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Abstract

Bayesian staircases are widely used in psychophysics to estimate detection thresholds.

Simulations have revealed the importance of the parameters selected for the assumed sub-

ject’s psychometric function in enabling thresholds to be estimated with small bias and high

precision. One important parameter is the slope of the psychometric function, or equivalently

its spread. This is often held fixed, rather than estimated for individual subjects, because

much larger numbers of trials are required to estimate the spread as well as the threshold.

However, if this fixed value is wrong, the threshold estimate can be biased. Here we deter-

mine the optimal slope to minimize bias and maximize precision when measuring stereoa-

cuity with Bayesian staircases. We performed 2- and 4AFC disparity detection stereo

experiments in order to measure the spread of the disparity psychometric function in human

observers assuming a Logistic function. We found a wide range, between 0.03 and 3.5 log10

arcsec, with little change with age. We then ran simulations to examine the optimal spread

using the empirical data. From our simulations and for three different experiments, we rec-

ommend selecting assumed spread values between the percentiles 60–80% of the popula-

tion distribution of spreads (these percentiles can be extended to other type of thresholds).

For stereo thresholds, we recommend a spread around the value σ = 1.7 log10 arcsec for

2AFC (slope β = 4.3 /log10 arcsec), and around σ = 1.5 log10 arcsec for 4AFC (β = 4.9 /log10

arcsec). Finally, we compared a Bayesian procedure (ZEST using the optimal σ) with five

Bayesian procedures that are versions of ZEST-2D, Psi, and Psi-marginal. In general, for

the conditions tested, ZEST optimal σ showed the lowest threshold bias and highest

precision.

Introduction

Bayesian and maximum-likelihood procedures are widely used in psychophysics to estimate

detection thresholds. Given that these are parametric procedures, the experimenter has to pro-

vide in advance the parameters for the assumed psychometric function or model function [1].
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Several simulation studies have shown the importance of choosing the adequate parameters.

In general, when there is a mismatch between the subject’s psychometric function and the

model function, threshold bias (i.e. the difference between the estimated and the real thresh-

old) emerges [2–5]. Thus, before using Bayesian procedures (e.g. ZEST, [6]; QUEST, [7]), a

previous experiment is ideally needed to estimate the subject’s psychometric function in order

to avoid biased estimates. However, this will require more trials than is often practical, espe-

cially in a clinical setting. For this reason, parameters other than threshold are often held fixed

at a constant value for all participants, with only the threshold fitted for each individual.

In most simulation studies that examine the mismatch between the subject’s psychometric

function (ψ) and the assumed psychometric function (i.e. the model function, M), the authors

use maximum-likelihood procedures, however, those results can be extrapolated to Bayesian

procedures given that a Bayesian procedure using the mode of the posterior distribution as

estimator and a uniform distribution as a priori distribution (instead of an informative distri-

bution) is equivalent to the maximum likelihood estimation [1]. We therefore do not make a

distinction between these approaches when discussing the literature.

One particularly important parameter of the psychometric function is the spread (σ), or

equivalently, the slope of the model function. Slope and spread are inversely related; see S1

Appendix for details. Using a maximum-likelihood procedure, Green [4] (in a 2AFC task)

found that the variability of the threshold estimate is lower when slope is underestimated, i.e.

the model function was shallower (and its spread larger) than the observer’s true psychometric

function. In line with this finding, Treutwein [1] recommends underestimating the slope (i.e.

overestimating the spread or the standard deviation) relative to subject’s slope when using a

dynamic stopping criterion. Emerson [2] found, using a maximum-likelihood procedure in a

yes-no task, that threshold estimates were biased when the true slope was overestimated,

whereas no bias was evident when the slope was underestimated. Madigan & Williams [3] (in

a 2AFC task) compared Best PEST [8] and QUEST [7] using large lapse rates (20%). In general,

they found that slope mismatches were not a serious problem for maximum-likelihood meth-

ods, however, they found that Best PEST procedure performs better (greater accuracy) when

they overestimate the subject’s slope. Interestingly, they found the opposite for QUEST: under-

estimation of the true slope yielded better accuracy. Using Bayesian staircases (in a yes-no

task) Alcalá-Quintana & Garcı́a-Pérez [5] found that underestimating the subject’s slope (i.e.

overestimating the spread) reduced the bias of the threshold estimation. This reduction was

important if subject’s and assumed psychometric functions were different (e.g. Weibull vs.

Logistic), however, they claimed no bias when both psychometric functions were identical. In

summary, almost all studies recommend underestimating the subject’s slope (i.e. overestimat-

ing the spread) in order to get higher accuracy and smaller variance of the threshold estimates,

but there are no recommendations about the degree of the underestimation needed to obtain

thresholds with the smallest bias and standard deviation.

Our aim is to find the optimal slope (or spread) value in order to estimate stereo thresholds

using a general Bayesian procedure. Our Bayesian procedure is described in the S1 Appendix

(section A2). It assumes a uniform a priori distribution (non-informative prior); it uses the

Logistic function for the model function; for selecting the stimulus intensity in each trial it

computes the mean of the posterior distribution; and the threshold corresponds to the mean

of the final distribution. This Bayesian configuration has the basic characteristics recom-

mended from simulation studies [5, 6, 9, 10]. In summary, it is similar to ZEST [6] but using a

uniform a priori distribution. Monte Carlo simulations confirm that with this procedure, bet-

ter results are obtained when the slope is underestimated than when it is overestimated.

This is illustrated in Fig 1, which shows the simulation results for (A) 2AFC and (B) 4AFC

tasks. Each panel shows the simulations for a different choice of the subject’s spread value (σS).
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The abscissa values correspond to the spread value of the model function (σM) used in the

Bayesian procedure (larger spread values correspond to smaller slope values). Thus, the red

dashed lines show the best case, where the assumed value is correct for the subject, σM = σS.

For the conditions tested, the results show a stronger bias for 2AFC (Fig 1A) than for 4AFC

(Fig 1B). In general, all panels show the classical result, overestimation of the subject’s slope

(smaller spread than the subject’s spread) produces stronger bias than underestimation of the

subject’s slope (or overestimation of the spread). The vertical dashed red line signals the spread

value of the subject. For both tasks and for almost all spread values of the subject, bias and SD

rise more slowly to the right of this line than to the left. Thus, in agreement with previous

results, underestimation of the slope (overestimation of the spread values) yields better results

than overestimation [4].

However, Fig 1 also shows that thresholds become more biased and less reliable if the slope

underestimation is too severe (i.e. σM is too high). Thus, there is no unique model spread

value (σM) that works well for all possible spreads of any observer (σS). However, it would be

possible to find the optimal spread value if the distribution of spreads for the particular task is

known. We could then use Monte Carlo simulations to estimate the optimal model spread

(σM) that minimizes bias and maximizes precision for the given distribution of spreads in the

population.
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Fig 1. Simulations using adaptive Bayesian staircases. Each panel shows the mean threshold bias (estimated threshold-subject

threshold) ± 1 SD, as a function of the spread (σM) of the model function. The subject threshold was fixed to be θS = 1.5 (logarithmic

value; 31.6 arcsec) that corresponds to the probability of correct responses of π = 0.75 for both tasks. Each panel shows the simulations

for one particular spread of the subject (σS = [0.5, 1.5, 2.5]), the vertical red-dashed lines signals the spread of the subject psychometric

function. The horizontal red-dashed line marks the zero-bias value. A. Results for a 2AFC task with guess rate γS = 0.5 and lapse rate

λS = 0.02. B. Results for a 4AFC task with guess rate γS = 0.25 and lapse rate λS = 0.03. Lapse and guess rates were the same for the

subject and the model function. Each dot corresponds to 2000 simulations of a Bayesian staircase of 30 trials (see S1 Appendix). Note

that a spread value of the model function lower than the real one (subject’s spread) introduces bias in threshold estimation, positive

bias in 2AFC and negative bias in 4AFC task (this is different if different probability of correct responses is chosen). See more details

in the main text.

https://doi.org/10.1371/journal.pone.0226822.g001
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It is well known that there are Bayesian methods like MUEST [11], ZEST 2D [12], Psi [13],

Psi-marginal [14] or QUEST+ [15] that can be used to estimate the threshold and the slope

simultaneously (and some of them the lapse rate too), however this has a cost in terms of num-

ber trials needed or for example, when the slope parameter is unknown, MUEST (a multidi-

mensional extension of QUEST to estimate threshold and the slope simultaneously) performs

better than QUEST [7], on the other hand, if the slope parameter is known, QUEST performs

better (i.e. lower threshold bias) than MUEST [11]. There are versions of ZEST 2D, Psi-mar-

ginal, or QUEST+ that can be modified to estimate only the threshold parameter treating the

slope parameter as a nuisance parameter or marginalizing it, however, it is not known whether

they will perform better than a well-known Bayesian method like ZEST with the optimal slope.

Thus, in this paper, our objectives are: (i) to determine the optimal slope value for the

model function in order to estimate reliable thresholds on stereoscopic disparity detection

tasks when using Bayesian procedures; (ii) to quantify the threshold bias and imprecision

expected for subjects with different values of spread. To this end, we have performed three dif-

ferent stereo experiments (two measuring global stereopsis and one measuring local stereop-

sis) in which we estimated the threshold, the spread and lapse rate of 260 participants using an

adaptive weighted one-up one-down staircase in two tasks, 2AFC and 4AFC. We have per-

formed Monte Carlo simulations using the distributions of the empirical spreads from those

three experiments and we have estimated an optimal spread value for each experiment. (iii)

Finally, in order to test the effectivity of using the optimal slope in a Bayesian procedure, we

will compare a Bayesian method (ZEST with optimal σ) with other five Bayesian procedures

performing Monte Carlo simulations using the empirical data (thresholds, slopes, and lapse

rates) of each subject as model psychometric function and two tasks (2AFC and 4AFC).

Materials and methods

Participants

We performed three experiments with different number of participants. In Experiment 1

(2AFC_global) we tested 79 participants (33 females) (aged from 4.6 to 61 years, mean = 19.5

years, SD = 14.05). In Experiment 2 (4AFC_global) we tested 82 participants (37 females)

(aged from 5 to 21.8 years, mean = 10.02 years, SD = 3.14). In Experiment 3 (4AFC_local) we

tested 99 participants (45 females) (aged from 4.75 to 36.08 years, mean = 10.09 years,

SD = 4.86). All subjects completed 80 trials or more up to 120 trials. All subjects decided at the

beginning of the experiment whether perform the experiment with 80 or with 120 trials.

Adults and children were recruited at the Centre for Life science center in Newcastle upon

Tyne, UK (http://www.life.org.uk/). Adult participants provided informed written consent.

The parents or other accompanying adults of child participants provided written consent for

children. The study protocol was compliant with the Declaration of Helsinki and was approved

by the Ethics Committee of the Newcastle University Faculty of Medical Sciences (approval

number 00625).

Equipment

Stimuli were presented on a 23-inch passive 3D monitor (D2367PH, AOC) that uses passive

polarization with a spatial resolution of 1920 × 1080 pixels (52 cm × 29 cm) and a refresh rate

of 60 Hz. Left and right images were separated by circular-polarization 3D glasses. Observers

were seated at 90 cm from the monitor, so a pixel subtended 60.4 arcsec. To stabilize the

observer’s head and to control the observation distance a chin rest (UHCOTech HeadSpot,

Houston, TX) was used. In the 2AFC task (Experiment 1), subjects indicated their response by

pressing the left or right button of a standard computer mouse. In the 4AFC tasks Experiment
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2 & 3), subjects responded via a 4-button response box (ResponsePixx HandHeld, VPixx Tech-

nologies). The four corner buttons corresponded with the four spatial locations of the 4AFC

(see Fig 2B). Data were collected on a DELL workstation (Intel(R) Core (TM) i3 CPU 540

@3.07GHz, 4GB RAM, 64- bit Operating System, Windows 7), with a GeForce GTX 460

graphics card (NVIDIA), running MATLAB R2012a, 64-bit (Mathworks). The experiments

were programmed using Psychophysics Toolbox extensions [16–18].
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 E 

Fig 2. Screen capture examples of the stimuli used in the experiments. A. Example of the stimulus presented in Experiment 1 (2AFC_global). This

capture corresponds to a practice trial where in addition to the disparity the target area was also presented in red (this colour/luminance cue was

removed after the practice trials). B. Example of the stimulus used in Experiment 2 (4AFC_global). C. Example of the stimulus used in Experiment 3

(4AFC_local). D. Anaglyph version of the stimulus used in Experiments 1 and 2. E. Anaglyph version of the stimulus used in Experiment 3. To

observe correctly these examples with anaglyph glasses, place the red filter in front of the left eye.

https://doi.org/10.1371/journal.pone.0226822.g002

Efficient estimation of stereo thresholds

PLOS ONE | https://doi.org/10.1371/journal.pone.0226822 January 2, 2020 5 / 23

https://doi.org/10.1371/journal.pone.0226822.g002
https://doi.org/10.1371/journal.pone.0226822


Stimuli

All stimuli were generated using Matlab (R2012a, Mathworks). In Experiments 1 (2AFC_glo-

bal) and 2 (4AFC_global), we designed the stimuli to measure global (or cyclopean) stereopsis.

These experiments differed only in the number of alternatives. In Experiment 3 (4AFC_local),

using a 4AFC task, we measured local (feature or contour-based) stereopsis. The stimulus used

is a version of the Randot Circles stereotest (Stereo Optical Company, Inc., USA) commonly

used in clinical screening.

For Experiments 1 and 2, we used dynamic random dots of different colors on a black back-

ground (see Fig 2A and 2B). The color of the dots was generated by selecting the RGB values

independently from a uniform distribution between minimum and maximum luminance. The

position and color of the dots was random and updated every frame at 60 Hz. The dots were

generated using the function “Screen(‘DrawDots’)” of the Psychophysics Toolbox extensions

[16–18]. Given that the stereoscopic presentation system uses line interleaving to dissociate

left and right images, the dots appeared as ellipses, with a width of 10 pixels and a height of 20

physical pixels (10.07 × 20.14 arcmin). Subpixel disparities were achieved by using an antialias-

ing technique (see [19]). In Experiment 1, we used a 2AFC task and the target was a random

dot stereogram of 8.4 × 8.4 deg with crossed disparities presented on top of a surround com-

posed of random dots with uncrossed disparities (see Fig 2A). The target was presented on the

left or right side of the screen at 9.3 degrees from the midline. In Experiment 2, we used a

4AFC task, and the target was also a random dot stereogram of 4.3 × 4.3 deg with crossed dis-

parities presented in one of the four corners of the screen 6.5 deg away from the centre (see Fig

2B). In this experiment the target was located in the center a surrounding rectangle of random

dots with uncrossed disparities (9.3 × 7.4 deg, width × height). Target and background had

equal and opposite disparity relative to the screen. This procedure reduces monocular cues

that could be present for high disparities [19]. The stimulus disparity was defined as the rela-

tive disparity between the target and background (see an anaglyph version in Fig 2D).

Fig 2C shows an example of the stimulus used in Experiment 3. The stimulus consisted of

four black circles on a square background filled with static white noise. Each square had a size

of 5 deg and each circle a diameter of 2.65 deg. The circle was constructed using a 2D isotropic

window with a Butterworth profile (see equation in Appendix A in [20]), with this luminance

profile we can achieve subpixel disparities. We applied the disparity to one of the circles and

the background was set to zero disparity (see anaglyph version in Fig 2D).

Procedure

In all experiments we used the same adaptive weighted one-up one-down staircase (see a simu-

lation study about this type of staircase in [21]). The staircase started with a practice trial at a

disparity of 3 log10 arcsec (or 1000 arcsec). In the first trial of Experiments 1 and 2, in addition

to the disparity, all target dots were presented in red at maximum luminance (see Fig 2A and

2B). This non-stereo color/luminance cue was added to the practice trial to ease understanding

of the task. This cue was eliminated after the first trial; therefore, after the first trial the target

could only be discriminated based on disparity. The staircase works in log10 values of the dis-

parity. After each correct response, log-disparity was reduced by subtracting 0.15 log10 arcsec

(i.e. disparity was divided by a factor of 1.41). Following each incorrect answer, log-disparity

was increased by three times this value or 0.45 log10 arcsec (i.e. disparity was increased by a fac-

tor of 2.81; see two examples of this staircase in Fig 3, left panels). In total, 94% of the partici-

pants completed 80 trials and 6% 120 trials. No feedback about correctness of responses was

provided. The stimulus on each trial was presented until the participants made a response,
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thus the experiment proceeded at a pace determined by the participant. All experiments were

carried out in a dimmed area at the Centre for Life.

Fitting procedure

First, we computed the proportion of correct responses observed for each disparity presented

to the subject. Then, for each subject we fitted the Logistic psychometric function (described

in S1 Appendix; red lines on the right panels of Fig 3) to the proportion of correct responses

by the method of maximum likelihood, using the function “fminsearch” of Matlab. This is the

same function that will be used as a model function in the Bayesian staircases. We fitted the

psychometric function with three free parameters, threshold, θ; spread, σ; and lapse rate, λ,

with constrains θ>0, σ>0, and 0<λ<0.06. The guess parameter γ was fixed to 0.5 for 2AFC

and 0.25 for 4AFC. We established the disparity threshold as the value that corresponds to the

probability of correct responses of π = 0.75 for both, 2AFC and 4AFC tasks. We assessed the

goodness of fit of the psychometric function using the likelihood ratio or deviance (Dev)

described in equation 5 of Wichmann & Hill [22]. We fixed a priori the ranges for valid fit-

tings, θ �[1, 500] arcsec; σ �[0.01, 7]; and the probability p(Dev) associated to the deviance p

(Dev)>0.05. Those subjects that didn’t meet these criteria were discarded from the analysis.

The lower value of the range for σ (0.01) was chosen taking into account that previous simula-

tion studies, with this type of adaptive staircase, have shown spread estimation errors (spread

values close to 0) for a small number of trials (see Fig 4 of [21]).

Results

Fig 4 shows the spread (σ) of the participants’ psychometric function as a function of age for

three experiments. Green dots show the spread value obtained from the fitting procedure. The
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Fig 3. Example of staircases used in the experiments. Left panels, staircases and histograms of disparities presented.

Right panels show the fitting of the psychometric function (red line) to the data (white dots). The number on the right

of white dots corresponds to number of times that a disparity value was presented. A. Example of one participant (22.9

years) performing Experiment 1 (2AFC_g). B. Example of one participant (11.4 years) performing Experiment 2

(4AFC_g).

https://doi.org/10.1371/journal.pone.0226822.g003
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averages of the spreads (σ) for each Experiment 1 were, in log10 arcsec: �s2AFC_g = 1.005 ± 0.776

(mean ± SD); �s4AFC_g = 1.186 ± 0.74; �s4AFC_l = 1.306 ± 0.632. A spread of 1 log10 arcsec means

that 95% of the range of the psychometric function occurs over a factor of 10 in disparity. For

example, if performance is 2.5% above chance when disparity is 10 arcsec, then with σ = 1

log10 arcsec it will be 2.5% below maximum when disparity is 100 arcsec. Conversely, a spread

of 1.3 log10 arcsec corresponds to a factor of 20.

In order to compare the spreads of the three experiments we performed the Levene’s test

for homogeneity of variances (F(2,212) = 1.872, p = 0.156), and the Shapiro-Wilk normality

test showing that only the distribution of spreads in Experiment 3 showed normality (p>0.05).

Thus, we have performed two tests, a parametric one-way analysis of variance (ANOVA) and

a non-parametric Kruskal-Wallis test. Both tests produce the same conclusions. ANOVA

shows significant differences between σ estimates from the three experiments (F(2,212) =
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Fig 4. Spread values from Experiments 1 (2AFC_g), 2 (4AFC_g), & 3 (4AFC_l). Left panels show the spread value (σ) (i.e.

inverse of the slope, with units of log10 arcsec) as a function of age. Right panels show the distribution of spreads for each

experiment. A. Results from Experiment 1. B. Experiment 2; C. Experiment 3. Green dots are the individual spreads

obtained from the fitting. The red dots in panels A and B correspond to the spread values of the participants described

in Fig 3. Black lines are fitted regression lines (dashed lines: 95% regression confidence interval for the mean). A.

ŝ (age)2AFC_g = 0.632+0.308×log10(age). B. ŝ (age)4AFC_g = 2.097–0.924×log10(age). C. ŝ (age)4AFC_l = 2.295–

0.996×log10(age). Top left of left panels shows the Pearson correlation between age and thresholds (log10(age) and σ).

https://doi.org/10.1371/journal.pone.0226822.g004
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3.267, p = 0.04;). Post-hoc tests for multiple comparisons using Bonferroni correction only

shows significant differences between Experiment 1 (2AFC_g) and Experiment 3 (4AFC_l)

(p = 0.035). Kruskal-Wallis test was conducted to compare the three distributions of spreads

and results shows again significant differences (χ2 = 8.462,p = 0.015,d.f. = 2). Pairwise compar-

isons show significant differences between Experiment 1 and 3 (p = 0.011) too.

Correlation analysis shows no significant correlation in Experiment 1 between spread (σ)

and age (log10(age)) (r = 0.108, p = 0.370, N = 71); and also, in Experiment 2 (r = -0.153,

p = 0.211, N = 68). Experiment 3 shows a significant negative correlation (r = -0.257,

p = 0.025, N = 76). However, after computing the Cook’s distance in order to detect and

remove highly influential observations (observations with Cook’s distance higher than three

times the mean of all Cook’s distances), no significant correlations are found (r2AFC_g = 0.196,

p = 0.1209, N = 64; r4AFC_g = -0.153, p = 0.235, N = 62; r4AFC_l = -0.159, p = 0.1887, N = 70).

Therefore, our results suggest that spread values are independent of age.

Fig 5 shows the disparity thresholds (θ, in log10 units) as a function of age from the three

experiments. Green dots show the disparity threshold obtained from the fitting procedure.

The averages of the thresholds (in log10(arcsec)) for each Experiment were: �y2AFC_g =

1.528 ± 0.3 (mean ± SD) (33.73 arcsec, N = 71); �y4AFC_g = 1.54 ± 0.203 (34.67 arcsec, N = 68);

�y4AFC_l = 1.568 ± 0.23 (36.98 arcsec, N = 76).

Multiple studies have found that stereoacuity improves (i.e. disparity thresholds decrease)

with age until the age of 10 years [23–27], remains steady until the age of 50–60 years and then

stereoacuity decreases [27–29]. Given that our youngest participants are around 5 years and

very few are over 50 (see Fig 5), we might expect to see a negative correlation between age and

disparity thresholds. Pearson’s product-moment correlation between age (log10(age)) and

thresholds (log10(arcsec)) did indeed show a significant negative correlation (r2AFC_g = -0.293,

p = 0.013, N = 71) for Experiment 1 and for Experiment 2 (r4AFC_g = -0.267, p = 0.027,

N = 68). However, for Experiment 3, we found no correlation (r4AFC_l = -0.087, p = 0.455,

N = 76). We also computed the Cook’s distance in order to detect highly influential observa-

tions. Only Experiment 1 still shows significant correlations after removing highly influential

observations (r2AFC_g = -0.32, p = 0.008, N = 66; r4AFC_g = -0.146, p = 0.261, N = 61; r4AFC_l =

-0.052, p = 0.668, N = 69). The absence of correlation in the 4AFC experiments is presumably

related to the lower age-range of the participants.

Fig 6 shows the spreads (σ) as a function of the thresholds (θ) for all participants. Correla-

tion analysis shows no correlation for Experiment 1 (r = 0.137, p = 0.254, N = 71) and signifi-

cant correlations for Experiment 2 (r = 0.357, p = 0.003, N = 68) and Experiment 3 (r = 0.341,

p = 0.003, N = 76). After removing influential observations using Cook’s distance, the correla-

tions barely changed (r2AFC_g = 0.1, p = 0.428, N = 64; r4AFC_g = 0.349, p = 0.0049, N = 63;

r4AFC_l = 0.2906, p = 0.0133, N = 72). Therefore, although the correlations are not very strong,

4AFC data shows that the lower the thresholds the steeper the psychometric function (small

spread).

Finally, we analyzed the estimated lapse rate. We define the “lapse rate” parameter λ to be

the probability of responding incorrectly as the result of a lapse in attention etc. The average

values fitted for the three experiments were �l2AFC_g = 0.0103 ± 0.021 (mean ± SD) (N = 71);

�l4AFC_g = 0.0231 ± 0.0271 (N = 68); �l4AFC_l = 0.0208 ± 0.027 (N = 76). Levene’s test for homo-

geneity of variances shows heteroscedasticity (F(2,212) = 16.366, p<0.001) and Shapiro-Wilk

normality test shows that the three distributions of lapse rates are not normally distributed.

Although the distributions show heteroscedasticity, we performed a non-parametric Kruskal-

Wallis test that shows significant differences between the distributions of lapse rates (χ2 =

9.784,p = 0.008,d.f. = 2). Pairwise comparisons show significant differences only between lapse
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rates of Experiment 1(2AFC_g) and Experiment 2 (4AFC_g) and almost significant (p =

0.058) between Experiment 1 and 3(4AFC_l) (Welch’s ANOVA show the same results, F

(2,138.868) = 5.943, p = 0.003, and significant differences between Experiment 1 and 2

(p = 0.01) and between 1 and 3 (p = 0.04)). This is not a surprising result given that with the

same probability of making a lapse (λ�), the probability of responding incorrectly as a result of

a lapse increases with the number of alternatives [30]: λ = λ�(1−γ). Our data indicate the fol-

lowing estimates for the probability of making a lapse: �l
�

2AFC_g = 0.0207 ± 0.042 (mean ± SD)

(N = 71); �l
�

4AFC_g = 0.0308 ± 0.0361 (N = 68); �l
�

4AFC_l = 0.0276 ± 0.036 (N = 76). Shapiro-

Wilk test shows confirms that the distributions are not normally distributed, however,

Levene’s test shows homogeneity of variance (F(2,212) = 0.072, p<0.930). Kruskal-Wallis test

shows no significant differences between the distributions of lapse rates (χ2 = 4.686,p = 0.096,
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Fig 5. Disparity thresholds from Experiments 1 (2AFC_g), 2 (4AFC_g), & 3 (4AFC_l). Left panels show the stereoacuity

thresholds (log10(arcsec)) as a function of age. Right panels show the distribution of thresholds for each experiment. A.

Results from Experiment 1. B. Experiment 2; C. Experiment 3. Green dots are the individual thresholds obtained from the

fitting that correspond to a probability of correct response of 0.75. The red dots in panels A and B correspond to the

thresholds of the participants described in Fig 3. Black lines are fitted regression lines (dashed lines: 95% regression

confidence interval for the mean). A. ŷ (age)2AFC_g = 1.919–0.323×log10(age). B. ŷ (age)4AFC_g = 1.974–0.441×log10(age). C.

ŷ (age)4AFC_l = 1.69–0.123×log10(age). Top left of left panels shows the Pearson correlation between age and thresholds

(log10(age) and log10(arcsec)).

https://doi.org/10.1371/journal.pone.0226822.g005
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d.f. = 2). Thus, the probability of making a lapse is similar in the three Experiments (0.02–0.03,

a percentage of 2–3%).

Determination of the optimal slope value

In this section we describe the procedure for obtaining the optimal slope or spread (σM) value

of the model function in order to measure disparity thresholds with small bias and standard

deviation when using Bayesian staircases. To do this, we are going to use the spreads, the

thresholds, and the lapse rates from the three stereo experiments, two types of task (2AFC and

4AFC), and two types of stereopsis (global and local). The procedure is described in Fig 7. For

each experiment we determined 19 different percentiles (from 5 to 95% in steps of 5%) from

the distribution of spreads (see example for percentiles 25 and 75% in Fig 7). This gave us 19

different spread values from each experiment.

Then, we used each spread value as the spread of the model function (σM,) to run Monte

Carlo simulations. For these simulations we used the empirical data (using subject’s thresholds

θS, spreads σS, and lapse rates λS) from our experiments in order to model the subject’s psycho-

metric function. In the simulations, the subject responses were replaced by a pseudorandom

binary number generator in which the probability of a correct response was read off from the

modelled subject’s psychometric function evaluated at the disparity presented on each trial.

For each subject we run 2000 simulations using Bayesian staircases of 30 trials (see characteris-

tics of the procedure in S1 Appendix (section A2)). We computed the threshold bias subtract-

ing the estimated threshold and the empirical subject’s threshold (ŷ � yS) (Bayesian staircases

converged into the probability 0.75 as in the psychophysical experiments) and then, we com-

puted the mean of the 2000 bias estimations. Finally, we average the means bias for all partici-

pants (e.g. for Experiment 1, 71 subjects). Thus, one single dot represented in the bottom

panel of Fig 7 (or Fig 8A) was obtained by running 142,000 staircases, made up of 1 percentile

(i.e. one spread, σM) × 71 subjects × 2000 Bayesian staircases.

Results of the simulations

Fig 8 shows the results of the simulations using the data of the three experiments. We run two

conditions: A) black dots, using the lapses from the subjects in the model function; in this
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slope, in log10 arcsec) as a function of the disparity threshold (θ, in log10(arcsec)). A. Results from Experiment 1. B. Experiment

2; C. Experiment 3. Green dots are the individual spreads and thresholds obtained from the fitting. The red dots in panels A and
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https://doi.org/10.1371/journal.pone.0226822.g006
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Efficient estimation of stereo thresholds

PLOS ONE | https://doi.org/10.1371/journal.pone.0226822 January 2, 2020 12 / 23

https://doi.org/10.1371/journal.pone.0226822.g007
https://doi.org/10.1371/journal.pone.0226822


condition the only difference between the model function and the subject’s psychometric func-

tion was the spread value; B) grey squares, representing the more realistic condition where the

individual lapse rates are unknown and so results are obtained for a fixed lapse rate of the

model function. For 2AFC we used λM = 0.02 and for 4AFC, λM = 0.03 (both corresponding to

λ� = 0.04). We used higher lapse rates than the empirical ones because this produces lower bias

and standard errors when using Bayesian staircases [5].

Fig 8A shows the results for Experiment 1 (2AFC_g). In general, threshold estimations are

less biased when the model function uses fixed lapse rate (gray squares), but this is only evident

for small spread values (i.e. large slope values). The results show a clear pattern: threshold bias

and standard deviation are reduced with increasing spread values (i.e. reducing slope values)

of the model function. In order to decide what is the optimal spread, we compute the absolute

value of the product of the bias and the standard deviation. The vertical dashed lines mark the

spread (σM) where this product is minimum. In this case, for the 2AFC task, the spread that

will produce smaller threshold bias and standard deviation when using a Bayesian staircase for

both conditions (fixed lapse rate and subject’s lapse rate) is σM = 1.701 log10 arcsec (percentile

80%).
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Fig 8. Simulation results using the distribution of spreads from Experiments 1 (A), 2 (B), & 3 (C). Black dots show the

threshold bias using for the model function the lapse rate of the subjects. Gray squares show the results for fixed lapse

rates of the model function. For 2AFC it was λM = 0.02 (λ� = 0.04) and for 4AFC, λM = 0.03 (λ� = 0.04). The vertical

dashed lines mark the spread value (σM) or the percentile of the distributions of spreads where the absolute value of the

product between SD and Threshold Bias is minimum. Grey dashed line is for condition where model lapse rate (λM)

was fixed. Note that the range of values of y-axis is different for the three panels.

https://doi.org/10.1371/journal.pone.0226822.g008
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Fig 8B shows the results for Experiment 2 (4AFC_g). In this case, we found an opposite

result to the one presented in Fig 8A: this is, threshold estimations are more biased when the

model function uses fixed lapse rate (gray squares), but again, this is only evident for small spread

values (i.e. large slope values). For fixed lapse rate the optimal spread was σM = 1.496 log10 arcsec

(percentile 70%); and when we use the subject’s lapse rate, it is σM = 1.376 log10 arcsec (percentile

65%). Note that in practical terms this condition is very difficult to happen in empirical studies,

we usually don’t know the value of the subject’s lapse rate. However, this simulation tells us that

the percentiles for optimal spread are almost independent of the subject’s lapse rate.

Fig 8C shows the results for Experiment 3 (4AFC_l). In this case, as in Experiment 2

(4AFC_g), threshold estimations are more biased when the model function uses fixed lapse

rate (gray squares). For fixed lapse rate the optimal spread was σM = 1.463 log10 arcsec (percen-

tile 60%); and for the subject’s lapse rate it is σM = 1.605 log10 arcsec (percentile 70%). We also

found very similar results (results not shown) using Bayesian staircases of 100 trials and also

using a probability of correct responses of 0.7.

In summary, the simulations using the empirical data of the experiments show that thresh-

old bias and standard deviation are reduced when spread values correspond to percentiles of

the distribution of spreads between 60 and 80%. These percentiles do not depend on the lapse

rate of the subjects. Selecting spreads below the percentile 60% introduce bias in all Experi-

ments and spreads higher than 80% introduce a small bias in the Experiments using 4AFC

tasks (see left part of Fig 8B and 8C).

Comparing our procedure with different Bayesian adaptive

procedures

In addition to the Bayesian adaptive procedures which simultaneously estimate threshold and

the slope of the psychometric function, for example, ZEST 2D [12], MUEST [11], or Psi [13],

recently adaptive procedures have been developed that allow us to estimate even more parame-

ters (threshold, slope, and lapse rate) of the psychometric function, such as Psi-marginal [14]

or QUEST+ [15]. However, to estimate two or more parameters in an efficient way (small bias

and standard deviation) requires more trials than to estimate one single parameter. In clinical

applications this can be problematic. For example, our laboratory is designing a stereo test to

be run on a 3D tablet [31, 32] in order to measure the stereoacuity in small children, so it is

fundamental to obtain efficient stereo thresholds with a small number of trials.

In this section, our objective is to compare our proposed procedure that we will call “ZEST

optimal σ” with five Bayesian adaptive procedures using Monte Carlo simulations. We tested

different versions of the ZEST 2D, Psi, and Psi-marginal procedures. We tested two versions of

the ZEST 2D; in one version we estimated two parameters (threshold and slope; “ZEST 2D θ,

σ”); in the other version we only estimate the threshold (“ZEST 2D θ”). We tested the original

Psi method to estimate threshold and slope (Psi θ,σ) and we also tested three configurations of

the Psi-marginal: one configuration where we estimated the threshold and the slope while

marginalizing the lapse rate (Psi θ,σ(λ)), a second configuration where we estimated the

threshold only which marginalizing the slope and the lapse rate (Psi θ,(σ,λ)), and a third con-

figuration where we estimated the threshold, marginalize the slope, and fixed the lapse rate

(Psi θ(σ)). The details of these seven procedures are described in S1 Appendix (section A3).

In order to compare all Bayesian procedures, we have performed two types of Monte Carlo

simulations: a) using a single model assuming a standard observer based in our data (see Figs 9

and 10) and, b) using different models with the parameters of the empirical data (thresholds,

slopes, and lapses) obtained from the experimental conditions 2AFC_g and 4AFC_g (see Figs

11 and 12).
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We also have performed simulations for 2AFC and 4AFC tasks. For each task we have used

two types of prior probability distribution of slopes, the uniform distribution (i.e. non-infor-

mative distribution) and a Gaussian distribution based in our data. Although there are hierar-

chical adaptive approaches like HADO [33] that allow us to construct informative priors based

on data of observers that have previously performed the tasks, in order to simplify the compar-

isons and use the same priors for each method, we have assumed a Gaussian distribution with

mean and standard deviation obtained from the data shown in Fig 4A (2AFC_g) and Fig 4B
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Fig 9. Simulation results for seven Bayesian procedures (Gaussian prior for spreads). Each line corresponds to 1000 simulations for

different number of trials for one simulated subject. The parameters of the modelled subject were σS = 1 (i.e.β = 7.327); αS = 1.488

(2AFC) or αS = 1.387 (4AFC); π = 0.75; γS = 0.5 (2AFC) or γS = 0.25 (4AFC); λS = 0.02 (2AFC) or λS = 0.03 (4AFC); δS = 0.012 (2AFC)

or δS = 0.018 (4AFC), and threshold of θS = 1.5 log10 arcsec. Left panels show the mean of the threshold bias (ŷ � 1:5), and right panels

show the standard deviation of the distribution of the threshold bias. For all procedures, for the prior probability distribution of spreads,

we have assumed a Gaussian distribution with mean and standard deviation obtained from the data shown in Fig 4A (2AFC_g;

mean = 1.005, SD = 0.776) and Fig 4B (4AFC_g; mean = 1.186, SD = 0.740). Note that the y-values for Threshold bias are different for

2AFC and 4AFC tasks.

https://doi.org/10.1371/journal.pone.0226822.g009
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Fig 10. Simulation results for seven Bayesian procedures (uniform prior for spreads). Each line corresponds to 1000 simulations for

different number of trials for one simulated subject. The parameters of the modelled subject were σS = 1 (i.e.β = 7.327); αS = 1.488

(2AFC) or αS = 1.387 (4AFC); π = 0.75; γS = 0.5 (2AFC) or γS = 0.25 (4AFC); λS = 0.02 (2AFC) or λS = 0.03 (4AFC); δS = 0.012 (2AFC)

or δS = 0.018 (4AFC), and threshold of θS = 1.5 log10 arcsec. Left panels show the mean of the threshold bias (ŷ � 1:5), and right panels

show the standard deviation of the distribution of the threshold bias. For all procedures, for the prior probability distribution of slopes,

we have assumed a uniform distribution. Note that the y-values for Threshold bias are different for 2AFC and 4AFC tasks.

https://doi.org/10.1371/journal.pone.0226822.g010
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(4AFC_g). For the thresholds, we have assumed a uniform prior distribution for all simulations.

For ZEST optimal σ, (see details in S1 Appendix (section A2)), the σM used in the simulations

for the model functions was σM = 1.7 log10 arcsec (slope of βM = 4.3) for 2AFC task, and σM =

1.5 log10 arcsec (βM = 4.9) for 4AFC. The guess and lapse rates used for the model functions

were γM = 0.5 and λM = 0.02 for 2AFC and γM = 0.25 and λM = 0.03 for 4AFC. The details about

the parameters used in the other Bayesian procedures can be seen in S1 Appendix (section A3).

Figs 9 and 10 show the results of the simulations comparing our suggested procedure with

the other five procedures for a simulated subject (i.e. a theoretical subject). Fig 9 show the sim-

ulation results assuming a Gaussian distribution for prior distribution of spreads based on the

results from Fig 4 (for 2AFC, mean = 1.005, SD = 0.776; for 4AFC, mean = 1.186, SD = 0.740).
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Fig 11. Simulation results for seven Bayesian procedures using the empirical data for the modelled subjects (Gaussian prior for

spreads). Left panels show the average of the threshold bias of all subjects. For each subject (out of 71 for 2AFC_g and 68 for 4AFC_g)

we run 1000 simulations for different number of trials. Right panels show the standard deviation of the distribution of the threshold

bias. For all procedures, we have assumed a Gaussian distribution for the prior probability distribution of spreads, with mean and

standard deviation obtained from the data shown in Fig 4A (2AFC_g; mean = 1.005, SD = 0.776) and Fig 4B (4AFC_g; mean = 1.186,

SD = 0.740).

https://doi.org/10.1371/journal.pone.0226822.g011
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Fig 12. Simulation results for seven Bayesian procedures using the empirical data for the model (uniform prior for spreads). Left

panels show the average of the threshold bias of all subjects (i.e. estimated threshold minus the subject’s threshold). For each subject

(out of 71 for 2AFC_g and 68 for 4AFC_g) we run 1000 simulations up to 500 trials. Right panels show the standard deviation of the

distribution of the threshold bias. We have assumed a uniform distribution for the prior probability distribution of slopes for all

procedures. Note that the y-values for Threshold bias are different for 2AFC and 4AFC tasks.

https://doi.org/10.1371/journal.pone.0226822.g012
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Fig 10 shows the simulation results assuming a prior uniform distribution. The choice of prior

only affects models which estimate or marginalize spread, thus, the black curves for ZEST opti-

mal spread are the same in both figures. For thresholds, we have used a uniform prior distribu-

tion in all simulations. The parameters of the modelled subject were σS = 1 (i.e.βS = 7.327);

αS = 1.488 (2AFC) or αS = 1.387 (4AFC); π = 0.75;γS = 0.5 (2AFC) or γS = 0.25 (4AFC); λS =

0.02 (2AFC) or λS = 0.03 (4AFC); δS = 0.012 (2AFC) or δS = 0.018 (4AFC), and threshold of

θS = 1.5 log10 arcsec. We have chosen these parameters because, according to our data, they

represent rather well a standard subject in a stereoacuity task (see these two psychometric

functions in Fig 1A, right panel). Note that our ZEST optimal σ makes incorrect assumptions

about this model observer: it assumes a spread of 1.5 log10 arcsec, not the true value of 1 log10

arcsec. The left panels of Figs 9 and 10 show the mean of the threshold bias (ŷ � 1:5), and the

right panels show the standard deviation of the distribution of threshold bias. Each line corre-

sponds to 1000 simulations of each Bayesian procedure for different number of trials, thus, the

mean and the SD for each trial was obtained from 1000 threshold bias.

Results from Figs 9 and 10 show that the threshold bias is smaller for 4AFC than 2AFC for

the same number of trials, in agreement with previous results [34]. Fig 9 shows that all proce-

dures increase in precision (i.e. lower threshold bias) with increasing number of trials. For

2AFC task, our suggested procedure (black line, ZEST optimal σ) shows the smallest bias and

smaller SD in general and for small number of trials (between 20 and 50) in particular. For

4AFC task, for trials greater than 30, all procedures give similar results where Psi θ,σ(λ) (pink

line) shows the worst performance in terms of threshold bias, and Psi θ(σ) (brown line) shows

the smallest threshold bias. Note that the black lines corresponding to Zest optimal σ are the

same for Figs 9 and 10 given that we are not using a prior distribution for β for this method.

Note also that in empirical testing, the SD of threshold’s estimates obtained with Bayesian

staircases longer than 70 trials may not decrease with the increasing number of trials [35].

Fig 10, when a uniform distribution is assumed for the slope, shows that for both 2AFC and

4AFC our procedure (black line) shows the lowest threshold bias and SD for trials greater than

20. Other good options would be the method ZEST 2D θ (green line) and Psi θ,(σ,λ) (cyan

line). Note that, although the method ZEST 2D θ,σ (red) shows small threshold bias, the SD is

the highest of all procedures.

In Figs 9 and 10, for ZEST optimal σ, we chose parameters such that the model function

underestimated the slope of the simulated observer and assumed the correct lapse rate. We

also assumed the correct lapse rate for ZEST 2D θ, ZEST 2D θ,σ, Psi θ,σ, and (Psi θ(σ)). These

choices may favor these approaches over the configurations of Psi-marginal Psi θ,σ(λ) and Psi

θ,(σ,λ). In real life we will encounter observers with unusually low slopes and with lapse rates

different from those we assumed. To assess performance under these conditions, Figs 11 and

12 show the simulation results using different modelled subjects with the parameters of the

empirical data (thresholds, slopes, and lapses) obtained from the experimental conditions

2AFC_g and 4AFC_g. Fig 11 shows the simulation results assuming a Gaussian distribution

for prior distribution of spreads based on the results from Fig 4, and Fig 12 shows the simula-

tion results assuming a prior uniform distribution. Like in Figs 9 and 10, for disparity thresh-

olds, we have used a uniform prior distribution in all simulations.

The left panels of Figs 11 and 12 show the average of the threshold bias of all subjects. For

each subject (out of 71 for 2AFC_g and 68 for 4AFC_g) we have run 1000 simulations for dif-

ferent number of trials (between 10 and 100 and between 10 and 500 for Fig 12). The right

panels show the standard deviation. Note that, like in Figs 9 and 10, the black lines correspond-

ing to Zest optimal σ are the same for Figs 11 and 12 given that we are not using a prior distri-

bution for β for this method.
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Results from Fig 11 show that ZEST optimal σ (black line) has the lowest threshold bias for

both tasks and is constant from trials higher than 20. The rest of the procedures show a higher

threshold bias that is very pronounced at small number of trials. The procedure ZEST optimal

σ also shows the smaller standard deviation for all number of trials tested. Fig 12, when assum-

ing a uniform distribution for the slope, shows similar results although in this case, for the

4AFC task, the procedure ZEST 2D θ (green line) also shows very small bias and standard

deviation. For small number of trials (< 30) ZEST optimal σ is recommended. Thus, in gen-

eral, if the number of trials is small and we have knowledge about the distribution of slopes, we

recommend the procedure “ZEST optimal σ”, however, taking into account that the distribu-

tion of the slopes in an experiment is probably unknown, the procedure ZEST 2D θ is also a

good candidate if the experimenter is only interested in estimating thresholds and assumes the

uniform prior distribution for the spreads, and the procedure Psi θ(σ) is also a good candidate

for 4AFC tasks if the experimenter is only interested in the threshold.

Fig 13 shows the simulations results presented in Fig 12 but from trials 100 to 500 to easily

compare the methods for a high number of trials. Results show that threshold bias is negligible

from 200 trials being stronger for Psi (blue line) and Psi-marginal (cyan and pink line) in

2AFC and ZEST 2D θ,σ (red line) for 4AFC. In terms of standard deviation, for 2AFC, our

procedure ZEST optimal σ and ZEST 2D θ show the smallest standard deviation followed by

Psi-methods and ZEST 2D θ,σ. For 4AFC, again, ZEST optimal σ and ZEST 2D θ show the

smallest standard deviation. Psi θ,(σ,λ) (cyan line) shows very similar standard deviation

between 100 and 300 trials. In general, for 4AFC, both versions of Psi-marginal shown here,

work better than the classic Psi method. It is important to note that ZEST optimal σ still shows

smaller bias and standard deviation than the Psi-marginal procedures tested here because we

are using the optimal spread for the population, however, these Psi-marginal procedures are

very good when we have no idea about the distribution of slopes, and we can run more than

100 trials in the experiment. Finally, ZEST 2D θ,σ, showed smaller bias than Psi procedures

although higher standard deviation.

Discussion

Parametric procedures like Bayesian staircases require a priori decisions about different

parameters of the assumed psychometric function or model function (e.g. shape, slope, con-

vergence probability and lapse rate). Simulation studies have shown that mismatches between
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Fig 13. Results presented in Fig 12 but from 100 to 500 trials in order to show the differences between these methods for high

number of trials.

https://doi.org/10.1371/journal.pone.0226822.g013
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the subject psychometric function and the model function produce threshold bias [3–5]. In

this study, our aim was to find the optimal spread value (inversely related to the slope) of the

model function in order to estimate disparity thresholds with the smallest bias and standard

deviation. In particular, we wanted to find this value for measuring disparity thresholds for

global stereopsis (or cyclopean) and local stereopsis (feature or contour-based). We also

wanted to know if this value changes with the psychophysical task (i.e. 2AFC vs. 4AFC). To

achieve this, we needed to know the distribution of real slopes (i.e. spreads) for the general

population for these tasks and types of stereopsis. Therefore, we ran three experiments,

2AFC_g with global stereopsis, 4AFC_g with global stereopsis, and 4AFC_l with local stereop-

sis where we tested in total 260 participants. For each participant we ran an adaptive weighted

one-up one-down staircase procedure with 80–120 trials and we fitted a logistic psychometric

function (described in the S1 Appendix (section A1)) to the probabilities of correct detection

in order to estimate stereoacuity thresholds, spread, and lapse rates. Results from these experi-

ments are shown in Figs 4, 5 & 6. We found that disparity thresholds were around 1.5 arcsec

for all experiments. With regard to the spread values (inversely related with the slope), we

found differences between 2AFC_g and 4AFC_l, with spread values smaller for 2AFC_g. No

significant differences were found between the two 4AFC experiments. We also found that for

the three experiments, the spread values did not correlate with age. Finally, an analysis of the

lapse rates showed a similar probability of making a lapse in all experiments (between 0.02 and

0.03, a percentage of 2–3%).

We have developed a new method in order to estimate the optimal slope or spread (see Fig

7), where we simulate millions of Bayesian staircases using the empirical spreads, thresholds

and lapse rates of our participants as model subject’s psychometric functions. The spreads

used in the assumed psychometric function or model function corresponded to percentiles

(between 5 and 95% in steps of 5%) of the empirical distributions of spreads. Fig 8 shows the

results of the simulations. These results show a clear pattern: bias and errors (i.e. standard

deviation) are reduced when the spread value is located between the percentile 60–80% of the

distributions of spreads. These percentiles work for three different distributions of spreads.

We simulated two conditions, one where the model lapse rate was the same as the subject, and

the other (the more realistic one) where the lapse rate was fixed to a particular value. We

found that the two conditions differ only when the spread value is very small; however, they

are very similar when the spreads are higher than the 60% percentile of the distribution of

spreads. Thus, for the first time, we have been able to estimate the optimal spread values for

different types of stereopsis (e.g global and local) and tasks (e.g. 2AFC and 4AFC). These val-

ues can be used with Bayesian staircases to estimate thresholds with the smallest bias and stan-

dard deviation independently of the age of the participant.

It is important to note that there are Bayesian methods that can be used to estimate the

threshold and the slope simultaneously, or just the threshold but leaving the slope as a nui-

sance parameter [11–15]. Here, running Monte Carlo simulations with the empirical data as

modelled subjects, we have compared our suggested procedure (ZEST using the optimal slope,

“ZEST optimal σ”) with six Bayesian methods, two based on the ZEST 2D [12], the Psi method

[13], and three configurations of Psi-marginal [14]. Our simulation results (see Figs 11 and 12)

show that, in general, ZEST optimal σ has lower threshold bias and standard deviation for

2AFC and 4AFC tasks than the rest of the Bayesian procedures tested. This difference in

threshold bias is very pronounced at small number of trials. For example, Figs 10 (4AFC) and

12 (4AFC) shows that Psi methods have a strong bias for small number of trials (between 20

and 30), meaning that they systematically tend to overestimate thresholds by a factor of 1.38–

1.45 (e.g. a threshold of 100 arcsec will be incorrectly estimated as 145 arcsec). In addition, the

standard deviation for 20–30 trials is 0.04–0.02, corresponding to multiplying or dividing by a
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factor of 1.05–1.1. For Zest optimal σ in the range 20–30 trials, the bias factor is 0.998 and the

standard deviation range is 0.017–0.013, that corresponds to a factor of 1.03–1.04. We have to

acknowledge that the simulations were performed using the same distributions that were used

to estimate the optimal slope, so it is expected to behave with the smallest threshold bias, how-

ever, it is also expected that is the distribution of spreads is approximately known, the use of

ZEST with the optimal σ will produce unbiased thresholds.

Thus, if the number of trials used for estimating the threshold is small (< 30), we recom-

mend using ZEST optimal σ. This procedure is currently being used in a 3D software dedicated

to estimate the stereoacuity (ASTEROID, [31, 32]). However, if the optimal slope is unknown,

and the experimenter assumes a uniform distribution for the slope, our results shows that the

procedure ZEST 2D θ is a very good candidate followed by Psi-marginal with the configura-

tion Psi θ(σ) or Psi θ,(σ,λ).

Our recommendation for choosing the optimal spread is to overestimate the subject’s

spread (i.e. underestimate the subject’s slope). If the distribution of spreads is known, choose a

spread value between the percentile 60 and 80% approximately. We have shown that these per-

centiles work for three different experiments with different distributions of spreads, thresh-

olds, and lapse rates, thus, our results could be extended to other type of thresholds if the

distributions of spreads are known. However, we recommend using the procedure described

in our Fig 7 to get more precision. For our particular stereoacuity experiments, we recommend

using ZEST (as described in S1 Appendix (section A2)), assume a cumulative logistic distribu-

tion for the model function, use fixed lapse rates, and the spread value of the model function

around the value σM = 1.7 log10 arcsec (corresponding to a factor of 50 in arcsec, or a slope of

βM = 4.3 /log10 arcsec) for 2AFC experiments, and around σM = 1.5 log10 arcsec (a factor of 32

in arcsec, βM = 4.9 /log10 arcsec) for 4AFC.

Limitations of the study

These recommendations are of course not perfect; for example, they neglect the possible effects

of changes in an observer’s psychometric function during the course of the experiment, or

spatial biases towards a particular location. Further work would be needed to assess these.

Another limitation of our study is that for the simulations we are only using three distributions

of spreads (also three distributions of thresholds and lapse rates), obtained with a psychophysi-

cal method that is far from perfect (i.e. more trials would be needed to obtain a better estimation

of the parameters, increasing the range of age of the participants would be recommended).

Therefore, these distributions do not reflect the exact distributions of spreads, thresholds, and

lapse rates. However, given that simulations for the three experiments shows similar results our

recommendations would be useful in this field in order to estimate stereo thresholds. Future

directions should include simulations assuming different shapes for the distribution of spreads

in combination with different distributions of thresholds and lapse rates, will give a more pre-

cise answer and more generalizable recommendations to other visual modalities.

Supporting information
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S1 Dataset. The data presented in this paper.
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