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Abstract

Background: Previous studies demonstrate the usefulness of using multiple tools and methods for improving the
accuracy of motif detection. Over the past years, numerous motif discovery pipelines have been developed. However,
they typically report only the top ranked results either from individual motif finders or from a combination of multiple
tools and algorithms.

Results: Here we present MODSIDE, a motif discovery pipeline and similarity detector. The pipeline integrated four de
novo motif finders: ChIPMunk, MEME, Weeder, and XXmotif. It also incorporated a motif similarity detection
tool MOTIFSIM. MODSIDE was designed for delivering not only the predictive results from individual motif
finders but also the comparison results for multiple tools. The results include the common significant motifs
from multiple tools, the motifs detected by some tools but not by others, and the best matches for each
motif in the motif collection of multiple tools. MODSIDE also possesses other useful features for merging
similar motifs and clustering motifs into motif trees.

Conclusions: We evaluated MODSIDE and its adopted motif finders on 16 benchmark datasets. The statistical
results demonstrate MODSIDE achieves better accuracy than individual motif finders. We also compared
MODSIDE with two popular motif discovery pipelines: MEME-ChIP and RSAT peak-motifs. The comparison
results reveal MODSIDE attains similar performance as RSAT peak-motifs but better accuracy than MEME-ChIP.
In addition, MODSIDE is able to deliver various comparison results that are not offered by MEME-ChIP, RSAT
peak-motifs, and other existing motif discovery pipelines.

Keywords: Binding sites, DNA motif, Motif detection tool, Motif discovery pipeline, Motif similarity detection,
Motif clustering

Background
Detecting binding site motifs can reveal the transcription
factors that control the gene expression. Hence, numer-
ous tools and methods have been developed for finding
binding site motifs. Nevertheless, the results reported
from different tools for an identical dataset are diverse.
This is largely due to the fact that different tools imple-
mented different algorithms and possesses unique fea-
tures for discovering the motifs. Therefore, using
multiple tools and methods has been suggested as it
improved the accuracy of the motif detection [1–4].
The suggestion has inspired the development of several
motif discovery pipelines. They can be standalone ap-
plications on standalone servers or pipelining Web

servers. Recent development tends to be pipelining
Web servers, which eliminate the complications of soft-
ware installations and configurations required by stan-
dalone applications in order to serve more users via the
Web. Another advantage is that it allows running mul-
tiple tools and methods at once on the same server and
eliminates the manual runs of the same dataset on sev-
eral different motif finders residing on the same standa-
lone server or on several different Web servers.
The research community has seen several motif discov-

ery pipelines such as W-ChIPMotifs [5], GimmeMotifs [6],
CompleteMOTIFS [7], MEME-ChIP [8], RSAT peak-mo-
tifs [9], MotifLab [10], and Promzea [11] among many
others. Generally, the pipelines incorporated multiple algo-
rithms or tools. They were designed to complement indi-
vidual motif finders for achieving better accuracy. The
results can be clustered and ranked for obtaining the top
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significant motifs. Some pipelines allow verifying the results
with the reference databases such as TRANSFAC [12],
Jaspar [13], and UniPROBE [14] by using a motif com-
parison tool such as STAMP [15] or TOMTOM [16].
Table 1 gives a summary of some current pipelines.

We briefly discuss some of their general limitations here.
W-ChIPMotifs was designed for mouse and human spe-
cies only. There is no option for running different com-
binations of motif finders in the pipeline. The results
include the top ranked motifs and their matches from
the reference database by using STAMP tool. Gimme-
Motifs is a standalone application that has several func-
tions including motif finding. However, the results from
motif discovery module only present the top ranked mo-
tifs and their matches in the reference database. Com-
pleteMOTIFS allowed selecting the tools to run the
motif discovery. The results showed the top ten pre-
dicted motifs from each selected tool and their matches
in the reference database via STAMP tool. However, this
pipeline is no longer available for use. MEME-ChIP re-
ports the predicted motifs from each tool and their
matches in the reference database by using TOMTOM.
RSAT peak-motifs allows selecting the motif discovery
algorithms and it reports the predicted motifs from each
selected algorithm with their matches in the reference
database. MotifLab is a standalone application with a
wide-range of functions including motif discovery. As

other pipelines, only the top ranked motifs are presented
in the results. Promzea is specialized for maize, rice, and
Arabidopsis thaliana. It presents only the top predicted
motifs that are not verified with the reference database.
Although existing pipelines were designed with their

unique integrations and the methods for ranking and
selecting the significant motifs, they do not allow obtain-
ing different comparison results for multiple tools and
methods. They generally report the top ranked results
either from individual motif finders or from a combin-
ation of multiple predictive algorithms and tools.
In this work, we incorporated four de novo motif

finders namely ChIPMunk [17], MEME [18], Weeder
[19], and XXmotif [20] into a pipeline called MODSIDE.
The pipeline also integrated a motif similarity detection
tool MOTIFSIM [21]. All adopted tools are open-source
software. We chose ChIPMunk, MEME, and Weeder as
they are widely used and some of their features are com-
plemented. Since XXmotif is a general-purpose motif
finder and it has some advanced features over three
other motif finders, we adopted it for the pipeline. The
features of these motif finders are presented in the Im-
plementation section. We chose MOTIFSIM for similar-
ity detection because of its unique features that are not
offered by all existing pipelines. They include (1) the
common (global) significant motifs from multiple tools,
(2) the motifs detected by some tools but not by others

Table 1 Characteristics of some existing motif discovery pipelines

Pipeline Components Function Input Format Reference
Database

Target
Species

Platform Year Ref.

W-ChIPMotifs Weeder, MaMF, Weeder,
STAMP

Predict motifs from
ChIP-Seq data

FASTA TRANSFAC,
Jaspar

Mouse
Human

Web portal 2009 [5]

CompleteMOTIFS MEME, Weeder, ChIPMunk,
Patser, STAMP

Predict motifs from
ChIP-Seq data

FASTA, BED,
GFF

TRANSFAC,
Jaspar, User-
defined file

Unspecified Web portal 2011 [7]

GimmeMotifs BioProspector, GADEM,
Improbizer, MDmodule,
MEME, MoAn, MotifSampler,
Trawler, Weeder

Predict motifs from
ChIP-Seq data

BED, FASTA Jaspar Unspecified Standalone
application

2011 [6]

MEME-ChIP MEME, DREME, CentriMo,
TOMTOM, SpaMo

Predict motifs from
ChIP-Seq data

FASTA Jaspar,
UniProbe,
User-defined
file, etc.…

Unspecified Web portal, Web-
services, Command
line tool

2011 [8]

RSAT peak-
motifs

Oligo-analysis, Position-
analysis, Local-word analysis,
Dyad-analysis

Predict motifs from
ChIP-Seq data

FASTA Jaspar,
UniProbe,
REGULONDB,
User-defined
file, etc.…

Unspecified Web portal,
Standalone
application

2012 [9]

MotifLab AlignAce, BioProspector,
ChIPMunk, MEME,
MotifSampler, Priority, Weeder

Analyze regulatory
sequence regions,
Predict binding site
motifs

FASTA, BED,
etc.…

TRANSFAC,
Jaspar, ScerTF

Unspecified Standalone
application

2013 [10]

Promzea BioProspector, MEME,
Weeder, PSCAN, FIMO, Clover

Predict co-regulatory
motifs

cDNA FASTA,
microarray
probe-set ID,
BED

None Maize, Rice,
Arabidopsis
thaliana

Web portal 2013 [11]
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(the global and local significant motifs), and (3) the best
matches for each motif in the motif collection of mul-
tiple tools. Besides the unique features, MOTIFSIM also
possesses other useful features for verifying the pre-
dicted motifs with the reference databases, merging
similar motifs, and clustering predicted motifs into motif
trees. MODSIDE pipeline delivers not only the results
from individual motif finders but also the comparison
results from the pipeline itself.

Implementation
Motif discovery
MEME
MEME (Multiple Expectation Maximization for Motif
Elicitation) is a well-known motif discovery tool devel-
oped for targeting un-gapped motifs in unaligned DNA
or protein sequences [18]. MEME algorithm is based on
a profile-based method that implemented the expect-
ation maximization (EM) [18]. The profile-based
methods are faster than consensus-based methods but
they suffer from lower accuracy because they tend to be
trapped in a local optimum [22]. MEME algorithm
removes the previous discovered motifs when it searches
for new motifs. Thus, it can only model a single motif at
a time and it does not detect alternative binding motifs,
which are motifs for co-factors [23]. MEME also re-
quires removing duplicate sequences and those with low
information prior to running the tool [23]. Another
drawback of MEME is splitting variable-length pat-
terns into two or more separate motifs [18]. MEME
was originally designed for discovering short motifs.
However, its later versions allow finding longer mo-
tifs. MEME possesses numerous features for discover-
ing motifs. These features are presented in the
Additional file 1. We adopted version 4.11.4 for the
pipeline.

ChIPMunk
ChIPMunk is a fast heuristic motif finder developed for
analyzing high-throughput sequencing data [17]. ChIP-
Munk is also a profile-based method. Its algorithm imple-
mented an iterative approach that combines the greedy
optimization with bootstrapping. ChIPMunk evaluates the
motif profiles based on the Kullback Discrete Information
Content (KDIC). It employs a greedy approach for discov-
ering the motif profiles with high KDIC values. The motif
profiles are ranked based on Position Weight Matrix
(PWM) scores. They are subsequently improved by an
EM iterative process. ChIPMunk’s performance is bet-
ter than MEME in term of runtime and prediction
quality [24].
ChIPMunk was originally designed for discovering the

motifs in PWMs for transcription factor binding sites. It
was later adapted for handling ChIP-Seq data. ChIPMunk

contains numerous attributes that are presented in the
Additional file 1 for finding motifs. We adopted version 7
for the pipeline.

Weeder
Weeder was designed for finding DNA motifs [19]. Its
algorithm is based on a pattern-driven approach, which
is a sub-category of the consensus-based method [22].
Weeder algorithm implemented a suffix tree based ex-
haustive enumeration and extended it for searching lon-
ger patterns [19]. The algorithm was designed for
finding subtle similarities in small datasets, rather than
large similarities in large datasets [25]. Due to the nature
of consensus-based method, Weeder is significantly
slower than MEME and ChIPMunk but its prediction
quality is higher. Weeder also comprises several attri-
butes for finding DNA motifs. They are presented in the
Additional file 1. We adopted version 1.4.2 for the
pipeline.

XXmotif
XXmotif is a general-purpose method, which was de-
signed for finding enriched motifs in nucleotide se-
quences [26]. However, unlike other motif finders,
XXmotif is capable for optimizing the statistical signifi-
cance of PWMs directly. It can also score conservation
and positional clustering of motifs [20]. XXmotif algo-
rithm is a combination of the pattern-based enumerative
approach and the iterative PWM refinement [26]. The
algorithm consists of masking stage, pattern stage, and
PWM stage. The masking stage masks out the repeat
regions, compositionally biased segments, and homolo-
gous segment pairs. The pattern stage calculates enrich-
ment P-values of degenerate seed patterns. The PWM
stage optimizes candidate PWMs iteratively [20]. The
experimental results in [26] showed XXmotif has faster
runtime and higher sensitivity than MEME and Weeder.
In addition, the masking stage makes XXmotif more so-
phisticated, as this stage does not exist in MEME, ChIP-
Munk, and Weeder. As other tools, XXmotif provides a
wide-range of features for finding motifs. We adopted its
current version for the pipeline.

Motif comparison
The pipeline incorporated MOTIFSIM version 2.2.
MOTIFSIM allows comparing the results from multiple
tools for attaining the common significant motifs, the
motifs reported by some tools but not by others, as well
as the best matches for each predicted motif in the motif
collection for multiple tools. The results from multiple
tools can be verified with the reference database such as
TRANSFAC, Jaspar, or UniPROBE. Since the predicted
motifs reported by a single tool or multiple tools can be
redundant motifs. MOTIFSIM provides an option for

Tran and Huang BMC Genomics          (2018) 19:755 Page 3 of 9



merging them to reduce the number of redundant mo-
tifs. The new motif is formed only of it is within the
similarity threshold with both of its parents [21]. An-
other useful feature of MOTIFSIM is clustering the
motifs into motif trees. The tree describes the relation-
ship between motifs. MOTIFSIM calculates the similar-
ity scores between motifs and builds two distance
matrices. One is for the global significant motifs and
the other is for every motif in the motif collection of
multiple tools. The distance matrices contain the best
similarity scores between motifs. MOTIFSIM uses the
distance matrices to build the motif trees by using
hclust function in R. This function implemented the
hierarchical clustering algorithm [21]. Hence, the mo-
tifs that reside in the same branch of the tree are more
similar to one another. The height of the branch also
shows the degree of similarity. The motifs that are con-
nected by shorter branches are more similar than those
that are connected by taller branches.

MODSIDE web Interface
MODSIDE was written in PHP, HTML, and JavaScript.
The Web interface is publicly available at http://modsi-
de.org/. An overview of MODSIDE’s workflow is in
Fig. 1. The pipeline accepts input in FASTA format. It
can be run with at least two or more motif finders. The
significant motifs are selected by using P-value ≤0.5 for
ChIPMunk, E-value ≤0.5 for MEME and XXmotif, and
the built-in significant score in Weeder. The descriptions
for these thresholds are presented in the Additional file 1.
The motif similarity detection and analysis module come
from MOTIFSIM, which provides multiple options for
comparing and analyzing the motifs. The options include
the number of top significant motifs, the number of best
matches, similarity cutoff, database matching, motif tree,
and combining similar motifs. The results from individ-
ual motif finder are accessible for downloading and
viewing. The comparison results from MOTIFSIM can
be obtained in multiple formats. The job history can be

Fig. 1 Workflow of MODSIDE. The pipeline takes DNA input sequences in FASTA format. The motif discovery module has ChIPMunk, MEME,
Weeder, and XXmotif. They can be run in a combination of at least two tools. The significant motifs are selected by using P-value ≤0.05 for
ChIPMunk, E-value ≤0.05 for MEME and XXmotif, and the built-in significant score in Weeder. The selected motifs are subsequently fed into
MOTIFSIM for comparisons. The comparison results include the global (common) significant motifs, the global and local significant motifs, and
the best matches for each motif in the motif collection of multiple tools. MOTIFSIM also provides the options for generating the motif trees,
merging similar motifs, and verifying the predicted motifs with the reference database
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retrieved by using Job ID via the Search Job page after
the job is completed.

Results
Datasets
The pipeline was assessed on 16 benchmark sequence
datasets from Tompa et al. in Table 2 [27]. They came
from Homo sapiens, Mus musculus, and Saccharomyces
cerevisiae species. The datasets can be generic or Markov
type [27]. The generic type was generated by obtaining
the promoter sequences randomly and implanted the
known binding sites of the same species into those se-
quences. The Markov type was obtained by generating
random sequences using Markov chain order of 3 and
then implanted the known binding sites of the same spe-
cies into those sequences. Each binding site embedded
in a sequence belongs to a specific transcription factor
in the TRANSFAC database. The transcription factor
embedded in each sequence is listed in Table 2. We se-
lected the benchmark datasets so that each sequence in
a dataset has at least one or more embedded binding
sites of the same transcription factor. These benchmarks
were used to run MODSIDE with all motif finders se-
lected. They were also used to run MEME-ChIP and
RSAT peak-motifs.

Evaluation
We evaluated MODSIDE in two phases. In the first
phase, we assessed the accuracy of MODSIDE by com-
paring its results with the results from individual motif
finder in the pipeline. The objective is to observe the

efficiency of the pipeline and its motif finders. We used
the assessment method, the benchmark sequence data-
sets, and the on-line assessment tool from Tompa et al.
for this evaluation [27]. Tompa et al. introduced a com-
prehensive method for assessing computational tools for
discovery of transcription factors binding sites. They
built 52 benchmark datasets for evaluating 13 tools in
their assessment. The technique used for creating these
datasets was presented in the Datasets section. We
employed six statistics from Tompa et al. for this evalu-
ation. They are presented in the Additional file 1. The
authors also built an assessment tool, which calculates
several statistics including those used in this evaluation.
The benchmark datasets and the assessment tool are
available on-line. They can be used for assessing existing
and future tools as well. We measured the accuracy of
ChIPMunk, MEME, Weeder, XXmotif, and MODSIDE
on 16 benchmark datasets. For each tool T and each
dataset D, we have a set of known binding sites and a set
of predicted binding sites. Thus, we can measure the ac-
curacy of T on D at the nucleotide level and at the site
level. At the nucleotide level, we calculated four statis-
tics: Sensitivity (nSn), Positive Predictive Value (nPPV),
Specificity (nSP), and Correlation coefficient (nCC). At
the site level, we calculated two statistics that are Sensi-
tivity (sSn) and Positive Predictive Value (sPPV). Since
different tools produce different numbers of significant
motifs by using the thresholds presented in the section
MODSIDE Web Interface, we selected all significant
motifs from each tool. We compared the significant mo-
tifs from these tools for the same sequence dataset by

Table 2 Sixteen benchmark sequence datasets [27]

Sequence Dataset Dataset Type Species Transcription Factor Number of Sequences Sequence Length

hm01g Generic Homo sapiens AP-1 18 2000

hm04g Generic Homo sapiens c-Jun 13 2000

hm08m Markov Homo sapiens CREB 15 500

hm15g Generic Homo sapiens NF-1 4 2000

hm17g Generic Homo sapiens NF-kappaB 11 500

hm19g Generic Homo sapiens Sp1 5 500

hm22g Generic Homo sapiens USF1 6 500

hm22m Markov Homo sapiens USF1 6 500

mus09g Generic Mus musculus POU2F1 2 500

mus10g Generic Mus musculus Sp1 13 1000

mus11m Markov Mus musculus Sp1 12 500

yst01g Generic Saccharomyces cerevisiae ABF1 9 1000

yst02g Generic Saccharomyces cerevisiae GAL04 4 500

yst03m Markov Saccharomyces cerevisiae GCN4 8 500

yst06g Generic Saccharomyces cerevisiae MCM1 7 500

yst09g Generic Saccharomyces cerevisiae CAR1 16 1000

The datasets are grouped by species. Each dataset has a transcription factor embedded. Each dataset has different number of sequences and sequence length
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using MOTIFSIM for obtaining the global significant
motifs [21]. Since MOTIFSIM identifies a set of com-
mon significant motifs reported by four tools, we se-
lected the best common significant motif based on two
criteria. First, it must represent the popular vote by
majority of the tools. Second, it has the highest rank of
similarity score. We assessed the accuracy of the top
significant motif reported by each tool by using six sta-
tistics above. We then compared the accuracy for
identifying the known motif of each tool including
MODSIDE.
In the second phase, we compared MODSIDE with

MEME-ChIP and RSAT peak-motifs for the following
reasons. First, they are widely used. Second, they have
no limitation for input species. Third, they have a
user-friendly Web interface. Fourth, MEME-ChIP is
based on a profile-based method, which has a lower
accuracy while RSAT peak-motifs is based on a
word-based method or consensus-based method, which
has a higher accuracy. Hence, we expected to see RSAT
peak-motifs outperforms MEME-ChIP. Alternatively,
MODSIDE has a combination of both profile-based
method and consensus-based method. This characteris-
tic makes it interesting to observe the performance of
each pipeline. In addition, all three pipelines have no
limitation for input sequences as well as file size. Fi-
nally, like MODSIDE, both MEME-ChIP and RSAT
peak-motifs have a feature for reporting the results of

individual motif finders. Table 3 shows the characteris-
tics of each pipeline.
We used the default setting provided by each pipeline

to run the benchmark datasets in Table 2. The signifi-
cant motifs were selected by using a similarity cut-off of
≥75% for MODSIDE and an E-value of ≤0.05 for
MEME-ChIP and RSAT peak-motifs. We selected the
top significant motif from each pipeline for each se-
quence dataset. We then calculated six statistics above
for each top significant motif.

Results
MODSIDE versus ChIPMunk, MEME, Weeder, and XXmotif
We measured the accuracy of each tool by calculating
six statistics in the Evaluation section for the top signifi-
cant motif produced by each tool for the same sequence
dataset. The results of four motif finders and MODSIDE
on 16 benchmark datasets are in the Additional file 1:
Figures S1-S16. The absent tools in the figures did not
report any significant motif. They either failed to detect
any motif or their reported motifs did not pass the sig-
nificant threshold. This is due to the nature design and
implementation of each tool. MEME and XXmotif did
not report any significant motif for ten sequence data-
sets: hm08m, hm19g, hm22g, hm22m, mus09g, mus11m,
yst01g, yst02g, yst03m, and yst06g. XXmotif failed to de-
tect the known motif NF-kappaB although other tools

Table 3 Characteristics of MEME-ChIP, RSAT peak-motifs, and MODSIDE

Pipeline Components Function Input
Format

Reference Database Target
Species

Sequence
Limit

File
Size
Limit

Approach Platform

MEME-
ChIP

MEME, DREME,
CentriMo,
TOMTOM, SpaMo

Predict motifs
from ChIP-Seq
data

FASTA Jaspar, UniProbe,
User-defined file, etc.…

N/A None None Profile-
based
method

Web portal, Web-
services, Command
line tool

RSAT
peak-
motifs

Oligo-analysis,
Position-analysis,
Local-word-analysis

Predict motifs
from ChIP-Seq
data

FASTA Jaspar, UniProbe,
REGULONDB, User-
defined file, etc.…

N/A None None Word-
based
method

Web portal,
Standalone
application

MODSIDE ChIPMunk, MEME,
Weeder, XXmotif,
MOTIFSIM

Predict motifs
in general and
motifs from
ChIP-Seq data
Provide the
common
(global)
significant
motifs, the
global and
local significant
motifs, the best
matches for
each motif in a
combined
motif list from
multiple tools
Merge similar
motifs
Generate motif
tress

FASTA Jaspar, TRANSFAC,
UniPROBE

N/A None None Profile-
based
method
Consensus-
based
method

Web portal
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identified it for sequence dataset hm17g. Besides, XXmo-
tif and MEME did not report any significant motif for
the sequence datasets mus10g and yst09g respectively.
We calculated the average statistics for each tool includ-
ing MODSIDE on 16 sequence datasets. The average re-
sult reveals MODSIDE attains better accuracy than
individual motif finders. Figure 2 shows MODSIDE in
the top rank followed by Weeder, MEME, ChIPMunk,
and XXmotif respectively. The calculation can also be
found in the Additional file 1: Table S1.

MODSIDE versus MEME-ChIP and RSAT peak-motifs
We compared the accuracies of MEME-ChIP, RSAT
peak-motifs, and MODSIDE by calculating six statistics
for the top significant motif from each pipeline for each
sequence dataset in Table 2. The statistical results are
in Additional file 1: Figures S17-S32. Most of the
figures do not show MEME-ChIP as it did not report
any significant motif except for the dataset hm04g in
Additional file 1: Figure S18. This is due to the nature
design and implementation of MEME-ChIP and its
components. All pipelines failed to identify the known
motifs for the datasets hm01g, hm04g, hm15g, hm22g,
mus09g, and yst01g. Again, this is due to the nature de-
sign and implementation of each pipeline and its com-
ponents. For the rest of the datasets, either RSAT
peak-motifs or MODSIDE can identify the known mo-
tifs with various degrees of accuracies. However, both
RSAT peak-motifs and MODSIDE successfully identi-
fied the known motif NF-kappaB for the dataset
hm17g. We calculated the average statistics for each

pipeline on all sequence datasets as shown in Fig. 3 and
in the Additional file 1: Table S2. MEME-ChIP shows a
poorer accuracy than RSAT peak-motifs and MOD-
SIDE. Again, this can be caused by the nature design
and implementation of MEME-ChIP as presented
above. However, both RSAT peak-motifs and MOD-
SIDE expose a similar performance, as their average ac-
curacies are quite similar. Nevertheless, MODSIDE has
more advantages than MEME-ChIP and RSAT peak-
motifs because it offers various comparison results that
are not offered by MEME-ChIP, RSAT peak-motifs, and
other existing pipelines.

Conclusions
We developed MODSIDE for motif discovery and simi-
larity detection. The pipeline delivers the predicted mo-
tifs from ChIPMunk, MEME, Weeder, and XXmotif. It
also provides various comparison results for multiple
motif finders. The comparison results include the com-
mon significant motifs, the motifs detected by some
tools but not by others, as well as the best matches for
each predicted motif in the collection of multiple tools.
Besides, the pipeline allows comparing the predicted
motifs with the reference databases for obtaining simi-
lar motifs. It also allows merging similar motifs and
clustering the results into motif trees. We assessed
MODSIDE and its motif finders on 16 benchmark data-
sets. The statistical results reveal MODSIDE attains
better accuracy than its adopted motif finders. We also
compared MODSIDE with MEME-ChIP and RSAT
peak-motifs. The comparison results show MODSIDE

Fig. 2 Average statistics for ChIPMunk, MEME, Weeder, XXmotif, and MODSIDE on sixteen benchmark datasets. Four statistics at the nucleotide
level are Sensitivity (nSn), Positive Predictive Value (nPPV), Specificity (nSp), and Correlation Coefficient (nCC). Two statistics at the site level are
Sensitivity (sSn) and Positive Predictive Value (sPPV) [27]. MODSIDE achieves better accuracy than other tools
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and RSAT peak-motifs achieve similar performance while
MEME-ChIP has a lower accuracy than other two pipe-
lines. Although the performance of MODSIDE is compar-
able to RSAT peak-motifs, it offers various comparison
results that are not offered by RSAT peak-motifs and
other existing motif discovery pipelines.
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