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The partner and localizer of BRCA2 (PALB2) is a major BRCA2 binding partner that

participates in homologous recombination repair in response to DNA double-strand

breaks. Germline alterations of the PALB2 gene have recently been associated with a

high risk of developing breast cancer. We investigated a 37-year-old Caucasian woman

with breast cancer and family history of breast cancer using targeted next generation

sequencing. A novel heterozygous deletion involving exons 5 and 6 was found in the

PALB2 gene, and resulted in the production of a truncated PALB2 protein. These findings

expand the mutational spectra of PALB2-associated breast cancer, and may improve the

mutation-based screening and genetic diagnosis of breast cancer.
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BACKGROUND

Breast cancer is themost frequently diagnosed cancer and the leading cause of death among women
worldwide (1). Most breast cancers are sporadic, whereas up to 10% are hereditary. Hereditary
breast cancers tend to develop earlier in life than non-inherited (sporadic) cases and are more
likely to develop in both breasts. In addition, multiple cancer diagnoses in consecutive generations
and/or within the same subject, and transmission of gene alterations increase the risk of certain
types of cancers to offspring (2). Themost common cause of hereditary breast cancer is an inherited
germline pathogenic variants (PVs) in the high-penetrant cancer predisposition genes BRCA1 and
BRCA2 (3–5). A recent study on a large prospective cohort showed that the cumulative breast
cancer risk to age 80 years was 72% for BRCA1 and 69% for BRCA2 carriers, and the cumulative
risk for contralateral breast cancer 20 years after breast cancer diagnosis was 40% for BRCA1 and
26% for BRCA2 carriers (5). Advances in DNA sequencing techniques have helped to identify
additional breast cancer susceptibility genes (4, 6). Among these genes, germline PVs in the Partner
and localizer of BRCA2 (PALB2) gene appear to confer the highest risks (7). PALB2 is located on
chromosome 16p12.2, and encodes a protein which is essential for repair of double-strand DNA
breaks by DNA homologous recombination (HR). The PALB2 protein acts as a linking hub of a
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macromolecular complex including BRCA1 and BRCA2 and
facilitates the function of RAD51, a protein vital for strand
invasion during HR. PALB2 also interacts directly with and
stabilizes BRCA2 during formation of the RAD51 nucleoprotein
filament (8–11). Notably, PALB2 is essential to enable BRCA2
to perform its repair functions, which occur via HR, DNA
double-strand break repair and S-phase DNA damage checkpoint
control (8, 11). Not only PALB2 protein interacts with BRCA2
thanks to the domain at the C-terminus of PALB2, but it
also binds to BRCA1 with its coiled-coil motif at the N-
terminus. The disruption of this complex may result in efficiency
decline of HR repair (12). In addition to promoting HR,
PALB2 reduces the oxidative stress through its interaction
with KEAP1. KEAP1, under normal condition, binds and
inhibits the antioxidant transcription factor NRF2 leading to
its degradation. PALB2 interacts competitively with KEAP1
causing NRF2 accumulation, thus regulating cellular redox
homeostasis (13). Biallelic mutations in PALB2 result in a
subtype of Fanconi anemia, which is a rare autosomal recessive
syndrome characterized by genome instability, early bone
marrow failure, growth abnormalities and increased cancer
susceptibility. Otherwise, when PALB2 mutations occur as
monoallelic, they are associated with predisposition to breast and
other cancers (11).

TP53, PTEN, SKT11, CDH1 and NF1 are syndromic genes
causing also relevant/high-risk for breast cancer. Inherited PVs
in CHEK2, ATM, BARD1, BRIP1, and RAD51D were associated
with moderate risks of breast cancer (6, 14, 15). Recently,
FANCM, which encodes for a DNA translocase, has been
suggested as a novel breast cancer predisposition gene, with
greater effects for the ER-negative and triple-negative breast
cancer subtypes (16, 17).

At clinical level, when germline PVs are identified in breast
cancer susceptibility genes, primary or secondary prevention
programs can be implemented, and tailored treatments
initiated. Primary breast cancer prevention measures should
be implemented through an accurate risk assessment. Primary
prevention strategies are represented by chemoprevention with
the selective estrogen receptor modulators (tamoxifen and
raloxifen) or aromatase inhibitors (anastrozole and exemestane)
(18) and by bilateral risk-reducing mastectomy (19). Secondary
breast cancer prevention consists in screening programs based
on clinical breast examination, mammogram, and contrast
enhanced magnetic resonance imaging, aiming to detect pre-
cancerous lesions and initial stage tumors. Here, we report a
novel large germline deletion in PALB2 in a young breast cancer
patient who had a family history for different cancer types.

CASE PRESENTATION

In October 2017, a 37-year-old Caucasian pre-menopausal
woman without any relevant medical history felt a palpable
lump in her left breast. Mammography combined with breast
ultrasonography followed by fine-needle aspiration led to a
diagnosis of breast cancer. In March 2018, she underwent
a quadrantectomy and axillary lymph node dissection.

Pathology exmination revealed a 31mm, high-grade, luminal
B-like invasive ductal carcinoma (estrogen receptor-positive,
progesteron receptor-positive, HER2-negative, and Ki-67 40%).
Two of 3 axillary lymph nodes were found to be metastatic.
Bone scan, chest X-ray, and liver ultrasound examination did
not identify distant metastases. In April 2018, the patient was
started on adjuvant chemotherapy with 5-fluororacil 500 mg/mq
+ epirubicin 100 mg/mq + cyclophosphamide 500 mg/mq
for 3 cycles every 21 days, followed by docetaxel 100 mg/mq
for 3 cycles every 21 days. The patient then received adjuvant
radiation therapy on the residual mammary parenchyma (total
dose: 60Gy) and adjuvant endocrine therapy (ET) was started
with exemestane 25mg daily plus leuprorelin 11,25mg every
12 weeks. In November 2018, the patient was enrolled in an
open-label, randomized, phase III study (NCT03155997) of
abemaciclib plus standard ET (Figure 1).

In December 2018, the patient was referred to the Hereditary
Cancer Genetics Clinic at the Department of Clincial Medicine
and Surgery of the University Federico II in Naples, Italy,
where she underwent genetic counseling. Family history revealed
that her mother was diagnosed with breast cancer at the age
of 60 and papillary thyroid carcinoma at the age of 61, that
her paternal grandmother died at the age of 36 from breast
cancer, whereas her father sucummbed to lung cancer at the
age of 39, and her maternal grandfather died of colorectal
cancer at the age of 74 (Figure 2). Genetic risk was assessed
based on the medical and surgical history of the proband, the
number of affected relatives, their age at dignosis and the degree
of relationships among them. Since germline testing criteria
were met (20), we looked for BRCA1 and BRCA2 gene PVs.
Next-generation sequencing did not detect any pathogenic or
likely PVs. Similarly, no deletions or duplications in exons of
BRCA1 and BRCA2 genes were identified by multiplex ligation-
dependent probe amplification (MLPA). Given the patient’s
personal and family history suggestive of inherited susceptibility,
the patient underwent multi-gene testing with the Devyser
HBOC NGS kit (Devyser, Hägersten, Sweden). The sequencing
reaction was carried out on the IlluminaMiSeq System (Illumina,
San Diego, CA, USA). Output data were analyzed using the CE-
IVD Amplicom Suite Software v. 1.0 (SmartSeq, Novara, Italy).
As shown in Figure 3A, the software predicted the presence of a
deletion in exons 5 and 6 of PALB2 gene. To verify the presence of
this deletion, multiplex ligation-dependent probe amplification
(MLPA) was performed (Figure 3B) by means of SALSA MLPA
Probemix P260 PALB2-RAD50-RAD51C-RAD51D according to
the manufacturer’s instructions. In detail, four normal samples,
previously screened by NGS in duplicate, served as reference
samples for the MLPA test. Five µL of the proband’s DNA were
run in duplicate.

As shown in Figures 3C,D, the Q-Fragment plot of our
sample confirmed the presence of a deletion in exons 5 and 6.
To determine the extent of this deletion, we looked for large
scale rearrangements using a high-resolution comparative
genomic hybridization-array (a-CGH) (21). Genomic DNA
was analyzed with the CGH 1×1M Microarray (Agilent
Technologies, Santa Clara, CA, USA). The following [GRCh37]
chr16p12.2 (23,639,765-23,643,159)x1 was investigated:
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FIGURE 1 | Case report timeline.

FIGURE 2 | Family pedigree. The proband is indicated by black arrow. BC, breast cancer; CRC, colorectal cancer; LC, lung cancer; TC, thyroid cancer; y, years-old.

Circle, female; square, male; filled symbols, individuals with cancer diagnosis; cross-hatched symbols, affected individuals already deceased; numbers in the

circles/squares, amount of people of that gender.

results showed a 3.39Kb deletion including the PALB2 gene
(chr16p12.2: 23,614,483-23,652,678), as obtained using the
probes A_16_P20429174, A_16_P40587478, A_16_P20429183.
As shown in Figure 3E, the deletion probably involved a
3.39Kb region included between intron 4 and 6 causing the
loss of exons 5 and 6.

To characterize the breakpoint region, specific PCR
primers (Del4F 5′- aagactccactgactatctc-3′ and Del7R

5′-catcctgatgaaccactcatg-3′), including a larger region respect to
that identified by probes used by CGH and amplifying a PCR
product of 6.692 bp from the wild-type DNA, were designed.
PCR reactions were performed using a long-range PCR kit
(Expand Long Template PCR System, Roche Applied Science).
Sequencing was performed using a BigDye Terminator Cycle
Sequencing Kit v3.1 (Thermo Fisher Scientific) and an ABI
3500 Genetic Analyser (Thermo Fisher Scientific). Results were
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FIGURE 3 | Genetic analysis of a PALB2 gene. (A) Plot of PALB2 amplicons corresponding to exon 5 and 6 which fell to about of 0.5 value of coverage. CNV analysis

by Amplicon Suite Software for woman carrying the deletion of exon 5 and 6 of PALB2. Amplicon coverage: the coverage of the remaining PALB2 exons was within

the normal range (0.8–1.2), with a homogeneous pattern of distribution of each amplicon. (B) Drop of probe signals (red cells) of peak height area related to PALB2

exons 5 and 6. (C,D) MLPA electropherogram from patient carrying the deletion of PALB2 exon 5 and 6. Red arrows (C) indicate the deletions exon 5 and exon 6,

respectively, as compared to the normal samples (green arrows) (D). (E) CGH array profile of chromosome 16 from the Agilent 1X1M high resolution array revealed a

heterozygous deletion in 16p12.2 region, of ∼3.39 kb, involving PALB2 gene.

analyzed with the SeqScape v2.5 software package (Thermo
Fisher Scientific) using NG_007406.1 reference. Total RNA
was isolated from peripheral blood lymphocytes with TRIzol
reagent (Thermo Fisher Scientific, Inc., Waltham, MA, USA).
Synthesis of complementary DNA (cDNA) was performed with
SuperScript II Reverse Transcriptase (Thermo Fisher Scientific)
using DNAase-treated RNA in the presence of random
primers and RNAaseOUT (Thermo Fisher Scientific). cDNA
amplification was performed using the following primers: R4delF
5′-aggaagaagtcacctcacac-3′, and R7delR 5′-catcttcgcaagcagttatg-
3′. Sequencing was performed using a BigDye Terminator Cycle
Sequencing Kit v3.1 (Thermo Fisher Scientific) and an ABI
3500 Genetic Analyser (Thermo Fisher Scientific). Results were
analyzed with the SeqScape v2.5 software package (Thermo
Fisher Scientific) using NM_024675.3 reference.

In the patient, two PCR products of 6.692bp and 1.086 bp
respectively, were obtained (Figure 4A). The 1.086 bp fragment,
containing the expected deletion, was cut out and isolated
from agarose gel and sequenced using PCR primers Del4F
and Del7R. This fragment, containing the breakpoint region,
showed a wild-type sequence until to the nucleotide g.13536C
(NG_007406.1) of PALB2 gene intron 4. The following sequence

corresponded to the PALB2 intron 6 starting from the g.19143G
nucleotide (NG_007406.1) (Figure 4B). We report the novel
PALB2 rearrangement in agreement with the recommended
HGVS nomenclature: NG_007406:g.13536_19143del. The new
deletion involves 5.607 bp of the PALB2 gene, a larger deletion
than the expected one of 3.39kb identified by the CGH, and
includes part of the intron 4, exon 5, intron 5, exon 6 and part
of the intron 6. Two sequences of 43 nucleotides, occurring
in the same orientation (100% homology) within intron 4
and 6, suggested that the deletion is probably the result of a
homologous recombination event (Figure 4C). A single PCR
fragment of 1.052 bp was obtained from the cDNA control,
while two fragments of 1.052 and 152 bp were amplified using
cDNA patient. PCR product of 152 bp, containing the expected
deletion, was cut out and isolated from agarose gel, sequenced
with Del4F and Del7R primers, and analyzed. Sequencing
analysis revealed a wild-type sequence until to the nucleotide
c.1884G (NM_024675.3) of PALB2 gene in exon 4. The following
sequence corresponded to the PALB2 exon 7 starting from
the nucleotide c.2687A (NM_024675.3:c.1884_2687). The PALB2
exons 5-6 deletion, involving 803bp, disrupts the reading
frame of the mRNA producing a pre-mature stop codon
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FIGURE 4 | Characterization of exon 5–6 deletion in the PALB2 gene. (A) Genomic DNA was amplified using specific deletion primers (Del4F and Del7R). The mutant

allele gives rise to a specific 1.086-bp fragment. M: marker, B: blank, C+: wild-type control, Pz: patient. (B) The electropherogram of the 1.086 bp PCR fragment,

containing the deletion breakpoint, showed a wild-type sequence until the nucleotide g.13536C (NG_007406.1) of PALB2 intron 4. The following sequence

corresponded to the PALB2 intron 6 starting from the g.19143G nucleotide (NG_007406.1). (C) An homologous sequence of 43 nucleotides (underlined nucleotides),

identified at breakpoint region, represents the cause of the rearrangement. (D) Electropherogram showing the sequence of the PCR product of 152 bp obtained from

cDNA patient. Sequencing analysis revealed a wild-type sequence until the nucleotide c.1884G (NM_024675.3) of PALB2 gene in exon 4. The following sequence

corresponded to the PALB2 exon 7 starting from the nucleotide c.2687A (NM_024675.3). A premature stop codon produces a truncated protein of 581 amino acids.

and a truncated protein of 581 amino acids [NP_078951.2:p.
(Gly562GlufsTer21)] (Figure 4D).

DISCUSSION

Over the past years, several studies have shown that germline
loss-of-function variants in the PALB2 gene may confer an
increased lifetime risk of breast, pancreatic, ovarian and other
cancers. Rahman and colleagues identified PALB2 monoallelic
truncating variants in ∼1% of patients with hereditary breast
cancer (9) [as confirmed by Fernandes et al. (22)], whose

risk of developing breast cancer was 2.3-fold higher than the
risk observed amid controls. Subsequently, population-based
screenings of PALB2 PVs revealed a 2- to 30-fold increase
in the risk of breast cancer (23–27). The analysis conducted
by Antoniou and colleagues revealed that the relative risk for
individuals with deleterious PALB2 PVs was 8–9 before the age
of 40 and around 5 after the age of 60 years. Thus, the cumulative
breast cancer risk for female carriers of PALB2 variants is 14%
by the age of 50 years and up to 35% in women above the age
of 70. Furthermore, PALB2 is the most frequently altered gene
(1.2%) in non BRCA1/2 mutated male breast cancer patients,
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accordingly the risk of MBC increases from 9.63 to 17.30-
fold in presence of PALB2 pathogenetic variants (28). A study
conducted in Poland in 2015 (29) evaluated the clinical outcomes
of 116 PALB2 mutation carriers among 12,529 women with
breast cancer, and found that PALB2 variants increased the risk
of death from breast cancer. Indeed, 10-year survival was 48%
in PALB2 mutation carriers with breast cancer vs. 74.7% in
non-mutation carriers with breast cancer and 72% in BRCA1
mutated patients. In addition, survival differed in relation to
tumor size. Indeed, 10-year survival was 82.4% in case of tumors
smaller than 2 centimeters vs. 32.4% in case of tumors ranging
from 2 to 4.9 centimeters (29). Notably, individuals with PALB2
PVs more frequently had a triple-negative status (30%) vs. a
frequency ranging between 12 and 17% in unselected patients
with breast cancer (30). Yang et al. (7) analyzed 524 families
from 21 countries who carried pathogenetic PALB2 variants.
They identified an association between mutated PALB2 and
female breast cancer (RR = 7.18), male breast cancer (RR =

7.34), ovarian cancer (RR = 2.91), and pancreatic cancer (RR =

2.37). The association between PALB2 germline alterations and
risk of developing pancreatic cancer has been also described by
other groups. In 2009, Jones and colleagues carried out exomic
sequencing of PALB2 gene in 96 familial pancreatic cancer (FPC)
patients in USA, thus identifying 3 truncating PVs producing
different stop codons (31). Three more PALB2 germline PVs
producing truncated protein were identified among 81 European
FPC family, each of these three family had also history of breast
cancer (none of the patients was carrier of BRCA2mutation) (32).
Furthermore, in a Japanese study, two out of 54 patients with
pancreatic ductal adenocarcinoma carried deleterious variants of
PALB2 gene (33). In 2019, Janssen and colleagues provided a
comprehensive catalog of PALB2 gene predicted pathogenic or
likely PVs published. They included 984 described cancer cases
distributed over 146 PALB2 predicted PVs. They observed that
911 (92.5%) cases were described in breast cancer patients, 49
(5.0%) cases in ovarian cancer patients, and 24 (2.4%) cases in
pancreatic cancer patients. They also found that exons 2, 3 and 1
of PALB2 gene showed the highest mutation rates (6.7, 5.8, 5.2%,
respectively) (18).

Being a carrier of PALB2 PVs has therapeutic and
surveillance implications. As recommended by guidelines
for the management of hereditary breast cancer of the American
Society of Clinical Oncology, the American Society for Radiation
Oncology and the Society of Surgical Oncology (34), the decision
whether to apply local therapy or to perform a contralateral
risk-reducing mastectomy in patients with breast cancer
should not be based only on the presence of an alteration in
a moderate-penetrance breast cancer gene, such as PALB2. If
indicated, breast-conserving therapy may be a treatment option,
followed by high-risk breast screening of remaining tissue
with annual mammography and breast magnetic resonance
imaging. Mammography and breast MRI should be alternated
at 6 month intervals (34). Given the lack of data regarding the
risk of developing contralateral breast cancer from moderate-
penetrance genes, additional factors such as age at diagnosis
and family history should be taken into account in selected
patients (34). This would provide the best therapeutic option

such as nipple-sparing mastectomy, bilateral mastectomy or
contralateral risk-reducing mastectomy in patient previously
undergone unilateral mastectomy. Despite some studies reported
an association between PALB2 PVs and the diagnosis of ovarian
cancer (35–37), to date evidence are not sufficient to support
risk-reducing salpingo-oophorectomy (20, 38). Similarly, there
are no solid data regarding the systemic treatment options in
PALB2 carriers with breast cancer. Although PALB2 encodes
a protein involved in DNA double-strand break repair carried
out by BRCA2, tailored therapies for breast cancer patients
carrying PVs in genes other than BRCA1/2 have not yet been
established. However, the ongoing Olaparib Expanded phase
II trial evaluated the effect of the poly ADP-ribose polymerase
(PARP) inhibitor olaparib monotherapy in metastatic breast
cancer patients with germline (other than BRCA1/2) or somatic
PVs in DNA damage response (DDR)-pathway genes. In this
trial, response to olaparib was observed mostly in patients with
somatic BRCA1/2 or germline PALB2 PVs but not with ATM
or CHEK2 PVs. Among patients with gPALB2 PVs, the overall
response rate was 82% (90% CI, 53% to 96%), the clinical benefit
rate was 100% (90% CI, 74–100%), and median progression-free
survival (PFS) was 13.3 months (90% CI, 12 months to NA) (39).
Other clinical trials are evaluating the potential role of PARP
inhibitors in the treatment of PALB2 PVs carriers with breast
cancer (13, 41).

To the best of our knowledge, this is the first time that PALB2
deletion involving a 5.6 Kb region, between intron 4 and 6 and
causing the loss of exons 5 and 6, is reported as associated to
a hereditary breast cancer. In addition, we also established the
exact breakpoints of this new arrangement and estimated that
introduces a pre-mature stop codon in PALB2 mRNA resulting
in the production of a truncated protein of 581 amino acids.

CONCLUSIONS

Here we report a hitherto unknown PALB2 5.6-kilobase deletion
involving exons 5 and 6 and the neighboring introns in a
breast cancer patient. This case is paradigmatic of the clinical
relevance of an in-depth evaluation of genetic risk, especially in
patients with history highly suggestive of a hereditary syndrome.
Consequently, patients without BRCA1/2 alterations should be
offered NGS multi-gene panel testing when personal and/or
family history is suggestive for hereditary syndrome (40).
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