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Dendritic cells (DCs) are the major specialized antigen-presenting cells,
thereby connecting innate and adaptive immunity. Because of their role in
establishing adaptive immunity, they constitute promising targets for immu-
notherapy. Monocytes can differentiate into DCs in vitro in the presence of
colony-stimulating factor 2 (CSF2) and interleukin 4 (IL4), activating four
signalling pathways (MAPK, JAK/STAT, NFKB and PI3K). However, the
downstream transcriptional programme responsible for DC differentiation
frommonocytes (moDCs) remains unknown. By analysing the scientific litera-
ture on moDC differentiation, we established a preliminary logical model that
helped us identify missing information regarding the activation of genes
responsible for this differentiation, including missing targets for key transcrip-
tion factors (TFs). Using ChIP-seq and RNA-seq data from the Blueprint
consortium, we defined active and inactive promoters, together with differen-
tially expressed genes in monocytes, moDCs and macrophages, which
correspond to an alternative cell fate. We then used this functional genomic
information to predict novel targets for previously identified TFs. By inte-
grating this information, we refined our model and recapitulated the main
established facts regarding moDC differentiation. Prospectively, the resulting
model should be useful to develop novel immunotherapies targeting moDCs.
1. Introduction
Dendritic cells (DCs) are the main antigen-presenting cells [1]. By presenting
antigens to the naïve lymphocytes, they initiate the immune response against
various kinds of pathogens [2]. This capacity of DCs to activate the adaptive
immune response opens interesting prospects for immunotherapies [3]. Circu-
lating in the peripheral blood, monocytes are easily accessible and can be
differentiated into dendritic cells, called moDCs (for monocyte-derived DCs),
using an established protocol [4].

The protocol to differentiate monocytes into moDCs consists in cultivating
monocytes with colony-stimulating factor 2 (CSF2) and interleukin 4 (IL4)
[4,5]. When only IL4 is used, monocytes are activated, while their treatment
with only CSF2 results in their differentiation into macrophages. Only the com-
bination of both stimuli enables DC differentiation, pointing to the importance
of signalling interplay for the differentiation of moDCs. It is known that CSF2
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Figure 1. Regulatory graph controlling monocyte to moDC differentiation, as derived from the scientific literature. Ellipsoid nodes are associated with Boolean
components (0 and 1), whereas the two rectangular nodes are associated with ternary components (0, 1 and 2). The green nodes at the top represent the
inputs (CSF2 and IL4), the yellow nodes denote transcription factors, the blue nodes denote moDC-specific genes, while orange nodes denote macrophage-specific
genes. Nodes left in white correspond to components of generic signalling pathways. Green and red arcs denote positive and negative interactions, respectively. The
core network interactions are emphasized by thicker arcs.
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signalling leads to the activation of NFΚB, MAPK, PI3K,
JAK2 and STAT5 [6,7]. By contrast, IL4 signalling activates
the JAK/STAT pathway, with JAK1 activating STAT3, and
JAK3 activating STAT6 [8]. There are several well-known
transcription factors (TFs) that are ultimately activated by
CSF2 and IL4 signalling pathways, but only a fraction of
the target genes participating in moDC differentiation have
been reported [7,9–11].

To integrate multiple signalling pathways into a comprehen-
sive regulatory network and check its coherence with existing
expression data, one can rely on the construction of a dynamical
model [12].Asmost of theavailabledata arequalitative,weopted
for using a qualitative approach. Logicalmodelling is well suited
to represent such qualitative data and has been applied to similar
processes [13–15]. This qualitative formalism relies on the
construction of a regulatory graph, whose nodes denote molecu-
lar components (e.g. genes, proteins and lncRNA), while signed
arcs denote positive or negative (or sometimes dual) regulatory
interactions. In the simplest cases, nodes are associated with
Boolean variables, which take the values 0 or 1, denoting the
absence/inactivity or the presence/activation of the correspond-
ing component, respectively [16]. When needed, multilevel
variables (e.g. ternary variables taking the values 0, 1, 2) can be
used to account for different ranges of activation (e.g. negligible,
medium and high). Logical models are usually derived from a
careful manual curation of relevant scientific literature, but they
can also be enriched with other sources of information, such as
high-throughput sequencing data [17].

GINsim is a computational software dedicated to the
building and analysis of logical models of cellular networks
[16]. GINsim includes specific tools to perform model
simulations, as well as efficient algorithms to identify the
attractors of the system (stable states and/or oscillatory
behaviour), for wild-type or mutant conditions [16]. The
resulting model can be further analysed using the CoLoMoTo
suite, an interactive toolbox integrating several logical model-
ling software tools, with a uniform interface to perform
complementary analyses, which are easy to share and
reproduce through the use of notebooks [18].

The aim of our study was to integrate all the information
gathered from scientific literature and functional genomic
data (RNA-seq and ChIP-seq) into a logical model of the
regulatory network underlying moDC differentiation. We
further included key macrophage differentiation elements to
complement our study [11,19,20]. The resulting model recapi-
tulates the salient cell commitment features for each of the
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Figure 2. Epigenomic annotations of monocytes, moDCs and macrophages. (a) Heatmap showing the histone mark enrichment in each of the states determined
with ChromHMM. (b) The genomic region coding for IRF4 is displayed in the UCSC genome browser. For each cell type, the ChromHMM analysis generates a specific
segmentation, where each colour represents a chromatin state defined in the heatmap shown above. The annotation of chromatin state was derived from biological
knowledge. Note that for this example, active gene marks (in green) are present only in the moDC track.
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initial conditions considered: (i) IL4 alone fosters monocyte
activation, (ii) CSF2 alone fosters macrophage commitments,
while (iii) CSF2 and IL4 together foster moDC commitment,
with the corresponding typical gene expression patterns.
2. Results
2.1. Information gathered from literature curation leads

to a fragmentary model for the differentiation of
monocytes into dendritic cells

To better understand the regulatory network controlling
moDCs differentiation, we analysed the scientific literature
and integrated relevant information into a regulatory graph.
In this process, we focused on monocyte to moDC differen-
tiation studies carried primarily on human cells, in
particular on experiments where CSF2 and IL4 were used
alone or in combination in otherwise similar culture con-
ditions. The resulting regulatory graph is shown in figure 1.

Based on this first regulatory graph, we used GINsim to
define logical rules, combining conditions on regulatory
nodes with NOT, AND and OR Boolean operators, to compute
the corresponding stable states, and to perform simulations in
order to determine the cellular phenotypes reached for each
specific input condition. Note that although most nodes are
associated with Boolean variables, we assigned ternary vari-
ables to the model components STAT3 and PU1. In such a
situation, two non-overlapping rules are defined, enabling
the value 1 and 2, respectively (see electronic supplementary
material, table S1).

For this preliminarymodel, we obtained six stable states, but
only one of them could be directly interpreted as a cellular phe-
notype (pre-DCs), while the other stable states diverged from
the typical gene expression patterns of activated monocytes
and macrophages.

Regarding the regulatory interactions between TFs and
their target genes displayed in figure 1, we observed that sev-
eral TFs exert only a few interactions. For example, CREB
solely activates ALOX15, and no other target gene. Further-
more, this regulatory graph contains very few specific
moDC markers. Consequently, to complete this preliminary
network, we decided to take advantage of the public epigen-
ome and transcriptome datasets to infer novel regulatory
interactions and integrate them into our logical model (a
proof of concept of this approach can be found in [17]).



Table 1. Cell type-specific gene markers selected to be added to the
model. Based on the epigenome analysis, we identified novel regulatory
interactions pointing to candidate genes for inclusion in our model.

cell type gene reference

moDCs TLR8 [24]

moDCs TLR7 [24]

moDCs TLR6 [25]

moDCs TLR4 [24]

moDCs TLR3 [24]

moDCs NCOR2 [9]

moDCs DEC205 (LY75) [24]

moDCs DCIR (CLEC4A) [24]

moDCs CD83 [26]

moDCs CD48 [9]

moDCs CD226 [9]

moDCs CD209 [24]

moDCs CD1C [9]

moDCs CD1B [27]

moDCs CD1A [28]

moDCs CD141 (THBD) [27]

moDCs ITGAX (CD11C) [9,29]

moDCs CCL22 [9]

moDCs CCL2 [30]

monocyte CD14 [31]

monocyte SELL [9]

macrophage CD163 [9]

macrophage CCDC151 [32]

macrophage MERTK [9]

macrophage CD206 [9]
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2.2. Epigenomic data analysis helps to unravel relevant
transcriptional regulatory interactions

In order to complete our model of the regulatory network
controlling the differentiation of monocytes into moDCs,
we included the TFs known to be activated by CSF2 and
IL4 signals in moDCs, together with established monocyte
markers. Moreover, we included information regarding the
differentiation of monocytes into macrophages, which
occurs when monocytes are treated with CSF2 alone [21].
In short, we (i) used monocyte, moDC and macrophage epi-
genome data to define chromatin states, (ii) defined genomic
regions likely to be involved in the regulation of the genes
included in the model, and (iii) searched for putative TFs
binding sites in these regions.

We analysed ChIP-seq data from the Blueprint consortium
for six histone marks (H3K4me1, H3K4me3, H3K27ac,
H3K36me3, H3K9me3 and H3K27me3) in monocytes,
moDCs and macrophages derived from monocytes. We then
used ChromHMM [22] to annotate the epigenome in each
cell type based on these data. The resulting genomic segment
states were classified into 10 categories: quiescent/low signal,
polycomb repressed, poised regulation, active TSS, active
promoter, Primed enhancer, active gene/enhancer, low tran-
scription, TSS repressed and strong transcription (figure 2a).
As expected, it is possible to visualize clear differences in
the epigenome of moDCs versus monocytes when exploring
genes with specific cell expression in a genome browser. For
example, the gene coding for IRF4, a TF that mediates the
differentiation of moDCs, is active in moDCs, while it is
poised in macrophages and monocytes (figure 2b).

In the following step, we selected the segments
corresponding to promoter and enhancer states: active TSS,
repressed TSS, active gene/enhancer and poised regulation.
These regulatory regions were used to predict binding sites
for the TFs known to be activated by the CSF2 and IL4 path-
ways (figure 1), using position-weight matrices collected
from the Jaspar database [19], with the pattern-matching tool
matrix-scan [20] from the RSAT suite [23]. This led us to predict
novel transcription factor binding sites presumably involved
in the regulation of specific gene markers for moDCs,
monocytes and macrophages (table 1), thereby enabling us
to complete the regulatory network controlling monocyte to
moDC differentiation.

For 13 out of 19 genes related to moDC phenotype, we
detected putative binding sites for IRF4 (figure 3a) into puta-
tive regulatory regions (cf. ChromHMM analysis) located
near to the TSS of the corresponding genes. Interestingly,
this led us to corroborate the central role of IRF4 in moDC
differentiation. Indeed, we predicted that IRF4 possibly regu-
lates several TLR genes (TLR3, 4 and 7), which play a crucial
role in antigen recognition in myeloid cells and are thus rel-
evant for moDC. Furthermore, we predicted that TLR6 and
TLR8 are regulated by STAT6, another essential TF in
moDCs [7], we acknowledge that TLRs genes are not specific
for moDCs; however, their transcriptional regulatory mech-
anisms are not fully understood and our results provided
useful insights for future studies. In addition, we predicted
that the genes encoding for the trans-membrane proteins
CD1A, CD1B and CD1C are regulated by IRF4, as well as
by other TFs (PU1, PRDM1, NR4A1 and CEBPA) related to
moDC differentiation. Furthermore, we predicted that the
gene coding for CD48, a costimulatory molecule involved
in T cell activation, is regulated by PU1, which is known to
participate in the differentiation of STEM cell progenitors
into leucocytes [33]. We also analysed the non-redundant
peaks available from Remap and identified several concor-
dances with our results (electronic supplementary material,
table S6). We also looked for regulatory interactions between
the identified TFs. In particular, we predicted regulatory
interactions from PU1 onto CEBPA, IRF4 and IRF8. We also
predicted that AHR regulates IRF4, MAFB and PRDM1,
which represent interesting candidates to assess experimen-
tally. Figure 3b summarizes the regulatory interactions
between TFs that compose our final logical model.

2.3. Integration of predicted novel regulatory
interactions improves model accuracy

We integrated the selected gene markers for each cell type
with the predicted regulatory TFs into our model and con-
nected them with the regulatory interactions reported in
figure 3. Using this extended regulatory graph (figure 4a)
together with relevant Boolean rules, we computed the
stable states, which consistently recapitulated the main cell
fates (see electronic supplementary material, table S3).
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Our revised model is characterized by four stable states
(figure 4b; electronic supplementary material, figure S1).
The first stable state, in the absence of IL4 and CSF2 acti-
vation, corresponds to cell death, which is the expected
outcome in this situation. The second stable state is obtained
upon IL4 activation and corresponds to the monocyte signa-
ture, with KLF4, SELL and CD14, in the ON setting. The third
stable state is obtained for CSF2 activation and corresponds
to a macrophage signature, with MAFB, IRF8, CCDC151
and CD206 ON. Finally, the last stable state is obtained
when both CSF2 and IL4 are activated and corresponds to
the moDC signature, with IRF4, STAT6, CD1A and CD209
all ON. Noteworthy, this analysis recapitulates the fact that
PI3K signalling is inhibited during moDC commitment, as
previously reported by van de Laar et al. [6].

To validate the different expression signatures, we
analysed RNA-seq data from monocytes, moDCs and macro-
phages. Figure 5 displays the differential expression of the
genes included in the model. Interestingly, we found two
main clusters of genes highly expressed in moDCs, but
downregulated in macrophages. These moDC differentially
expressed genes include those coding for the TFs STAT3,
STAT6, CEBPA and IRF4, which participate in moDC differ-
entiation, as well as those for CD209, MAOA and SLAMF1,
which are specific markers for moDCs. Additionally, mono-
cytes display high expressions of the genes coding for
KLF4, IRF8, SELL and CD14.

In the next step, we took advantage of the CoLoMoTo
toolbox to recapitulate documented cellular commitment
experiments.

2.4. Model simulations recapitulate the main aspects
of cellular commitment to differentiation

We imported our model into the CoLoMoTo environment
to ease further analyses with complementary software
tools such as Pint, BioLQM and MaBoSS [34]. The integration
of all analyses can be found in a Jupiter (python) notebook
(available at http://ginsim.org/model/monocytes-to-dc)
further ensures reproducibility.

We used the tool BioLQM to compute the trap-spaces for
the wild-type situations [35]. As trap-spaces provide approxi-
mations of cyclic attractors, we could thereby verify that the
model does not generate any cyclic attractors.

We continued to use BioLQM [35] to assess the behaviour
of the model for nine single gene losses-of-function (affecting
IRF4, STAT6, PU1, IRF8, MAFB, NCOR2, AHR, JAK3 and
CEBPB, respectively) that have been reported in the literature

http://ginsim.org/model/monocytes-to-dc
http://ginsim.org/model/monocytes-to-dc


Table 2. Perturbations tested in the model of monocyte to moDC differentiation.

protein function phenotype extracted from references
perturbation
simulated model phenotype

IRF4 transcription

factor

monocytes were infected using lentiviral vectors containing

shRNA against IRF4, silenced IRF4 induced a dramatic

reduction of moDCs [11]

loss of function lack of most of moDC-specific

markers

STAT6 transcription

factor

the ectopic expression of STAT6 in monocytes, resulted in

increased levels of the DC-specific marker DC-sign,

following CSF2 stimulation, and without IL4 [7]

gain of function STAT6 is almost sufficient to

archive moDCs differentiation

PU1 transcription

factor

inducible constructions of PU1, and MAFB were used to

infect monocytes. In cells with PU1 induced DCs, MafB

differentiated macrophages [36]

loss of function abolish moDCs, and macrophage

phenotype commitment

IRF8 transcription

factor

introduction of KLF4 into an Irf8-/- myeloid progenitor cell

line induced a subset of IRF8 target genes and caused

partial monocyte differentiation [30]

loss of function abolish KLF4 expression, and the

entire macrophage

differentiation

MAFB transcription

factor

silencing of MAFB resulted in a strong decrease in mo-

Macs, and an increase in mo-DC differentiation [36]

loss of function moDCs differentiation is normal,

Mac differentiation is

abolished

NCOR2 transcriptional

regulator

NCOR2 silencing resulted in 1834 variable genes that

correspond with IL4 signature genes [9]

loss of function lack of moDC-specific markers

AHR transcription

factor

AHR silencing reduced mo-DC differentiation while slightly

increasing mo-Mac [11]

loss of function lack of every moDC-specific

markers, Mac differentiation is

normal

JAK3 tyrosine-protein

kinase

STAT6 phosphorylation disappeared following JAK3

inhibition. In the case of Macs, we did not observe

STAT6 phosphorylation, given the lack of stimulation of

JAK3 [7]

loss of function Mac phenotype with CSF2, and

IL4. Mac differentiation is not

affected

CEBPB transcription

factor

in the absence of CEBPb in monocytes CEBPb-KO, only a

very low amount (5%) of this Mac-like morphology was

seen, and most of the cells stayed round [37]

loss of function lack of some specific

macrophage markers
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to affect the differentiation process. Table 2 summarizes the
results obtained for these perturbations, while figure 6
shows the activity of each node for each perturbation at the
stable states. These results qualitatively replicate the behav-
iour of each of the documented mutants. We further
simulated the knock-out of each TF from figure 3a and ident-
ified that BATF3, FOXO1, PU1 and USF1 affected the three
final cell types (electronic supplementary material, table S7).

We then used the tool Pint [38] to verify the reachability
of the stable states corresponding to the correct cell commit-
ment for each combination of CSF2 and ILF4, starting from a
quiescent Monocyte state. Next, we used the stochastic Boo-
lean simulation tool MaBoSS to generate mean temporal
curves, starting from initial conditions corresponding to
quiescent Monocytes, towards the stable state reached in
the presence of the corresponding combination of active
CSF2 and ILF4 [39]. In figure 7, we can observe several
curves initially growing but later decaying. These curves
most likely represent transient cellular states during the con-
version of cells from their initial state to the attracting state
reached at the end of the simulations.
3. Discussion
The construction of logical models traditionally relies on
manual curation of the literature on a biological system of
interest. In this work, we further took advantage of public
ChIP-seq and RNA-seq data from the Blueprint consortium
[40] to delineate in more detail the network driving the differ-
entiation of monocytes into moDCs. We were able to fill in
various gaps in the regulatory network, which allowed us
to reach a better understanding of this differentiation process.
Noteworthy, this led us to predict 102 novel interactions,
which were validated in silico through our simulations, and
are amenable to further experimental tests.

In particular, we delineated a series of target genes pre-
sumably important for the differentiation of monocytes into
moDCs. Some TFs are already well known, such as IRF4,
AHR, STAT6 and PU1 [7,11,29]. Our analysis recapitulates
several key features regarding the expression of the corre-
sponding genes, such as a high expression of IRF4 and
STAT6 genes in moDCs. We further validated the results
obtained by Vento-Tormo et al. [7] indicating that STAT6
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is required for moDCs differentiation; according to our
model analysis, STAT6 is indeed required for moDC differ-
entiation, but not for macrophage commitment (figure 6).

We were also able to predict novel TF targets that are rel-
evant for this process, regulated by FOXO1, CEBPA, AP1 and
PRDM1. We predict that FOXO1 regulates at least six moDC
genes, while CEBPA could regulate at least seven of them.
Furthermore, AP1 presumably regulates TLR4, DEC205
(LY75) and CD209 (DC-SING), which are associated with
antigen-presenting cells. CREB1 is also presumably involved
in the regulation of moDC genes, through the activation of
CD141 and CD1A. We also predict for the first time that
NR4A1 could regulate CD1C, a protein found at the surface
of moDCs.

We further reviewed data recently published on the pre-
dicted TF-gene interaction considered in our model, and we
found that some of these interactions have been recently
experimentally confirmed. In particular, the regulation for
the ITGAX gene was shown to be regulated by PU1 and
IRF4 [29], as predicted by our epigenomic data analysis.

In summary, this study represents the first effort to integrate
the current knowledge on monocytes to moDCs differentiation
in vitro and should foster our understanding of this process.
Additionally, we unravelled novel transcriptional regulatory
links presumably involved in this differentiation process.
4. Material and methods
4.1. Model implementation and simulations
Using the software GINsim [16], we integrated previously
described signalling pathways activated when monocytes are
cultured with CSF2 and IL4 (all the corresponding studies are
referenced in the GINsim model as node annotations, and further
listed in electronic supplementary material, table S3). We also
reviewed the literature on the differentiation of monocytes into
moDCs. The logical model was built using GINsim v. 3.0 [41],
where nodes represent genes or proteins, and edges represent
regulatory interactions between them, which can be negative or
positive (or sometimes dual). In general, each node can take
two values, zero or one, but in special cases, one may need to
consider different qualitative levels of activation (e.g. STAT3
expression is activated by JAK1, but the presence of LnC-DC
leads to a further increase of STAT3 expression). For such special
cases, it is possible to use multilevel nodes, e.g. ternary variables
enabling an additional level of activation (hence taking the
values 0, 1 and 2). Logical rules are associated with each
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component of the network, combining literals (i.e. regulatory
variables with specific values) with the classical Boolean oper-
ators AND (&), OR (|) and NOT (!), thereby defining in which
conditions each of these components can be activated or shut
down. When considering novel predicted regulatory interactions,
we started by setting a generic rule such which established that
any activator component is sufficient to activate its target (OR),
provided that all inhibitors are absent (AND, NOT). These
rules were then refined to match the reported cell gene
expression patterns.
4.2. ChIP-seq data analysis
Raw fastq files from ChIP-seq experiments were retrieved from
the Blueprint Consortium [31] data access portal (http://dcc.
blueprint-epigenome.eu/#/datasets) with dataset identifiers
EGAD00001001552, EGAD00001002484, EGAD00001002485,
EGAD00001001576 and EGAD00001002504. We processed data-
sets for six histone marks (H3K4me1, H3K4me3, H3K27ac,
H3K36me3, H3K9me3 and H3K27me3), in triplicates, from
human monocytes, macrophages and moDCs. We performed
quality control of read sequences with FastQC/0.11.3 tool [42],
used Trimmomatic/0.33 [43] to improve their quality, and then
mapped them with bowtie 2-2.2.6 [44] to the human hg38 refer-
ence genome with default parameters (–sensitive – phred33). A
second quality control was performed after alignment, using
ENCODE QC (electronic supplementary material, table S4),
which consists of three major tests: NRF (non-redundant
fraction) > 0.5, PBC1 (PCR Bottleneck coefficient 1) > 0.5 and
PBC2 (PCR Bottleneck coefficient 2) > 0.5 [45]. IDR analysis
[45] was performed for replicate control with all replicates
successfully passing this test.
4.3. Chromatin states definition
We used ChIP-seq data for six histone marks (H3K4me1,
H3K4me3, H3K27ac, H3K36me3, H3K9me3 and H3K27me3)
for each cell type (monocytes, macrophages and moDCs), with
their respective input control. Chromatin states were defined
using ChromHMM [18] v. 1.12 [46] with the recommended par-
ameters (BinarizeBed -b 200, assembly hg38), and specifying 10
hidden states for the hidden Markov model. Each chromatin
state was annotated based on the probability of appearance of
the different marks (e.g. H3K27ac-Enhancers, H3Kme1-Enhan-
cers, H3K4me3-Promoters, H3K27me3-Repressive, H3K9me3-
Repressive and H3K36me3-Transcribed [47]). We then assessed

http://dcc.blueprint-epigenome.eu/#/datasets
http://dcc.blueprint-epigenome.eu/#/datasets
http://dcc.blueprint-epigenome.eu/#/datasets
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the enrichment in different kinds of genome loci (CpGIsland,
RefSeqExon, RefSeqGene, RefSeqTES, RefSeqTSS and RefSeq2kb)
to the specific chromatin states. Integrating this information, we
were able to assign a functional description to each state.
Next, we focused on active TSS, repressed TSS, active gene/
enhancer and poised regulation regions, based on RefSeqTSS
annotations.

4.4. Search for transcription factor binding site using
matrix-scan

Based on the literature, we identified 22 TFs participating in the
differentiation of monocytes to macrophages or moDCs. We
retrieved one Position-Specific Scoring Matrix (PSSM) for each
of these 22 TFs (electronic supplementary material, table S5)
from the JASPAR 2018 database human collection [19]. We per-
formed pattern-matching searches for TF motif instances using
the 22 PSSMs in the selected chromatin regulatory regions,
active TSS, repressed TSS, active gene/enhancer and Poised
regulation in the vicinity of the TSS annotated in RefSeqTSS
(see ChromHMM analysis above). For this task, we used the
tool matrix-scan [20] from the RSAT suite [23] with the following
main parameters: background model of Markov order 1, and
stringent thresholds of p≤ 10−5, and score 1 (-markov 1 -lth
score 1 -uth pval 1 × 10−5). In order to assess our results regard-
ing the number of predicted interactions discovered in figure 3a,
we generated 100 groups of 20 randomly selected genes, selected
their regulatory regions using ChromHMM, used matrix-scan (as
described above) with the same collection of motifs and per-
formed a hypergeometric test in the electronic supplementary
material, figure S2.

4.5. RNA-seq analyses
Raw fastq files from RNA-seq experiments were retrieved from
the Blueprint Consortium [40] data access portal (http://dcc.
blueprint-epigenome.eu/#/datasets) with dataset identifiers:
EGAD00001002308, EGAD00001001506, EGAD00001002526,
EGAD00001002507 and EGAD00001001582. Blueprint mono-
cytes samples were obtained from the same laboratory from
healthy volunteers using positive selection, then the same
samples were treated with CSF2 and IL4 for 6 days (monocyte
purification: https://www.blueprint-epigenome.eu/UserFiles/
File/Protocols/UCAM_BluePrint_Monocyte.pdf ).

For this analysis, we used the methods described in Law et al.
[48]. In brief, we performed quality control with FastQC/0.11.3
[49], pseudo-alignment and count determination with Kallisto
0.43.1 [50] using the release-90 from Ensembl (ftp://ftp.ensem-
bl.org/pub/release-90/fasta/homo_sapiens/cdna/Homo_sapiens.
GRCh38.cdna.all.fa.gz) to create our index with the following com-
mand: kallisto index -i index_kallisto_hsap_90_cdna –make-unique
Homo_sapiens.GRCh38.cdna.all.fa.gz. Counts were assigned to
genes using Tximport 1.14.0 [51] and were processed from raw-
scale to counts per million (CPM), and then they were transformed
to log-CPM. Genes with expression values below 1 were removed.
Then we normalized raw library sizes using the calcNormFactors
function from edgeR library in R. Afterwards, we performed a
differential gene expression analysis with edgeR 3.28.0 [52]. Finally,
we used heatmap.2 from the gplots library to plot the genes found
in our model (figure 5).
4.6. Colomoto analysis
In order to foster reproducibility, we used the CoLoMoTo toolbox
[18] that integrates several logical modelling tools, including
GINsim, bioLQM, Pint andMaBoSS.We used GINsim to compute
the stable states andbioLQMto identify trap-spaces approximating
cyclic attractors. The computation of mean stochastic temporal
trajectories was performed using MaBoSS [39]. The GINsim
model and the CoLoMoTo notebook are available on the GINsim
repository (http://ginsim.org/model/monocytes-to-dc), as well
as a dedicated git repository (https://github.com/karenunez/
moDC_model_differentiation). The results can be replicated with
the CoLoMoTo Docker image following the instructions provided
at http://colomoto.org/notebook.

4.7. Generation of the figures
Figure 1 and 4a were generated with the GINsim software. The
plots in figures 2a, 3a,b and 4b were generated with the ggplot2
library from R. Figures 6 and 7 were extracted from the CoLo-
MoTo notebook developed for this study.

Data accessibility. Supplementary files, including the logical model of
monocyte to DCs differentiation, are available at https://github.
com/karenunez/moDC_model_differentiation.
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