 
combining separately inferred results (McCrone et al. 2021). Oth-
ers have had similar success tracking the introduction and spread 
of a distinct new lineage over the first weeks after its emergence 
(Kraemer et al. 2021). While useful for assessing transmissions 
between countries and major introductions, downsampling lim-
its our ability to assign specific samples to regional infection 
clusters or identify clusters of potential interest. Even creative 
techniques taking advantage of the phylogenetic tree structure 
to make analysis more tractable will not always be applicable 
and are limited in their ability to scale to millions of samples 
across dozens of regions. Additionally, many of these analyses are 
not readily interpretable for an efficient public health response, 
lacking intuitive visualization and data exploration tools. There 
is therefore a significant need for fast, automated, scalable, and 
interpretable phylogeographic approaches for an effective public 
health response to emerging situations.

To address this need, we present here a phylogenetically 
informed summary heuristic (the ‘regional index’), implementa-
tion (matUtils introduce), and data exploration and visualization 
tool (Cluster-Tracker: https://clustertracker.gi.ucsc.edu/) for iden-
tifying introduction events and associated clusters of descendents 
in a given region. Our approach can be used to efficiently iden-
tify infection clusters and evaluate transmission dynamics across 
dozens of regions and millions of samples. Results obtained using 
this method are congruent with gold-standard Bayesian analyses 
and are accurate when applied to simulated data. Our visualiza-
tion platform enables researchers and public health workers to 
explore new SARS-CoV-2 introductions across the USA, updated 
daily with all available global public data. This work will empower 
real-time research and public health applications of genomic 
epidemiology during the SARS-CoV-2 pandemic and beyond.

Results and discussion
Cluster concept and definitions
A cluster, in terms of our analytical approach, is a set of closely 
related samples from the same region and descended from a 
common ancestor with a regional introduction event. Under our 
definition, the complete set of actively circulating pathogens in 
a region will be composed of one or more genetically distinct 
clusters, which resulted from unique introduction events. In the 
phylogenetic tree, they appear as a set of leaves (samples) from a 
given geographic region that are descended from a shared com-
mon ancestor. A cluster may be monophyletic or paraphyletic, 
depending on whether some descendents of the cluster’s com-
mon ancestor left the geographic region. We consider location, 
or region, as a categorical state across the phylogenetic tree. A 
regional transmission event is where a child node is from a dif-
ferent region than the parent node. These patterns reflect cases 
of infected travelers moving between regions, followed by local 
transmission and eventual sampling of a number of descendant 
infections.

A heuristic for identifying introductions and 
clusters
The core of our heuristic is the ‘regional index’, which is a weighted 
summary of the composition of descendents of a node of a phy-
logenetic tree. Intuitively, if all descendents of an internal node 
were found in region A, we would assume that the ancestor repre-
sented by that internal node was circulating in region A. Similarly, 

Figure 1. Example index calculation. This small example tree 
demonstrates a computation of our index. The focal node at the base 
has an index value below 0.5, suggesting that it is out-of-region by our 
heuristic. Our introduction point is therefore along the long branch 
below the root, and the ancestor of the downstream in-region sample 
cluster would have existed along that branch.

if we sampled a virus from region A that had exactly the inferred 
genome for this internal node, we would assume the ancestor 
represented by this node was in region A. The same logic would 
apply if no descendents were in region A. Therefore, by computing 
a heuristic that ranges from 0 to 1 based on the genetic distance 
to and composition of downstream descendents under a binary 
model of region membership, we can effectively approximate our 
intuition that the viral ancestor represented by that node was 
inside or outside a given region. It is defined as follows: 

where Li is the number of downstream leaves that are in a given 
region, Di is the minimum total branch length to a leaf descendent 
in the focal region, and Lo and Do are the same for out-of-region 
leaves (Fig. 1). On a tree inferred using maximum parsimony, the 
total branch length is equivalent to the distance in mutations 
between the query node and the descendant leaf.

We apply additional rules to handle cases where C is undefined 
or cannot be computed. When a descendent leaf is genetically 
identical to the internal node and is in-region, C is 1. Similarly, 
when a genetically identical leaf is out-of-region, we treat C as 0. 
When such identical children exist both in and out of the region, 
we treat the node as in-region, as some infection with this genome 
must have existed in that region. We do not apply this index cal-
culation to leaf nodes, which do not have children, and assume 
simply that the leaf is either in or out of the region as a given. This 
requires that each leaf included in the analysis be accompanied 
by accurate geographic location metadata.

This heuristic has several useful behaviors. For example, a 
sample identical to a specific internal node will always confer 
complete confidence about the location of that node, as we have 
sampled one genome that is identical to the ancestor directly. 
This can effectively identify nested clusters, where a new group of 
infections resulting from a regional introduction in turn produce 
clusters in other regions. It also accounts for the number of leaves 
downstream in our heuristic, on the assumption that introduc-
tions of a strain from one region to another require the lineage to 
be locally circulating in the origin region, but not necessarily lead 
to significant local transmission in the target region. This reduces 
the overall number of introductions we infer. If we account for the 
number of descendents, internal nodes will generally be assigned 
to the dominant region if distances are similar, reducing the num-
ber of consecutive reciprocal regional transmissions that might 
be inferred otherwise. Our heuristic strikes a balance between 
the principles of descendent composition and genetic distance, 
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allowing us to efficiently analyze a large phylogenetic tree with 
minimal metadata.

Once indices for a given region have been calculated for each 
node, the second step is to identify clusters of samples putatively 
associated with an introduction. This is accomplished on a per-
sample basis. The path from the sample to root is traversed, and 
the indices for each ancestor being in the focal region are noted. 
Generally, the index declines from 1 to 0 along the ancestry path 
from leaf to root. The introduction point is called where the index 
for an ancestor being in-region is below 0.5, or the root, whichever 
is encountered first. 0.5 is our natural cutoff, representing the 
index value in a scenario where the composition and distance 
of downstream samples in and out of the region are equivalent 
but can be adjusted by the user to modify cluster calling behav-
ior. Once each sample has an ancestor chosen as the introduction 
node, they are grouped into clusters that share their ancestral 
introduction node. Generally, a larger threshold value will lead to 
more, smaller clusters, while a lower threshold value will lead to 
fewer, larger clusters.

As this heuristic is independent and specific to a region, it can 
be computed for an arbitrary number of regions across a single 
tree in parallel. When multiple regions are included, origins of 
putative clusters can be identified after introduction points are 
found by examining index scores across all other regions for the 
origin node and noting the region with the highest index. This 
metric can be calculated for one region of any size in a single 
post-order traversal with dynamic programming (see ‘Methods’ 
section), which makes it very fast to compute even on extremely 
large phylogenies with expansive regions.

Evaluation of our heuristic method
Our implementation is part of the matUtils online phylogenetics 
package (McBroome et al. 2021) and uses the efficient mutation-
annotated tree protocol buffer format and associated library 
(Turakhia et al. 2021). To test runtime efficiency conditioned on a 
tree, we applied random subsampling and recorded time to com-
pute our heuristic for a single region. We found that it takes less 
than 45 s on a single thread even for trees of more than two million 
samples (Supplementary Table S1).

To validate our results, we performed simulations consis-
tent with viral evolutionary dynamics with inter-region dispersal 
events using the tools VGsim (Shchur et al. 2021) and phastSim 
(Maio et al. 2021) (see ‘Methods’ section). We found that our heuris-
tic with default parameters recovered the true geographic location 
of internal nodes up to 99.8 per cent of the time under realistic 
conditions for SARS-CoV-2 across an exactly correct bifurcating 
tree. We further attempted to model our ability to correctly recover 
clusters on a simulated tree with collapsed branches and real-
istic mutation rates for SARS-CoV-2. In comparing the clusters, 
we recovered with the true set, and we obtained an adjusted 
Rand index (ARI; Rand 1971) of up to 0.999. This suggests that 
our approach is generally quite accurate, although high migra-
tion rates or extremely low mutation rates can be confounding, 
as these scenarios are associated with minimal geographic and 
phylogenetic signals, respectively (Supplementary Table S2; see 
‘Methods’ section). More practically, this implies that our method 
will perform best when within-region transmission is substan-
tially more common than between-region transmission (as in, e.g., 
country-level or state-level analyses).

To compare our results to widely used but much slower (days 
to months) analyses, we used our method to replicate a published 
phylogeographic analysis for the SARS-CoV-2 pandemic. Alpert 
et al. used Bayesian phylogeography (Lemey et al. 2009) to identify 

twenty-three distinct introductions of B.1.1.7 into the USA as of 4 
March 2020. We obtained their subsampled tree and applied our 
heuristic using country labels to define the relevant regions (see 
‘Methods’ section). With our method, we exactly replicated their 
identified clusters (ARI 1.0). Alpert et al. additionally predicted 
‘sink’ states or the state to which each of the twenty-three intro-
ductions initially transmitted. We find that for all twenty-three 
clusters, samples in the identified sink state are closest or tied for 
closest in branch length to our inferred introduction point. This 
suggests that our approach can produce results congruent with 
more complex statistical models in a fraction of the time.

Another relevant method used in similar situations and that 
scales well to larger phylogenies is parsimony reconstruction, 
where region membership is treated as a character trait and 
inferred across the tree using the standard Fitch–Sankoff algo-
rithm (Sankoff 1975; Vöhringer et al. 2021; Volz et al. 2021). This 
is more efficient than Bayesian approaches but is heavily influ-
enced by variation in sampling and low mutation rates relative 
to sampling and transmission. We performed a simple parsi-
mony reconstruction based on the Fitch algorithm (Fitch 1977) 
similar to that of Volz et al. on simulated data (Supplementary 
Table S3). We found that while parsimony performs as well or bet-
ter than our heuristic on well-resolved trees, when the average 
number of mutations per node is less than one and polytomies 
are common (as in SARS-CoV-2), our approach has greater accu-
racy. Our approach is more efficient than the Fitch algorithm 
because it requires only a single traversal of the phylogeny to
compute.

Global SARS-CoV-2 transmission dynamics and 
infection clusters
Using our method, we traced transmission clusters in 102 coun-
tries from across the world (Fig. 2A) using the global parsimony 
phylogenetic tree, built from 5,563,847 available sequences on 
GISAID (Global Initiative on Sharing Avian Influenza Data) (Shu 
and McCauley 2017), GenBank (Sayers et al. 2021), and COG-UK 
(COVID-19 Genomics UK (COG-UK) consortiumcontact@cogcon-
sortium.uk 2020) on 28 November 2021 (see ‘Methods’ section). 
Cluster size is highly skewed (Fig. 2C), with approximately 20 per 
cent of distinct regional clusters containing 89 per cent of samples. 
This suggests that the majority of novel introductions do not lead 
to the establishment of a new locally circulating strain, consistent 
with previous findings (du Plessis et al. 2021).

Global contributions to sequence repositories are notably 
biased, with 51 per cent of all samples belonging to either the 
USA or the UK (Fig. 2B). This is a significant restriction on global 
transmission analysis, especially as the inference of the origin of 
a cluster is highly dependent on robust sequencing at the origin 
(see ‘Methods’ section). We therefore narrowed the next step of our 
analysis to the USA, which has robust and relatively comprehen-
sive sequencing across each state as well as detailed state-level 
metadata for the vast majority of available samples.

SARS-CoV-2 transmission into and across the 
USA
We identified more than 300,000 distinct state-level SAR-CoV-2 
infection clusters in the USA over the course of the pandemic, 
as of November 2021 (Fig. 3). Approximately 84 per cent of these 
clusters have an assigned origin using our method (see ‘Methods’ 
section). Only 7 per cent of our clusters appear to be of interna-
tional origin, with the majority reflecting transmission within the 
USA. Mexico and Canada are among the most common interna-
tional origin regions, in line with expectations given their long land 



Figure 2. Global distribution of SARS-CoV-2 transmission clusters. (A) The log count of clusters detected across each of the 102 countries surveyed. 
The number of clusters detected is largely a function of total local sequencing effort. (B) The five countries with the highest representation in the data. 
The USA and England together constitute more than half of all available sequences. (C) Cluster sizes are consistent across countries. Most clusters are 
small, implying most newly introduced SARS-CoV-2 lineages quickly die out.

borders (Supplementary Table S4). England is also relatively com-
mon, likely because it is very well sampled. This indicates that it 
is possible that some clusters originate from less sampled inter-
mediate regions and are assigned to the England or other highly 
sampled locations. This suggests that relative sequencing effort in 
a given region is an important bias with respect to accurately iden-
tifying the origins of newly identified clusters, and results should 
be interpreted with caution. International introductions rates are 
correlated with higher total sampling and therefore population 
size, particularly for California, Texas, New York, Massachusetts, 
and Florida (Fig. 3B).

Within the USA, introductions come from a mix of neigh-
boring states and high-population travel centers (Supplementary 
Table S5). We attempt to mitigate sampling biases—resulting from 
larger populations, higher case rates, increased sequencing, or 
other factors that are not specific to geography—by calculating a 
log-fold enrichment for rates of introduction from a given source 
region (see ‘Methods’ section; Fig. 4). Note that while log-fold 
enrichment may reveal spatial relationships, it does not reflect 
the absolute importance of a region as a source or sink of viral 
transmission.

As with results from international introductions, we also find 
an enrichment for introductions that originate in geographically 
adjacent states. Log-fold enrichment is more than five times 
greater for neighboring states than for non-neighboring states 
within the USA (P = 1.5e-117, Mann–Whitney U). Simple counts of 
inferred introductions are also enriched to a lesser extent between 
geographically adjacent states (P = 2.2e-16, Mann–Whitney U). 
This suggests that SARS-CoV-2 transmission over interstate land 
borders is a major mechanism for spread within the USA. These 
results are largely in line with previous results in other viruses 

(Kozińska et al. 2019) and SARS-CoV-2 (Tiwari et al. 2021), sug-
gesting that this heuristic is capturing and summarizing true 
geographic structure within the global SARS-CoV-2 phylogenetic 
tree.

A daily-updated website to explore SARS-CoV-2 
clusters in the USA
To make the results of this work broadly useful for the research 
and public health community, we have developed a visualization 
and exploration platform. Cluster-Tracker is a publicly available, 
daily-updated website displaying the latest results for applying 
our heuristic to sequences collected from across the USA inter-
actively (https://clustertracker.gi.ucsc.edu; see ‘Methods’ section; 
Fig. 5). Cluster-Tracker is open-source with a flexible backend 
pipeline that allows any user to construct a similar site for any 
set of regions they have geographic information and sample 
identification for (https://github.com/jmcbroome/introduction-
website).

Cluster-Tracker is composed of two primary sections and some 
descriptive text (Fig. 5). The first section is an interactive map of 
the USA. In the default view, this map is colored by the number of 
clusters detected across each state throughout the course of the 
pandemic. The true number of introductions into a given region is 
likely to be substantially larger because many small clusters will 
not be sampled by ongoing viral surveillance efforts, but major 
local transmission clusters should be represented. By clicking on a 
state, the site changes to a view specific to that state. In the default 
view, the map is colored by the log-fold enrichment of introduc-
tions from each other state to that state. Optionally, the user can 
switch the color to raw counts of detections with the toggle in the 
upper right.
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Figure 3. International and interstate introductions across the USA. (A) The log count of clusters identified across the continental USA. California, 
Texas, Florida, and New York are associated with the greatest number of unique clusters. (B) The proportion of international introductions in each state 
plotted against the total samples collected in that state. This relationship is largely linear, reflecting the correlation between sampling, population size, 
and levels of international travel. PR (Puerto Rico) exhibits relatively more international introductions for its sampling than other territories and states 
of the USA. (C) The distribution of cluster sizes across states. These are largely consistent with clusters identified at the international level.

Figure 4. Log-fold interstate transmission for the states of California (A) 
and Illinois (B). (A) Interstate introductions of COVID-19 into California 
are relatively more likely to originate on the West Coast, particularly 
from Nevada. (B) Interstate introductions of COVID-19 into Illinois are 
relatively more likely to come from the immediate surroundings, 
particularly Iowa and Missouri.

The second section is a sortable, searchable table display of 
the highest priority clusters. In the default view, these are the 
top 100 clusters overall as sorted by ‘growth score’. We define 
‘growth score’ as the square root of the number of samples divided 
by the number of weeks since the introduction occurred. The 
goal of this metric is to weight clusters by relative size and how 
recently they entered a given area so that clusters of interest to 
public health appear first. When a state is selected, this table 
changes to the top 100 clusters obtained from that particular state. 
Basic information including clade, lineage, the earliest and lat-
est dates of detection, and inferred origins is displayed for each 
cluster. The ‘inferred origin confidences’ column is the highest 
or tied for the highest regional index among all other regions 
for the parent node to the cluster origin, with a floor of 0.05 
below which the cluster is simply marked ‘indeterminate’. The 
‘inferred origins’ column is the regions that match these scores 
and generally represents our best guess at the origin of this clus-
ter. The last column of the table contains links to the Taxonium 
viewer (https://github.com/theosanderson/taxonium), which will 
automatically render the full tree and zoom to the cluster of inter-
est when opened (Fig. 6). Full results and the Taxonium protocol 
buffer file, which encodes the tree and all cluster IDs, are available 
to be downloaded at the bottom of the page.

The goal of this resource is to make cluster identification, 
exploration, and prioritization more accessible and digestible for 
public health offices and policy makers. A significant roadblock 
for public health action is the sheer quantity of daily new data 
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Figure 5. The Cluster-Tracker site. The Cluster-Tracker tool is updated daily at https://clustertracker.gi.ucsc.edu. Users can interactively explore the 
latest results of our heuristic applied to each of the continental USA, by sorting the interactive table, selecting states to focus on in the map, and using 
the Taxonium tree-viewing platform to examine clusters of interest in detail.

and the speed with which we can draw inferences from these data. 
Cluster-Tracker can assist exploration and prioritization of the lat-
est genome sequences, quickly identifying the clusters most likely 
to be of interest for public health action for a given region. Our 
construction pipeline is flexible and can be applied for any set 
of regions (e.g. county-level), allowing groups anywhere to con-
struct web interfaces for intuitive SARS-CoV-2 phylogenetic data 
exploration.

While simple and efficient, our heuristic does exhibit some 
weaknesses. It is not a model; while simulations have demon-
strated its efficacy in describing simple patterns of transmission, 
it can fail to correctly infer more complex scenarios and requires 
substantial and dense input data. Simulations indicate that it per-
forms best in larger and more homogenous regions with low rates 
of migration, such as countries. If the user attempts to infer intro-
ductions in very small regions with high rates of inter-regional 
transmission, it may fail to properly recapitulate transmission 
patterns. Additionally, regionally biased differences in sequenc-
ing effort (Brito et al. 2021; Colson and Raoult 2021) can lead to 
significant biases in raw counts and our ability to correctly iden-
tify introductions, making individual cluster origins difficult to 
interpret in many cases. In terms of functional limitations, the 
heuristic is based on a binary regional labeling model and does not 
have the ability to directly interpret lat-long coordinates or unique 
location values for samples like some Bayesian phylogeographic 
methods. Overall, it remains a useful tool for quickly assaying 
viral diversity and inter-regional transmission patterns on a global 
scale.

Conclusion
The pandemic has made the need for rapid and powerful tools 
to unlock the potential of pandemic-scale genomic epidemiology. 

The method we developed and the efficient software package we 
provide will empower researchers worldwide to make fast infer-
ences from vast sequence datasets. Our results have revealed 
geographic structure at scales below the level of pango-lineage 
(O’Toole et al. 2021) within the global SARS-CoV-2 phylogeny. 
We have provided tools and resources with which to explore 
this geographic structure and draw useful inferences for specific 
areas. Additionally, to empower public health officers and the 
public to explore the spread of SARS-CoV-2 across the USA, we 
developed an accessible open-source interactive interface for our 
results, which can automatically compute and display introduc-
tions and clusters with each update to the global phylogenetic 
tree. Our work can support public health groups across the world 
to quickly understand and apply insights obtained from the latest
genomic data.

Methods
matUtils implementation
We implemented a calculation of this heuristic as a part of 
our online phylogenetics package, matUtils, under the command
‘matUtils introduce’ (McBroome et al. 2021) (https://github.
com/yatisht/usher). Our implementation uses dynamic program-
ming based on a post-order traversal to compute the regional 
index for each node in the tree in a single pass for each region. This 
is because the four parameters that define the regional index—
distance to the nearest descendent and total descendents for 
in-region and out-of-region—can be computed from these same 
metrics for each child of a node plus the branch length to each 
child. The total number of leaves descended from a query par-
ent node is the sum of all leaves descended from each of their 
children, and the shortest distance traversed to a leaf is the 
minimum of each child’s minimum distance traversed plus the 
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Figure 6. Example clusters in the Taxonium phylogenetic tree viewer. (A) An example cluster in Texas (member samples circled) that is inferred to 
have originated from California (regional index = 0.94). There are many samples from California closely related to the cluster’s common ancestor, 
supporting California as the most likely origin. (B) A different, much larger, 9,533 leaf cluster in California. This represents a lineage of SARS-CoV-2 
commonly circulating in California, descended from one of the original introductions of the Delta variant into California in mid-June 2021. 
Descendents from this cluster have transmitted to other regions many times, but members of this cluster have been found in California as recently as 
7 December 2021.

branch length between that child and the query parent. There-
fore, by computing it first for nodes with only leaf children, then 
progressively deeper internal nodes, we only have to reference 
the children of each internal node and check their stored val-
ues instead of having to traverse from each node. This step is 
optionally parallelized across distinct regions if multiple regions 
are passed.

The secondary step is an ancestry traversal for each sample in 
the tree, identifying the most recent ancestor that has a regional 
index below the set threshold, which is inferred to be the intro-
duction point for this lineage. Once introduction points have been 
inferred for each sample, samples are grouped by shared intro-
duction points into clusters, basic statistics and information are 
computed, and results are reported.

Ultimately, our implementation can compute this heuristic, 
identify clusters, and report all results in less than 2 min for 

a tree containing more than two and a half million samples 
(Supplementary Table S2). The speed of calculation is a major 
attraction of this heuristic approach over more complex Bayesian 
models. Calculating in minutes on minimal computing resources 
makes this method accessible and applicable to update results 
daily, identifying clusters and introductions as they occur and new 
data is uploaded globally. Accordingly, this implementation under-
lies our website Cluster-Tracker, which is updated with all newly 
uploaded data each day and a recalculation of our heuristic.

Handling nested clusters and unstructured 
regions
We implemented a few additional parameters that can be used 
to control behavior at the secondary cluster identification step. 
Once that is useful is setting a short-range maximum index 



requirement—that is, looking ahead at some additional number 
of ancestors and ensuring that each of those has a lower regional 
index than the intended ancestor node. Setting this parameter 
causes small nested clusters to be merged into larger overarching 
clusters. Another useful parameter is a minimum required branch 
length between the oldest in-region ancestor and its parent; if the 
branch length is less than the minimum, then the parent instead 
of the in-region node is inferred as the introduction point. Setting 
this parameter allows sibling clusters to be merged if both of their 
branch lengths are below minimum; this also resolves unstruc-
tured parts of the tree where large polytomies of identical samples 
with branch length 0 both in and out of a region are included.

Prioritization and bias handling
Another significant point of consideration is cluster prioritization. 
This cluster identification method is based solely on the phyloge-
netic tree and simple sample-region association, and while this 
makes it lightweight and flexible, identifying clusters that died 
out locally months ago is not of use to public health offices doing 
real-time transmission cluster tracking. We therefore in our imple-
mentation sort the output by a ‘growth score’, defined as the 
square root of the number of samples associated with the clus-
ter divided by the time in weeks from the oldest sample in the 
cluster to the current date plus one. This means that large, recent 
clusters will appear at the top of any output tables and makes 
the method more easily accessible when thousands of clusters are 
being inferred simultaneously.

When using this method to examine inter-region transmis-
sion dynamics, we rely on comparable and significant levels of 
sequencing in order to identify introduction origins. Intuitively, 
the less sequencing is performed in a region, the less likely we 
are to recognize sequences from that region when they appear 
in another region. We can compensate for this bias to an extent 
by calculating the log-fold enrichment of introductions between 
regions. This is computed as follows: 

where Iab is introductions from region A to region B, Ixx is intro-
ductions from any region to any region, Iax is introductions from 
region A to any other region, and Ixb is introductions from any-
where to region B. This computation can remove biases in rates of 
detected introduction which would apply to any pair of regions, 
but requires many regions to be computed as points of compari-
son. This score is used to color the map on Cluster-Tracker when a 
state is selected and has a very strong correlation with geographic 
distance.

Simulation for validation
To assay the performance of our heuristic, we fully simulated a 
pandemic phylogeny with VGsim (Shchur et al. 2021) and phast-
Sim (Maio et al. 2021). From the resulting mutation-annotated 
tree, we calculated true node region states based on VGsim’s 
migration event output and applied our heuristic with matUtils 
(McBroome et al. 2021). We then computed accuracy as the propor-
tion of internal nodes which have a heuristic value above 0.5 for 
the true state. Leaves are excluded from this calculation as they 
are taken as an input in our heuristic and will always be 100 per 
cent accurate.

For our specific results, we simulated a one-million-leaf SARS-
CoV-2 tree under a simple model in two equivalently sized regions 

with an even rate of migration between them, no strain or 
site selection and complete immunity for recovered individu-
als (Supplementary Table S2). We included a lockdown param-
eter starting at 5 per cent infected and ending at 1 per cent 
infected, with a 10-fold reduction in transmissivity under lock-
down, and a sampling multiplier of 0.2 in order to deepen the tree 
by effectively extending the time for one million samples to be
collected.

ARI and Internal Assignments Correct (IAC) are our quality 
metrics. ARI represents how well our method correctly groups 
samples into true clusters descended from a single introduction 
event. ARI performs best when migration is low, leading to large 
and clean clusters that are easily separated heuristically, and per-
forms somewhat better when the scale is increased. IAC is the 
proportion of internal nodes that are assigned to the true region 
by our heuristic across the bifurcating tree. It is computed on the 
correct bifurcating tree because collapsing true nodes from differ-
ent regions leads to nodes that are naturally indeterminate. IAC is 
generally robust, only performing slightly worse with an increased 
migration rate, likely as deeply set internal nodes tend toward 
indeterminacy with high distances to many leaves across different 
regions. This suggests that the primary limitation of our heuristic 
is simply the number of mutations available to distinguish sam-
ples from across varying regions rather than any structural or 
fundamental issues.

All code for this simulation is available as a modular and 
reproducible Snakemake pipeline at https://github.com/jmcb-
roome/pandemic-simulator.

Global phylogenetic tree construction
At UCSC (University of California Santa Cruz), we maintain a large 
phylogeny of all GISAID (Shu and McCauley 2017), GenBank (Say-
ers et al. 2021), and COG-UK (COVID-19 Genomics UK (COG-UK) 
consortiumcontact@cogconsortium.uk 2020) sequences using the 
script (https://github.com/ucscGenomeBrowser/kent/blob/mas-
ter/src/hg/utils/otto/sarscov2phylo/updatePublic.sh) and the 
UShER online phylogenetics suite (McBroome et al. 2021; Turakhia 
et al. 2021). Updates are performed daily by obtaining all newly 
uploaded sequences from each database and placing them on the 
previous day’s global phylogenetic tree with UShER (see McBroome 
et al. 2021). Starting with our phylogeny updated on 28 Novem-
ber 2021, we pruned all samples with long branch lengths and 
path lengths using the matUtils parameters—max-branch-length 45
and max-path-length 100—and performed a round of optimization 
with an SPR (Subtree Pruning and Re-Grafting) radius of 8. The 
resulting phylogeny contained 5,563,847 samples with a total tree 
parsimony of 4,847,954.

Computing USA state transmission
We obtained the latest mutation-annotated phylogenetic tree rep-
resenting the entirety of all public samples and all samples avail-
able on GISAID on 28 November 2021. As the standard format 
for publicly uploaded SARS-CoV-2 sequence identifiers is ‘Coun-
try/(Area)-CollectingAgencyInfo/Year|Date’, we extracted sample 
labels for samples in the USA by identifying samples with names 
beginning with ‘USA/’ and then extracting the two-letter state 
code, if it matches with a two-state letter code. This resulted in 
1,764,019 labeled samples belonging to the USA. Samples from 
outside the USA were labeled by country; countries and ambigu-
ous labels with less than 500 samples in GISAID and public data 
were excluded and their samples were removed. Samples from 
‘mink’ were additionally excluded as they may not be from human 
sources. The resulting tree contained 5,237,796 of the total of 
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5,563,847 samples available, reflecting more than 94 per cent of 
all SARS-CoV-2 genomic data collected and incorporated to date.

We applied matUtils introduce with default parameters to this 
tree and sample set and produced the full by-sample output. After 
computing basic statistics, we calculated the log-fold enrichment 
of introductions between all pairs of states, and a selection of 
other countries to and from the USA. All code for this paper is 
provided at https://github.com/jmcbroome/cluster-heuristic.

Cluster-Tracker website development
All relevant JavaScript and some example data files are 
provided at https://github.com/jmcbroome/introduction-website.
This GitHub includes a brief description of how to set up a local 
test site and run the backend pipeline for generating new results 
to display for your regions of interest. It is based on Leaflet 
(https://leafletjs.com/) and DataTables (https://datatables.net/) 
for the primary view and includes links to the Taxonium tree 
viewer (https://taxonium.org/) for detailed cluster exploration.

We include Python scripts to create the backend data for the 
website display, contained in the ‘data’ directory. This includes 
two versions of the primary pipeline. One is specific to the USA, 
which fills in many default parameters and uses data included 
in the repository. The second version is more flexible and config-
urable pipeline, which, given a tree, sample labels, and a GeoJSON, 
can create a Cluster-Tracker equivalent website for any set of
regions.

Comparison with published studies
To compare our approach to that of Alpert et al. (2021),
we retrieved the Auspice JSON they used to generate Fig. 3 from 
https://github.com/grubaughlab/CT-SARS-CoV-2 and obtained
Table S3 from their supplementary data online, which contains 
cluster labelings for samples from the tree represented by the 
JSON. We converted the Auspice JSON into the UShER MAT pro-
tocol buffer format using Python. We labeled all samples in the 
resulting tree by their country of origin and ran matUtils introduce 
with default parameters. The resulting labels were compared to 
the cluster labels presented in Table S3, and the ARI was computed 
across all labeled samples with scikit-learn (Pedregosa et al. 2011). 
We performed this analysis twice—once including all samples in 
their tree from any region and once excluding samples from the 
USA in their tree that were excluded from their clusters. The first 
method resulted in an ARI of 0.9 and the second a perfect 1.0; this 
discrepancy results from a single difference where a pair of large 
clusters, sibling to one another, are merged by our results when 
samples excluded from their clusters are included in our analysis. 
This is because a sample identical to the parent node of these two 
sibling clusters from the USA is excluded from Alpert et al.’s clus-
ters. In any case, the clusters we identify are highly concordant 
with Alpert et al.’s results. All code for this analysis is available at 
https://github.com/jmcbroome/cluster-heuristic.

Replication and data availability
Code to replicate our analysis is available at https://github.com/
jmcbroome/cluster-heuristic.

Code for complete simulation of coronavirus disease (COVID)-
like phylogenetic trees is available at https://github.com/jmcb-
roome/pandemic-simulator.

Our implementation of our heuristic is implemented as part of 
matUtils https://github.com/yatisht/usher with additional docu-
mentation at https://usher-wiki.readthedocs.io/en/latest/.

Our website source code is available at https://github.com/
jmcbroome/introduction-website.

All data were obtained from the public repositories GISAID 
(Shu and McCauley 2017), COG-UK (COVID-19 Genomics UK (COG-
UK) consortiumcontact@cogconsortium.uk 2020), and GenBank 
(Sayers et al. 2021), with full individual sample credits in Supple-
mentary Data 1.

Supplementary data
Supplementary data are available at Virus Evolution online.
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