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A B S T R A C T   

Brain morphology has been suggested to be predictive of drug treatment outcome in major depressive disorders 
(MDD). The current study aims at evaluating the performance of pretreatment structural brain magnetic reso-
nance imaging (MRI) measures in predicting the outcome of a drug treatment of MDD in a large single-site 
cohort, and, importantly, to assess the generalizability of these findings in an independent cohort. The 
random forest, boosted trees, support vector machines and elastic net classifiers were evaluated in predicting 
treatment response and remission following an eight week drug treatment of MDD using structural brain mea-
sures derived with FastSurfer (FreeSurfer). Models were trained and tested within a nested cross-validation 
framework using the NeuroPharm dataset (n = 79, treatment: escitalopram); their generalizability was 
assessed using an independent clinical dataset, EMBARC (n = 64, treatment: sertraline). Prediction of antide-
pressant treatment response in the Neuropharm cohort was statistically significant for the random forest (p =
0.048), whereas none of the models could significantly predict remission. Furthermore, none of the models 
trained using the entire NeuroPharm dataset could significantly predict treatment outcome in the EMBARC 
dataset. Although our primary findings in the NeuroPharm cohort support some, but limited value in using 
pretreatment structural brain MRI to predict drug treatment outcome in MDD, the models did not generalize to 
an independent cohort suggesting limited clinical applicability. This study emphasizes the importance of 
assessing model generalizability for establishing clinical utility.   

1. Introduction 

Major Depressive Disorder (MDD) is one of the most prevalent and 
severe brain disorders in the world with 6.9 % of the European popu-
lation estimated to suffer from the disease, making it the most burden-
some disease in Europe (Wittchen et al., 2011). MDD is a highly 
heterogeneous disorder where the diagnosis is based on the presence of a 
set of symptoms leading to 227 unique ways to meet the criteria for the 
MDD based on the Diagnostic Statistical Manual (DSM-5) (Zimmerman 
et al., 2015). MDD can be treated in many different ways, including 
pharmaceuticals, psychotherapy, electroconvulsive therapy, and other 
somatic therapies, or combinations thereof (Gartlehner et al., 2017). 
Whereas selective serotonin/noradrenaline reuptake inhibitors (SSRI/ 

SNRI) are first-line pharmaceutical treatment for MDD, only 40–60 % of 
patients respond clinically, and only 30–45 % achieve clinical remission 
(Carvalho et al., 2007; Khin et al., 2011; Thase et al., 2001). Moreover, 
up to a third of patients will not respond to a second-line medication 
either (Rush et al., 2006). Identifying biomarkers that enable the clini-
cian to choose the optimal medication for the patient is seen as key for a 
precision medicine approach and accordingly, many attempts to define 
such a biomarker have been made (Fu et al., 2012). Such a biomarker 
would be valuable to guide the treatment of MDD and lower the rate of 
unsuccessful therapies, which would be of immense benefit to patients 
and reduce the associated economic burden. 

Magnetic resonance imaging (MRI) is a prevalent and non-invasive 
method for measuring brain structure and function. Structural 
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properties of the brain derived from MRI modalities, such as T1- 
weighted images, have the advantage of being relatively easy to acquire 
and, therefore, carry a strong potential as biomarkers for clinical 
application. The structure of the brain has reliably been shown to be 
altered in MDD patients compared to healthy controls. Although the 
reported effect sizes are small (Cohen’s d < 0.2) and it seems to be 
mainly associated with late-onset MDD (Eker and Gonul, 2010), many 
studies have reported reduced hippocampal volume in MDD (Eker and 
Gonul, 2010). Furthermore, several studies have identified associations 
between treatment outcome and regional cortical thickness and volume, 
as well as whole brain volume (Fonseka et al., 2018; Frodl et al., 2008; 
Järnum et al., 2011; Phillips et al., 2015). As reviewed in (Enneking 
et al., 2020), multiple studies have thus investigated if structural brain 
characteristics can be used as biomarkers of response to antidepressant 
drug treatment in MDD. 

A handful of studies have attempted to use morphological features of 
the brain derived from pre-treatment MRI to predict the outcome (i.e., 
response or remission) to antidepressant treatment in MDD with varying 
study protocols (e.g., choice of antidepressant drug) and methodology 
(Bartlett et al., 2018; Costafreda et al., 2009; Gong et al., 2011; Grzenda 
et al., 2021, p. 1; Liu et al., 2012; Nouretdinov et al., 2011). Earlier 
studies in small cohorts (n = 18 to 46) adopted similar approaches and 
classified treatment outcome using variants of voxel-based morphom-
etry (features) combined with support vector machine classifiers (Cos-
tafreda et al., 2009; Gong et al., 2011; Liu et al., 2012; Nouretdinov 
et al., 2011). In two studies, sparse clusters showed high predictive ac-
curacy for drug treatment response, but these clusters could not readily 
be associated with neurobiologically meaningful functions (Gong et al., 
2011; Liu et al., 2012). Two additional reports by the same group 
applying a different methodology on the same data reported greater 
gray matter density in the right rostral anterior cingulate cortex, left 
posterior cingulate cortex, left middle frontal gyrus, and right occipital 
cortex as a predictive marker of treatment remission (Costafreda et al., 
2009; Nouretdinov et al., 2011). The predictive performances of these 
studies were evaluated using leave-one-out cross-validation designs, and 
accuracy ranged from 70 % to 89 %. However, the use of leave-one-out 
cross-validation has since been strongly discouraged, particularly for 
small cohorts, due to an increased risk of performance misestimation 
(Flint et al., 2021; Varoquaux et al., 2017). In a more recent study 
including a large (n = 184) multi-center cohort (Establishing moderators 
and biosignatures of antidepressant response in clinical care; EMBARC), 
the prediction of remission 8 weeks after initiation of sertraline treat-
ment (n = 87) or placebo (n = 97) was assessed using a random forest 
classifier applied to estimates of regional cortical thickness and 
subcortical volumes (Bartlett et al., 2018). Notably, the features were 
obtained from structural MRIs acquired both before and one week after 
the intervention was initiated. When the performance of this approach 
was evaluated using repeated fivefold cross-validation, an accuracy of 
64 % was achieved. Post hoc analyses also revealed that thickening of 
the rostral anterior cingulate was associated with better responses to 
sertraline. In spite of these promising initial findings on the clinical 
usefulness of brain structural information for predicting the outcome of 
antidepressant treatment in MDD, these results remain to be replicated 
in an independent cohort. 

Generalizability, the applicability of a model to an unseen dataset, is 
a core principle of machine learning and is essential to establishing the 
clinical usefulness of predictive models. Even when all proper proced-
ures for establishing evidence for prediction are followed within a 
dataset (Poldrack et al., 2020), the real litmus test for a model is the out- 
of-sample prediction performance (Cohen et al., 2021). Recent large- 
scale efforts have been made toward determining the generalizability 
of models for the classification of MDD patients from healthy controls 
using structural MRI (Belov et al., Unpublished results). However, to our 
knowledge, the generalizability of models using pretreatment structural 
MRI to predict pharmacological treatment outcome in MDD has never 
been evaluated. Given the wide phenotypic heterogeneity of MDD, it is 

crucial to determine whether these models can be used to predict the 
treatment outcome of MDD patients from new sites. 

We here assess the ability of structural brain MRI measured prior to 
treatment to predict the response and remission to 8 weeks of treatment 
with the SSRI escitalopram among complying patients. To this end, we 
leveraged data from the NeuroPharm cohort (Köhler-Forsberg et al., 
2020), the largest single-site study of drug treatment outcome in MDD. 
We hypothesized that in MDD, structural brain MRI scans acquired prior 
to treatment-onset would have predictive value in determining the 
response to drug treatment. Thereafter, we evaluate the generalizability 
of the models trained using the complete NeuroPharm cohort in an in-
dependent dataset (EMBARC). 

2. Patients & methods 

2.1. Participants 

The current study is based on the NeuroPharm dataset, a large, 
single-site, non-randomized, single-treatment, naturalistic, open-label 
clinical trial evaluating neuroimaging, biochemical, EEG, and neuro-
psychological measures as biomarkers of antidepressant treatment 
outcome in depressed patients (https://www.clinicaltrials.gov, 
NCT02869035). 

Here we summarize relevant study design elements, which are 
described elsewhere in greater detail (Köhler-Forsberg et al., 2020). One 
hundred untreated patients with MDD were initially included in the 
study. Patients were recruited from a central referral center within the 
Mental Health Services, Capital Region of Denmark or referred directly 
from one of five general practitioners. At inclusion, patients had to be 
between 18 and 65 years old and were required to meet the DSM-5 
criteria for single or recurrent unipolar depression. Patients were 
required to be moderately to severely depressed, i.e., a score greater 
than 17 on the Hamilton Depression Rating Scale-17 item (HAMD-17) 
(Hamilton, 1960). Clinical diagnosis was confirmed by an experienced 
psychiatrist and confirmed with the “Mini-International Neuropsychi-
atric Interview” (Sheehan et al., 1998). 

The study protocol was approved by the Ethics Committee (H- 
15017713), the Danish Data Protection Agency, and Danish Medicines 
Agency (protocol number: NeuroPharm-NP1, EudraCT-number 2016- 
001,626–34). The study complies with the Declaration of Helsinki II, 
and a Good Clinical Practice unit in the Capital Region of Denmark 
monitored the project. All participants signed written informed consent 
after an oral and written description of the study. Patients did not 
receive compensation for participation. 

2.2. Treatment protocol 

The full treatment protocol is detailed elsewhere (Köhler-Forsberg 
et al., 2020). Briefly, after inclusion, MDD individuals underwent, 
among other things, baseline assessments of depression- and anhedonic 
severity, neuropsychological testing, and a baseline MRI scan. Patients 
subsequently entered a treatment protocol with escitalopram to last up 
to twelve weeks. Escitalopram was the primary pharmacological treat-
ment (flexible dosages: 5–20 mg/day), administered in alignment with 
current clinical practice. Patients not responding (<25 % decrease in 
HAMD-6) or with unacceptable side effects could switch to duloxetine 
from week 4 and onward (flexible dosages: 30–120 mg/day), consistent 
with clinical guidelines. Antidepressant medication was provided free of 
charge. Non-compliant patients, i.e., reporting to have taken <2/3 of 
their tablets or with serum concentrations of medicine below the 
detection limit at week 8, were excluded. Depression severity and side 
effects were assessed by a study physician or supervised research as-
sistant during clinical follow-up sessions at 1, 2, 4, 8, and 12 weeks after 
treatment. Patients did not receive any other form of treatment than the 
described antidepressant regiment, including psychotherapy, for the 
duration of the trial. 
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2.3. Clinical assessment 

Depression-severity at baseline depression severity and throughout 
the study was monitored by the Hamilton Depression Rating Scale 17 
items (HAMD-17) and its subscale of 6 items (HAMD-6) (Timmerby 
et al., 2017). HAMD-6 was chosen a priori as the primary outcome for the 
evaluation of depression based on recent evidence of superior sensitivity 
to change in depression severity and clinimetric properties compared to 
HAMD-17 (Dunlop et al., 2019). Response to antidepressant treatment 
was defined as reduction from baseline of at least 50 % in HAMD-6 score 
at week 8, and remission was defined as HAMD-6 ≤ 4 at week 8. 

2.4. MRI data acquisition 

All MRI scans were acquired using a Siemens (Erlangen, Germany) 
MAGNETOM Prisma 3T scanner with a 64-channel head coil. High- 
resolution, structural T1-weighted magnetization-prepared rapid 
gradient-echo structural scans were acquired (repetition time = 1900 
ms, echo time = 2.58 ms, inversion time = 900 ms, flip angle = 9◦, 
number of slices = 224, slice thickness = 0.9 mm, matrix = 256 × 256, 
in-plane resolution 0.9 × 0.9 mm, no gap, and acquisition time = 4 min 
26 s). 

2.5. Processing of structural MRI 

The structural MRI data was processed using FastSurfer (FreeSurfer) 
(Henschel et al., 2020) (https://github.com/Deep-MI/FastSurfer). An 
overall quality check of the processing was performed to ensure that no 
large error in the segmentation process was present, however, no 
manual editing was performed to provide a fully automated and better 
clinically applicable evaluation. The average cortical thickness of the 34 
regions, per hemisphere, defined by the Desikan-Kiliany atlas (29) and 
the volume of eight subcortical regions (i.e., accumbens, amygdala, 
caudate, cerebellar gray matter, hippocampus, pallidum, putamen, and 
thalamus), as well the volume of the lateral ventricles and the mean 
cortical thickness of each hemisphere were extracted to be used for 
comparison between the different groups and as features in the classi-
fication models. Intracranial volume was quantified using SPM12 
(v7219, https://www.fil.ion.ucl.ac.uk/spm) in Matlab (R2019a, Math-
Works, Natick,MA, USA) by segmenting the gray matter, white matter, 
and cerebrospinal fluid and summing their combined volume (Malone 
et al., 2015). 

2.6. Assessment of group differences 

Group differences in demographic characteristics between re-
sponders and non-responders or remitters and non-remitters, within and 
between datasets, were assessed using Wilcoxon rank sum tests and 
Pearson’s chi-squared test where appropriate. Similarly, group associa-
tions with cortical thickness or subcortical volumes were evaluated 
independently for each region of interest using linear regression models, 
with age and sex as covariate for estimates of cortical thickness, and 
additionally with intracranial volume for subcortical volumes (Malone 
et al., 2015). P-values were adjusted for multiple comparisons using the 
false discovery rate (FDR) method (Benjamini and Hochberg, 1995) and 
q < 0.05 was considered statistically significant. All statistical tests and 
classification analyses were performed using R v4.1.0 (R Core Team, 
2013). 

2.7. Prediction of treatment outcome 

Prediction of treatment response or remission was evaluated using 
some of the most commonly used classifiers (caret, v6.0.92) (Kuhn, 
2008): the random forest (randomForest, v4.7.1.1) (Breiman, 2001; 
Liaw and Wiener, 2002), boosted trees (xgboost, xgbTree, v1.6.0.1), 
support vector machines (SVM) (kernlab, svmRadialWeights, v0.9.31), 

and elastic net (glmnet, v4.1.4). Class weights were set to 1 - p, where p is 
the proportion of a given class among all samples. These weights were 
used to ensure equal representation of each class during training. Esti-
mates of regional cortical thickness, subcortical volumes, mean cortical 
thickness of the whole hemisphere, and intracranial volumes, as well as 
age, sex, HAMD-6 at baseline (week 0), and recurrence status (i.e, first- 
episode or recurrent) were and used as input features. Numerical fea-
tures were centered and scaled independently per training set and 
applied to the respective test set. Model performance was assessed using 
the area under the ROC Curve (AUC), balanced accuracy, sensitivity, 
and specificity evaluated within a stratified nested cross-validation with 
a repeated cross-validation with 5-fold and 25 repeats as outer loop and 
a 5-fold cross-validation as nested loop for hyperparameters optimiza-
tion, as recommended in (Varoquaux et al., 2017). Hyperparameters 
optimization for all classifiers aside from the random forest was per-
formed according to the default implementation in caret. For the random 
forest, the optimization was performed for both the number of variables 
randomly sampled as candidates at each split (mtry) and the number of 
trees to grow (ntree). The statistical significance of the AUCs were 
empirically derived using a null distribution estimated from 1,000 per-
mutations for the elastic net and random forest and 100 permutations for 
the boosted trees and SVM. A smaller number of permutations were used 
for boosted trees and SVM due to the computational load required to 
train these models. 

2.8. Generalizability of the classifiers on the EMBARC dataset 

EMBARC is a large, multicenter, double-blind, randomized, placebo- 
controlled trial evaluating the treatment response to the SSRI sertraline 
in patients with MDD. The rationale and design of this study have been 
previously described (Trivedi et al., 2016). Individuals from the 
EMBARC dataset, meeting the same inclusion criteria as for Neuro-
Pharm, were identified. Notably, only patients having received sertra-
line treatment,with HAMD-17 greater than 17 at week 0, and with pre- 
treatment structural MRI at week 0 were included. Pre-treatment 
structural MRIs were processed using the approach described above 
and the corresponding brain morphological features were extracted. 
Models trained on NeuroPharm data were evaluated in the task of pre-
dicting treatment response and remission in the EMBARC dataset using 
the same input features (i.e., pre-treatment MRI measures, age, sex, 
HAMD-6 at week 0, and recurrence status). The EMBARC data was 
normalized to match the data used for training using the parametric 
ComBat (sva, v4.32.0) procedure (Johnson et al., 2007). Model perfor-
mance was estimated using bootstrap with 1,000 resamples and the 
statistical significance of the mean AUC was empirically derived using a 
null distribution estimated from 1,000 permutations. 

2.9. Voxel-based morphometry 

As previous studies have largely been performed using voxel-based 
morphometry (VBM) (Costafreda et al., 2009; Gong et al., 2011; Liu 
et al., 2012; Nouretdinov et al., 2011), we briefly evaluated this 
approach in the NeuroPharm dataset. The standard VBM protocol was 
applied using SPM12: 1) the structural MR images were segmented into 
gray matter, white matter and cerebrospinal fluid and imported into a 
rigidly aligned space, 2) gray and white matter segmentations were 
iteratively registered by non-linear warping to a group template 
generated from all images by the Diffeomorphic Anatomical Registra-
tion Through Exponentiated Lie algebra (DARTEL) toolbox (Ashburner, 
2007), 3) the gray matter segmentations were normalized to MNI space, 
and scaled by the Jacobian determinants of the nonlinear deformation 
(modulation) to preserve the overall amount of each tissue class, and 4) 
the spatially normalized and modulated gray matter segmentations were 
smoothed with a 8 mm full width at half maximum (FWHM) Gaussian 
kernel. These final images were used as measures of volume in subse-
quent VBM analyses. 
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Voxel-wise group differences in VBM volumes were assessed using F- 
tests. P-values were corrected for family-wise error and considered sig-
nificant at p < 0.05. For classification, significant voxels to be included 
as features were identified using an uncorrected voxel-level threshold of 
p < 0.005 (Costafreda et al., 2009). Significant voxels were identified 
independently for each training sets and used to extract VBM volumes in 
both the training and test sets. Classification using VBM volumes (in 
place of cortical thickness or subcortical volumes) was otherwise per-
formed as described in Section 2.7. 

2.10. Data and code availability 

The NeuroPharm data can be made available upon request through 
an application to the Cimbi database (https://www.cimbi.dk). The 
EMBARC dataset can be accessed through the National Institute of 
Mental Health Data Archive (https://nda.nih.gov). The source code for 
this manuscript is freely available at https://github.com/vbeliveau/M 
DD_SSRI_structural_prediction. 

3. Results 

3.1. Demographics 

A flow chart of the participants in the study is shown in Fig. 1. Of the 
100 patients enrolled in the NeuroPharm study, three did not complete a 
pre-treatment structural MRI scan. Eighteen of the 97 remaining pa-
tients were lost at follow-up (n = 18), resulting in 79 MDD patients 
having both structural MRI data and clinical assessments at baseline and 
week 8. Out of 336 participants, 64 patients were included from the 
EMBARC dataset. 

The demographics and clinical variables are presented in Table 1 for 
the NeuroPharm data and in Table S1 for the EMBARC dataset. No 
significant differences in demographic characteristics between the 
treatment outcome groups were found (all p-values > 0.05), aside from 
the expected difference in HAMD-6 at week 8 (p < 0.001). Based on the 
relative change in HAMD-6 at week 8 compared to baseline, a total of 46 
(58.2 %) patients were labeled as responders and 33 (41.8 %) non- 
responders, and 34 (43.0 %) patients were labeled as remitters and 45 

Fig. 1. Study flowchart for the NeuroPharm dataset presenting the assignment to the response and remission groups based on the clinical assessment of HAMD-6 at 
week 8. 
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(57.0 %) as non-remitters. As expected, responder and remitter groups 
overlapped: all remitters were also classified as responders, 12 (15.2 %) 
responders were classified as non-remitters, and the remaining non- 
responders were labeled non-remitters. The number of participants in 
each group is presented as a contingency table (Table 2) for the Neu-
roPharm dataset and in Table S2 for the EMBARC dataset. 

Significant differences in age (W = 1143, p < 0.0001) and recurrence 
status (χ2 = 12.409, df = 1, p < 0.0001) were observed between the 
NeuroPharm and EMBARC datasets, where as sex was not different (χ2 

= 0.395, df = 1, p = 0.530). 

3.2. Group differences 

No significant group difference in regional cortical thickness or 
volume pretreatment was found between responders and non- 
responders nor between remitters and non-remitters in the Neuro-
Pharm dataset. Detailed results are presented in Tables S1-2. Similarly, 
no significant group difference was identified in the pretreatment 
EMBARC data, aside from the volume of the right putamen between 
responders and non-responders (t = 3.75, q = 0.035, FDR-corrected), see 
Tables S3-4 for details. 

3.3. Prediction of treatment outcome within the NeuroPharm dataset 

Detailed information on the performance of the models in predicting 
treatment response and remission in the NeuroPharm dataset is reported 
in Table 3. For treatment response, only the random forest classifiers 
achieved mean AUCs significantly greater than the null (p = 0.048). For 
the prediction of treatment remission, none of the models obtained 
mean AUCs significantly greater than the null. Fig. 2 presents the mean 
receiver operating characteristic (ROC) curves of the models. 

3.4. Assessment of generalizability 

To evaluate the generalizability of the identified predictive model 
derived based on the NeuroPharm data, we tested the models for pre-
dicting response or remission in the EMBARC dataset. To this end, 
classification models were trained to predict treatment response and 
remission using all available data (i.e., n = 79) from the NeuroPharm 
dataset. Applied to the EMBARC dataset, neither the elastic net nor the 
random forest achieved AUCs significantly greater than the null for 

treatment response (p = 0.57, and p = 0.53, respectively) and remission 
(p = 0.69, and p = 0.83, respectively). Detailed performance metrics are 
reported in Table S7. Due to their poor performance in the NeuroPharm 
dataset, we did not evaluate the boosted trees and SVM models. 

As a post hoc analysis, we evaluated the performance of classification 
models trained on only the EMBARC dataset using the cross-validation 
framework previously described. These models were not able to pre-
dict treatment response and remission better than chance (all mean 
AUCs < 0.5). Fig. S1 presents the corresponding ROC curves and the 
associated performance metrics are reported in Table S8. 

3.5. Voxel-based morphometry 

No significant group differences in VBM volumes were identified 
between responders and non-responders nor between remitters and non- 
remitters. The predictive performance of the classifiers using VBM vol-
umes were limited at best, with mean AUCs ranging from 0.42 to 0.58. 
We note that p-values for the AUCs were not here estimated given their 
closeness to 0.5 and the large computations this would entail. ROC 
curves are presented in Fig. S2 and the associated performance metrics 
are included in Table S9. 

4. Discussion 

Previous studies have claimed some, but limited success in predicting 
the outcome of drug treatments in MDD using structural MRI, but so far, 
no study has demonstrated the generalizability of such models in an 
independent cohort. Generalizability is a cornerstone to any form of 
clinical application and is a prerequisite to claims of usefulness beyond 
research interest. This point is critical for assessing the results presented 
in our study. 

In this work, we evaluated the potential of pre-treatment structural 
brain MRI for the prediction of antidepressant treatment outcome in 
patients with MDD following an eight-week treatment program starting 
with escitalopram. In the NeuroPharm dataset, no significant group 
difference in pretreatment regional cortical thickness or subcortical 
volume was observed between responders and non-responders, nor be-
tween remitters and non-remitters. Our classification models were first 
trained and tested in-sample (NeuroPharm dataset only), and their 
generalizability was subsequently assessed using a second independent 
clinical test dataset (EMBARC). At first glance, the predictive models 
evaluated in-sample using cross-validation suggested that distinct pro-
files of brain structure could be captured by our models enabling us to 
predict treatment response above chance. In contrast to earlier, smaller 
studies, the classification performances of our models were noticeably 
reduced both for response and remission (Bartlett et al., 2018; Costa-
freda et al., 2009; Gong et al., 2011; Liu et al., 2012; Nouretdinov et al., 
2011), but were still comparable to that of (Bartlett et al., 2018) (Bartlett 
et al., 2018). However, our models did not generalize to a new dataset 

Table 1 
Demographics and clinical variables for remission and response in the NeuroPharm dataset. HAMD-6: Hamilton Depression Rating Scale-6 item.   

Response Remission 
Characteristic Non-responder, N = 331 Responder, N = 461 p-value2 Non-remitter, 

N = 451 
Remitter, 
N = 341 

p-value2 

Age 24 (22, 27) 25 (23, 29)  0.2 24 (22, 27) 26 (23, 29)  0.14 
Sex    0.4    0.13 
Female 26 (79 %) 32 (70 %)  36 (80 %) 22 (65 %)  
Male 7 (21 %) 14 (30 %)  9 (20 %) 12 (35 %)  
HAMD-6 - Baseline 12 (11, 13) 12 (12, 13)  0.9 13 (12, 13) 12 (11.25, 13)  0.2 
HAMD-6 - Week 8 9 (7, 11) 3 (2, 5)  <0.001 8 (6, 10) 2 (1, 3)  <0.001 
Recurrence status    0.5    0.6 
First-episode 12 (36 %) 20 (43 %)  17 (38 %) 15 (44 %)  
Recurrent 21 (64 %) 26 (57 %)  28 (62 %) 19 (56 %)   

1 Median (IQR); n (%) 
2 Wilcoxon rank sum exact test; Pearson’s Chi-squared test; Wilcoxon rank sum test 

Table 2 
Contingency table presenting the number of participants from the NeuroPharm 
dataset in each of the treatment outcome groups.   

Non-remitter Remitter Total 

Non-responder 33 0 33 
Responder 12 34 46 
Total 45 34 79  
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which clearly undermines their clinical value. Subsequent evaluations 
using VBM, an approach adopted by most earlier studies (Costafreda 
et al., 2009; Gong et al., 2011; Liu et al., 2012; Nouretdinov et al., 2011), 
also revealed no group differences in VBM volumes between the treat-
ment outcomes and the models derived from these data achieved only 
limited predictive performances. As such, these results further perpet-
uate the current and unfortunate situation where strong predictive 
performance of small studies using machine learning cannot be repli-
cated by studies using larger datasets (Flint et al., 2021). Indeed, it is 
worth emphasizing that the training (NeuroPharm) and test (EMBARC) 
dataset used here represent two of the largest studies with MRI inves-
tigating treatment outcome following an SSRI intervention. Even though 
the primary evaluation of the models was performed within a cross- 
validation framework, which is generally accepted as unbiased (Varo-
quaux et al., 2017), estimating the models’ performance using a single 
dataset (i.e., NeuroPharm dataset only) would have been misleading 
concerning their generalizability and clinical usefulness. 

It is unclear whether the range of predictive performances observed 
across previous studies and the lack of generalizability from our models 
on the EMBARC dataset stem from different choices of drugs, intensity of 
clinical follow-up, study design, methodology, or phenotypic heteroge-
neity (i.e., MDD subtypes) which may not have been well captured in 
smaller cohorts. In fact, evidence of disease heterogeneity is readily 
apparent in both the NeuroPharm and EMBARC cohorts with 27 % and 
21 % of the responders, respectively, showing response to the treatment, 
but not achieving remission, while the remaining responders also ach-
ieved remission. Interestingly, our treatment response model achieved 

numerically better performances compared to that of remission. 
Although many studies have proposed different definitions for subtypes 
of MDD (Musil et al., 2017; van Loo et al., 2012), there is currently no 
overwhelming evidence justifying their application in clinical diagnosis 
and, as of yet, their usage in conjunction with brain structural measures 
for the prediction of antidepressant treatment outcome remains to be 
investigated. Without more information it becomes difficult to identify 
the specific factors driving these discrepancies across studies and future 
research should concentrate on establishing model generalizability 
across different cohorts. One possible approach is to establish models 
that are invariant and robust to dataset shift (Quiñonero-Candela et al., 
2008). However, obtaining the data necessary to train such models can 
only be accomplished through data sharing efforts by the research 
community. To this end, we make our models and code publicly avail-
able and access to the data can be requested (see the Data and code 
availability section). 

When looking at model interpretability, there is little agreement 
across previous studies concerning which brain regions provide struc-
tural information predictive of treatment outcome following antide-
pressant intervention in MDD. Across the NeuroPharm and EMBARC 
datasets, only the volume of the right putamen in the EMBARC dataset 
was significantly different between responders and non-responders. The 
orbitofrontal cortex and the hippocampus are two brain regions thought 
to be primarily implicated in the drug treatment of MDD (Bartlett et al., 
2018). Early pathological studies have demonstrated a decrease in 
cortical thickness, neuronal size, and neuronal and glial densities in the 
rostral orbitofrontal cortex of depressed individuals (Rajkowska et al., 

Table 3 
Performance metrics of the different classifiers for predicting treatment response or remission in the NeuroPharm dataset. AUC: Area under the ROC Curve. Values are 
given as mean (SD), aside from the p-values.   

Response Remission 
Classifier AUC Balanced 

Accuracy 
Sensitivity Specificity AUC p- 

value 
AUC Balanced 

Accuracy 
Sensitivity Specificity AUC 

p- 
value 

Elastic Net 0.61 
(0.04) 

59.4 (2.5) 60.0 (7.0) 58.8 (6.5)  0.067 0.50 
(0.05) 

48.4 (4.7) 54.5 (7.2) 42.2 (8.0)  0.440 

Random 
Forest 

0.62 
(0.03) 

58.0 (3.2) 37.1 (5.4) 79.0 (2.7)  0.048 0.59 
(0.03) 

55.2 (3.0) 75.3 (4.6) 35.1 (4.4)  0.115 

SVM 0.46 
(0.04) 

48.0 (3.5) 41.0 (13.3) 55.0 (16.8)  1.000 0.50 
(0.03) 

49.5 (4.8) 84.0 (9.9) 15.1 (9.6)  0.470 

Boosted Trees 0.55 
(0.04) 

53.8 (3.7) 40.4 (4.1) 67.2 (5.5)  0.220 0.56 
(0.06) 

54.2 (6.0) 66.0 (6.6) 42.4 (9.1)  0.160  

Fig. 2. Mean receiver operating characteristic (ROC) curves of the different classifiers for the classification of (A) response and (B) remission in the Neuro-
Pharm dataset. 
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1999). In a mixed-treatment study, greater hippocampal volume at 
baseline was found in remitters compared to non-remitters (MacQueen 
et al., 2008), a finding which we could not reproduce. Longitudinal 
studies have also revealed that orbitofrontal cortex thickness and hip-
pocampal volume are increased in remitters and decreased in non- 
remitters over the treatment period (Phillips et al., 2015) and that 
greater hippocampal volume is associated with better clinical outcome 
(Frodl et al., 2008). Although similar inferences could likely be drawn if 
one was to look at the interpretability of our models trained on the 
NeuroPharm dataset, e.g., using Shapley values, interpreting the 
importance of features within models which do not generalize is likely to 
be misleading. Ultimately, our results regarding regional differences are 
in line with recent evidence suggesting that structural alterations in 
MDD may be relatively small and heterogeneous (Schmaal et al., 2017, 
2016) and indicate that more research is needed to disentangle the 
complex interplay between the physiological mechanisms leading to 
changes in brain morphology in MDD. 

In this study, we have purposefully avoided including additional 
features which were available from the NeuroPharm and EMBARC co-
horts, such as clinical characteristics, functional MRI, positron emission 
tomography or quantitative electroencephalogram (qEEG) parameters, 
to be able to draw conclusions centered on the predictive capabilities of 
structural MRI and basic demographics. Other studies utilizing the 
NeuroPharm cohort have investigated prediction of treatment response 
by reward processing using functional MRI (Brandt et al., 2021) and 
alpha asymmetry from qEEG (Ip et al., 2021), but with limited success. 
Future work should concentrate on combining the information of mul-
tiple domains to improve the prediction of outcome following antide-
pressant treatment in MDD. 

A few limitations for this work have to be acknowledged. Firstly, 
some individuals (n = 10) included in the NeuroPharm dataset switched 
their SSRI treatment to the SNRI duloxetine during the course of the 
treatment. Although this deviates from a perspective focused solely on 
the treatment of MDD with a unique drug, it does reflect the naturalistic 
clinical course of a drug intervention in the treatment of MDD and is 
therefore closer to clinical application outside of the research setting. 
Secondly, some individuals from the NeuroPharm dataset were excluded 
as they did not follow the complete treatment protocol up to week 8 due 
to reasons which could potentially be linked to the treatment, i.e., acute 
suicidal, excessive anxiety, adverse side-effect to SNRI, or spontaneous 
remission. These individuals should not be excluded in the context of a 
randomized controlled trial, nonetheless, they were not included here so 
that the models trained using NeuroPharm data could be applied to the 
EMBARC dataset where this information is not available, and to make 
our results relatable to previous studies where this exclusion is also 
performed. Finally, it is worth noting that there are important intrinsic 
differences between the NeuroPharm and the EMBARC datasets, with 
some of the most striking being a difference in mean age of 14 years 
between the two datasets and the usage of a different SSRI drugs (i.e., 
escitalopram and sertraline) which may not have identical treatment 
effects. 

5. Conclusion 

The usefulness of pre-treatment structural brain MRI in predicting 
the outcome of antidepressant treatment in MDD is not convincing. Our 
work utilizing the NeuroPharm cohort indicates that treatment response 
can be predicted above chance in-sample, but these results did not 
generalize to an independent test dataset. Future work should concen-
trate on improving the generalizability of the models across cohorts and 
combining features from structural brain MRI with information from 
other domains. 
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