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Aim To study the effect of resveratrol on survival and cas-
pase 3 activation in non-transformed cells after serum de-
privation.

Methods Apoptosis was induced by serum deprivation 
in primary mouse embryonic fibroblasts. Caspase 3 activa-
tion and lactate dehydrogenase release were assayed as 
cell viability measure by using their fluorogenic substrates. 
The involvement of PI3K, ERK, JNK, p38, and SIRT1 signaling 
pathways was also examined.

Results Serum deprivation of primary fibroblasts induced 
significant activation of caspase 3 within 3 hours and re-
duced cell viability after 24 hours. Resveratrol dose-depend-
ently prevented caspase activation and improved cell via-
bility with 50% inhibitory concentration (IC50) = 66.3 ± 13.81 
µM. It also reduced the already up-regulated caspase 3 ac-
tivity when it was added to the cell culture medium after 
3 hour serum deprivation, suggesting its rescue effect. 
Among the major signaling pathways, p38 kinase was criti-
cal for the protective effect of resveratrol which was abol-
ished completely in the presence of p38 inhibitor.

Conclusion Resveratrol showed protective effect against 
cell death in a rather high dose. Involvement of p38 ki-
nase in this effect suggests the role of mild stress in its cy-
toprotective action. Furthermore due to its rescue effect, 
resveratrol may be used not only for prevention, but also 
treatment of age-related degenerative diseases, but in the 
higher dose than consumed in conventional diet.
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Age-related degenerative diseases pose enormous chal-
lenges both for individuals and society in terms of life quali-
ty and economic burden. Since age-related neurodegenera-
tive and cardiovascular diseases develop mainly as a result of 
cell impairments, it is crucial to find agents that prevent and 
abolish cell damage and death. Resveratrol (3,5,4’-tihydroxy-
trans-stilbene) is a widely investigated phytoalexin com-
pound, which can be found in numerous plants, mainly in 
the skin and seeds of red grapes (1). It was reported to pos-
sess multiple pharmacological properties including antiag-
ing (2), antioxidative, anti-inflammatory (3), anticarcinogen-
ic (4), and neuro- and cardioprotective effects (5). However, 
in the literature its rather contradictory properties, ie, cyto-
protective and proapoptotic, were reported (6). The cause 
of opposite effects may lie in different cell types, cell states, 
and the duration or dosage of treatment used in the various 
models (7). Characteristically, resveratrol has an opposite im-
pact on apoptosis in non-transformed and transformed cells 
(8,9). The targets of resveratrol and the mechanisms govern-
ing its effects are currently unclear. It was reported to affect 
different metabolic and signaling pathways, exhibit pro- or 
antioxidative activities, and modify the functions of several 
transcription factors and cofactors (10).

Since resveratrol might differently affect apoptotic pro-
cess of tumorigenic and non-transformed normal cells, the 
aim of this study was to investigate its effect on the death 
of non-transformed cells as a potential lead compound 
for research of cytoprotective medications. We used pri-
mary mouse embryonic fibroblasts as an easily available 
non-transformed cell culture model. In order to evaluate 
its cytoprotective effect, caspase 3 activation was exam-
ined following serum deprivation as a model of insufficient 
availability of trophic factors. The specific background 
mechanisms, involvement of the PI3K, ERK, JNK, p38, and 
SIRT1 signaling pathways were also determined.

Materials and methods

Reagents and animals

Resveratrol, the inhibitors of kinases (SB202190 for p38 
MAPK, SP600125 for JNK, PD184352 for ERK, wortman-
nin for PI3K) and SIRT1 (EX-527), caspase 3 activity assay 
kit using fluorogenic caspase 3 substrate (Ac-DEVD-AMC), 
buffer components and N-acetylcysteine were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Non-selective cas-
pase inhibitor (Ac-VAD-CMK) was obtained from AnaSpec 
(Fermont, CA, USA) and CytoxOne lactate dehydrogenase 
release kit from Promega (Fitchburg, WI, USA). Cell cul-

ture mediums and fetal bovine serum were supplied by 
GE Healthcare (Little Chalfont, UK) and Life Technologies 
(Carlsbad, CA, USA), respectively. Test compounds were 
dissolved in DMSO and used in cell culture medium to 
provide 0.5% final DMSO concentration. Control cells were 
treated with the same concentration of DMSO.

Pregnant NMRI mice were supplied by Toxicoop, Gödöllő, 
Hungary. All animal procedures were approved by 
the ethics committee of the Semmelweis University 
(22.1/606/001/2010, February 5, 2010) and were in accor-
dance with the EU Council directives on laboratory animals 
(86/609/EEC).

Cell culture conditions and assay for caspase 3 activity 
and lactate dehydrogenase release

Mouse embryonic fibroblast culture was established ac-
cording to CSH protocol (11). Cells were maintained in 
DMEM supplemented with 10% fetal bovine serum and 
used between passage 3 and 7. One day before the experi-
ment cells were seeded to 6 cm Petri dishes (3 × 105 cells/
dish). Twenty-four hours later fetal bovine serum was with-
drawn from the cell culture medium to induce cell death. 
Resveratrol treatment was initiated simultaneously with 
serum deprivation. When the rescue effect of resveratrol 
was investigated, resveratrol was added to the cell culture 
medium after 3-hour serum deprivation. Inhibitors of vari-
ous signaling pathways were applied simultaneously with 
serum deprivation and/or resveratrol treatment.

For caspase activity assay after specified treatment periods 
(3, 4.5, 6 hours), cells were rinsed with PBS and harvested 
by trypsin-EDTA, and cytosol extract was prepared by hy-
potonic lysis with 0.6% Nonidet P40 according to Andrews 
and Faller (12). In order to evaluate direct caspase inhibi-
tory effect of resveratrol, resveratrol was added directly to 
cytosol extract of serum-deprived fibroblasts immediately 
before measuring caspase 3 activity. Ac-VAD-CMK, a non-
selective direct caspase inhibitor, was used in 20 µM con-
centration as positive control. Caspase 3 activity and lactate 
dehydrogenase release were measured by commercially 
available kits according to the manufacturer instructions. 
Caspase 3 activity is shown as nanomol substrate cleaved 
by miligram protein in 3 hours.

Statistical analysis

Data were expressed as mean ± standard deviation. 
Comparisons were made by paired t test. P < 0.05 
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was considered statistically significant. Data were analyzed 
by Microsoft Excel 2010 (Redmond, WA, USA).

Results

Resveratrol dose-dependently prevented serum 
deprivation-induced caspase 3 activation in primary 
mouse embryonic fibroblasts

Primary mouse fibroblasts were exposed to serum depri-
vation, which after 3-6 hours induced significant caspase 

3 activation (P < 0.001). In order to evaluate the protec-
tive effect of resveratrol, the cells were treated with several 
concentrations (10, 25, 50, 75, 100, 200 µM) of resveratrol 
simultaneously with serum deprivation. Resveratrol pre-
vented caspase 3 activation in a dose-dependent manner, 
with 50% inhibitory concentration (IC50) = 66.3 ± 13.81 µM. 
Caspase 3 activation following 3 hour serum deprivation 
was completely inhibited at 200 µM resveratrol concentra-
tion (Figure 1A), and thus this level was used in the further 
experiments. This protective effect was also obtained after 
up to 6 hours of serum deprivation (Figure 1B). To verify 
whether resveratrol regulates the cellular response or di-
rectly interacts with caspase 3, resveratrol was added di-
rectly to the cytosol extract rather than to cell culture me-
dium. Resveratrol showed no direct caspase inhibitory 
effect, although the known direct inhibitor Ac-VAD-CMK, 
used as positive control, completely blocked caspase 3 ac-
tivity (Figure 2).

Resveratrol exhibited rescue effect on serum 
deprivation-induced caspase 3 activation

We further investigated whether resveratrol reduced the 
already up-regulated caspase 3 activity. Primary fibroblasts 
were exposed to serum deprivation for 3 hours, after which 

Figure 1. Resveratrol dose-dependently prevented caspase 
3 activation after 3 h serum deprivation. Control value of 
caspase 3 activity in serum supported cells: 1.76 ± 0.097 nmol/
mg/3 h (A). 200 µM of resveratrol prevented caspase 3 activa-
tion after 3, 4.5, and 6 h serum deprivation (B).

Figure 2. Resveratrol showed no direct caspase 3 inhibi-
tory effect. When 200 µM of resveratrol was added to cytosol 
extract of serum-deprived fibroblast during caspase 3 activity 
measurement, it did not significantly reduce caspase 3 activity. 
A known direct caspase inhibitor, Ac-VAD-CMK, was used as 
positive control in 20 µM concentration.
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the culture medium was supplemented with 200 µM res-
veratrol for an additional 2 hours. Resveratrol significantly 
reduced the already activated caspase 3. It prevented not 
only its further increase but also reduced it to a level be-
low that observed after 3-hour serum deprivation. These 
experiments indicate that resveratrol may have both pro-
tective and rescue effect on cells (Figure 3).

Resveratrol reduced lactate dehydrogenase release 
induced by serum deprivation

Lactate dehydrogenase release was measured to evaluate 
whether the inhibition of caspase 3 activation by resveratrol 
was accompanied by increased cell viability. Cell viability 
decreased by 24 hour serum deprivation was significantly 
improved by 200 µM resveratrol treatment (Figure 4).

The effect of resveratrol on caspase 3 activity involves 
p38 kinase pathway

In order to investigate the signaling cascades involved in 
the protective effects of resveratrol, we carried out experi-
ments in the presence of specific inhibitors of p38 (50 µM 
SB202190), JNK (50 µM SP600125), ERK (50 µM PD184352), 
PI3K (10 µM wortmannin) kinase pathways, and SIRT1 (5 

µM EX-527). Among them, only p38 MAPK inhibitor SB 
202190 decreased the protective effect of resveratrol on 
caspase 3 activation (Figure 5).

Figure 3. Resveratrol showed rescue effect on caspase 3 acti-
vation. Following 3 h of serum deprivation, 200 µM resveratrol 
was supplemented for an additional 2 h.

Figure 4. 200 µM of resveratrol reduced lactate dehydroge-
nase release after 24 h serum deprivation.

Figure 5. The effect of 50 µM SB202190 (p38 MAPK inhibitor), 
50 µM SP600125 (JNK inhibitor), 50 µM PD184352 (ERK inhibi-
tor), 10 µM wortmannin (PI3 kinase inhibitor), and 5 µM EX-527 
(SIRT-1 inhibitor) on 3-h serum deprivation-induced caspase 
3 activation and the protective action of 200 µM resveratrol. 
Only p38 MAPK inhibitor SB202190 abolished the effect of 
resveratrol on caspase activation.
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The role of oxidative stress in the effect of resveratrol

Considering that p38 kinase pathway is activated by mild 
intracellular stress (13) and pro- and antioxidant properties 
of resveratrol had been previously described (14), we hy-
pothesized that reactive oxygen species generation could 
be involved in caspase 3 activation induced by serum de-
privation and/or the protective effect of resveratrol. To clar-
ify if the antioxidant property of resveratrol may play a key 
role in its cytoprotective effect, we investigated the effect 
of 5 mM N-acetylcysteine, a well-known antioxidant agent, 
on caspase 3 activation. Contrary to our expectations, it did 
not prevent caspase 3 activation but exacerbated it. How-
ever, 200 µM resveratrol abolished the combined effect of 
serum deprivation and N-acetylcysteine on caspase 3 ac-
tivation (Figure 6).

Discussion

Cytoprotective effect of resveratrol

Resveratrol prevented serum deprivation-induced caspase 
3 activation in primary fibroblasts and increased their via-
bility. These results are in line with those of previous studies 

performed on non-transformed cells using various toxic in-
sults (15,16). In this study, cytoprotective effect of resvera-
trol was considerable, in 100-200 µM concentration range, 
which is similar to another study (17). However, some re-
cent studies observed lower concentrations, in the 10-20 
µM range to be efficient as well (9,16). The effective dose 
probably depends on the cell type and the intensity of the 
damaging insult used. The concentration found to be ef-
fective in the present study is considerably higher than the 
concentration that can be obtained from dietary sources, 
suggesting the need for resveratrol supplementation. Fur-
thermore, resveratrol can serve as a lead compound for re-
search of more potent cytoprotective medications.

To the best of our knowledge this is the first report demon-
strating that resveratrol abolishes the already elevated cas-
pase 3 activity induced by serum deprivation, suggesting 
its rescue effect. Resveratrol was found to prevent and im-
prove cardiac function in cardiac fibroblasts (18,19) and to 
play a neuroprotective role in neurotoxic injury (20). How-
ever, our results showed that it is a promising cytoprotec-
tive agent which should be explored not only for preven-
tion of age-related degenerative disorders, but also in the 
early treatment of degeneration following an acute insult.

Probable mechanism of resveratrol action

It has already been suggested that several kinase pathways 
have a role in the cytoprotective effects of resveratrol. Cy-
toprotective functions of resveratrol were associated with 
the activation of PI3-kinase/Akt (21,22), p38 MAPK/JNK/ERK 
(23,24) signaling, and molecular pathways involving SIRT1 
(9), an NAD dependent histone deacetylase. Our present 
findings indicate that the most critical signaling pathway 
in the protective effect of resveratrol against serum de-
privation-induced caspase 3 activation is the activation of 
p38. The reports about the effects of resveratrol on p38 ki-
nase pathway are rather contradictory. It was shown that 
through inhibition of p38 pathway resveratrol suppresses 
macrophage and vascular smooth muscle cell apoptosis 
(17,23). On the other hand, it exerted protective effect in 
H9c2 embryonic rat heart derived cells by up-regulating 
the p38 MAPK signaling (25). It was also shown to inhib-
it the proliferation of human primary fibroblasts and en-
hance their entry to senescence in p38 dependent man-
ner (26). Therefore, p38 kinase seems to have a dual role as 
a regulator of cell fate, mediating either survival or death. 
Adams et al (27) reported that the specific function of p38 
MAPKs in apoptosis depended on the cell type, stimuli, 
and/or p38 isoform. In accordance with their findings, we 

Figure 6. Five mM of N-acetylcysteine (NAC) exacerbated 
serum deprivation-induced caspase 3 activation, but 200 µM 
of resveratrol prevented their combined effect.
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showed that p38 MAPK had a cytoprotective rather than 
proapoptotic role.

Several articles discuss antioxidant properties of resvera-
trol as the cause of its cytoprotective effect (14,16). Con-
sidering that N-acetylcysteine exacerbated rather than 
prevented serum deprivation-induced caspase activation 
and resveratrol abolished their combined effect, antioxi-
dant properties cannot explain its protective action. Pre-
vious articles reported similar effect of N-acetylcysteine, 
concluding that the elevated glutathione level can inhibit 
NF-κB induced transcription of inhibitor of apoptosis pro-
tein, which can explain its potentiating effect on caspase 
activation (28,29). Since several previous reports demon-
strated not only antioxidant but prooxidant characteristics 
of resveratrol (14,30), the latter might be involved in the 
activation of p38 MAPK and reduction of caspase 3 acti-
vation. A previous study suggested that the prooxidant 
activity of resveratrol was responsible for its inhibitory ef-
fect on apoptosis by creating an intracellular milieu non-
permissive for caspase activation (30). These findings are 
in line with our results, which also indicate the role of p38 
kinase in the protective effect of resveratrol and activation 
of this pathway by mild intracellular stress (13). However, 
the effect of resveratrol on oxidative state of cells requires 
further research.

Activation of p38 was also connected to increase in au-
tophagic flux. This process is involved in the degradation 
of misfolded proteins or damaged organelles, such as de-
polarized mitochondria, which can prevent the release of 
proapoptotic mediators and the consequent caspase acti-
vation (25). Accordingly, two recent papers reported that 
resveratrol improved autophagic flux and prevented cas-
pase cleavage in H9c2 rat cardiomyoblast cells (25,31). Sim-
ilarly to our results, the protective effect of resveratrol de-
pended on p38 MAPK activity (25). Based on these data, we 
can hypothesize that the effect of resveratrol on caspase 
3 activation and cell survival might be connected with its 
prooxidant property, which may enhance autophagic flux 
via p38 activation.

A major limitation of this study is its in vitro nature, which 
is why further translational experiments are required to 
analyze the cytoprotective effect of resveratrol. In conclu-
sion, we demonstrated the p38 MAPK signaling pathway-
dependent cytoprotective effect of resveratrol against se-
rum deprivation induced caspase 3 activation in primary 
fibroblasts. Also, resveratrol exhibited a rescue effect and 
reduced the already up-regulated caspase 3 activity. This 

finding may contribute to the research of drugs used for 
prevention and treatment of age-related disorders.
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