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Abstract

Gender score is the cognitive judgement of the degree of masculinity or femininity of a face which is considered to be a
continuum. Gender scores have long been used in psychological studies to understand the complex psychosocial
relationships between people. Perceptual scores for gender and attractiveness have been employed for quality assessment
and planning of cosmetic facial surgery. Various neurological disorders have been linked to the facial structure in general
and the facial gender perception in particular. While, subjective gender scoring by human raters has been a tool of choice
for psychological studies for many years, the process is both time and resource consuming. In this study, we investigate the
geometric features used by the human cognitive system in perceiving the degree of masculinity/femininity of a 3D face. We
then propose a mathematical model that can mimic the human gender perception. For our experiments, we obtained 3D
face scans of 64 subjects using the 3dMDface scanner. The textureless 3D face scans of the subjects were then observed in
different poses and assigned a gender score by 75 raters of a similar background. Our results suggest that the human
cognitive system employs a combination of Euclidean and geodesic distances between biologically significant landmarks of
the face for gender scoring. We propose a mathematical model that is able to automatically assign an objective gender
score to a 3D face with a correlation of up to 0.895 with the human subjective scores.
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Introduction

Cognitive judgements of facial attractiveness, gender and the

degree of masculinity/femininity are found to be universally

reproducible in people of varied cultural and ethnic backgrounds

[1,2]. The Human mind has the capability to assess facial

masculinity/femininity and this gender attribute plays an impor-

tant role in social behaviours. Psychologists and cognitive scientists

have extensively analysed the role of perceived gender (masculin-

ity/femininity) on various socio-psychological behaviours in a

number of studies (see Table. 1 for a summary).

A subjective gender score is a tangible metric that human raters

assign to the degree of masculinity/femininity of a face. This is

because, though sex is binary, gender is understood to be a

continuum. For example, Figure 1 shows synthetic images of the

same individual by varying its gender from very male to very

female. In the literature these scores have also been referred to as

perceptual gender scores, masculinity/femininity scores or mas-

culinity/femininity index (referred later as masculinity index for

brevity).

Subjective gender scoring has been widely used by researchers

in Psychology to study the relationship between sexual dimor-

phism and facial attractiveness [3,4], mate choice [5,8], personal

character traits [9] as well as perceived and actual health [10].

Applications of subjective gender scores in medical and health care

include analysis of the effects of syndromes (e.g. Autism Spectrum

Disorder) on facial masculinity/femininity [11], relationship

between sexual dimorphism and semen quality [12]/facial

symmetry [13]. Other uses include evaluation of the outcome of

facial cosmetic surgery [14,15]. A comprehensive overview of the

applications of subjective gender scoring is given in Table 1. In

these studies, a number of human raters are asked to judge the

masculinity/femininity of the subjects.

The process of perceptual gender rating in itself is both time and

resource consuming and a challenging problem is to identify the

nature of predictors or features that are employed by the human

mind for this task. Some researchers have also investigated

objective scores for sexual dimorphism (masculinity/femininity)

using morphometric analysis [16–18]. The key idea behind

calculating objective masculinity index is to use facial measure-

ments, like distances between biologically significant landmarks or

ratios of these distances, for obtaining a score of facial masculinity/

femininity. For each face these measures can be used individually

or collectively by adding their standardised measures or their Z-

scores.

Scheib et al. [16] obtained masculinity indices by summing up

the standardized facial measures of the cheek-bone prominence

and relative lower face length from grayscale pictures of 40 male

subjects. The authors then asked 12 female participants to rate

these faces for attractiveness. Interestingly, the masculinity index
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correlated positively with facial attractiveness (more masculine

males were more attractive) which is against the established norms

[3]. In a similar study, Penton et al. [17] calculated five separate

masculinity indices for each face using measures related to eye size,

ratio of lower face height to total face height, cheek bone

prominence, ratio of face width to lower face height and mean

eyebrow height. Two dimensional pictures of 60 male and 49

female faces were used in this study. The authors did not find a

correlation between these five dimorphic measurements and

female-rated facial attractiveness. However, the rated attractive-

ness correlated positively with a composite masculinity index

found by summing up the standardized Z-scores of the five

individual measures. In a later study, Pound et al. [19] used the

same approach to calculate a composite facial masculinity index

from 2D photographs of 57 male subjects. The study aimed at

analysing the correlation between circulating testosterone levels

and masculinity in males. Fifty seven male subjects were first asked

to predict, by seeing the photographs, the outcome of a particular

wrestler in six wrestling bouts. Subjects were then shown videos of

the bouts allocated to a ‘‘winning’’ and ‘‘loosing’’ condition and

pre/post task testosterone levels were measured. A group of 72

participants was then asked to rate the subjects for their perceived

masculinity. The authors did not find any correlation between

perceived masculinity and pre/post task testosterone levels.

However, post task increase in testosterone levels correlated

positively with the facial masculinity index. Note that, none of

these studies explored the relationship between the perceived/

rated masculinity and the objective facial masculinity index.

A more sophisticated method of obtaining the masculinity index

is to first perform sex classification using discriminant analysis and

then use the discriminant scores associated with each face as its

masculinity index. One of the earlier attempts in that direction was

made by Burton et al. [20]. The authors performed sex

classification on 179 faces using a set of 16 2D and 3D Euclidean

facial distances as well as their ratios and angles. The discriminant

function score of each face was taken as its masculinity index and

the reported sex classification accuracy using Discriminant

Function Analysis (DFA) was 94%. However, the authors could

Figure 1. Facial gender is considered to be a continuum over masculinity or femininity. Figure shows morphed 3D images of the same
individual with gender varying from highly masculine to highly feminine. Which geometric features do human observers employ for ascribing a score
to this variation and can such scores be replicated by computer algorithms? (Note: These images have been created from a model [45,46] as we are
barred from publishing images of actual subjects under ethics approval.)
doi:10.1371/journal.pone.0099483.g001

Table 1. Application of masculinity/femininity ratings in various fields of research.

Study Reference Subjects Raters Ratings

Correlation between masculinity and trustworthiness/emotions [9] 12 40 480

Relationship between masculinity/femininity and attractiveness as well as masculinity and
distinctiveness

[3] [4] 71 204 5036

Relationship between masculinity/femininity and health [10] 310 37 11470

Relationship between masculinity/femininity and symmetry. [13] 194 39 5599

Role of gender scores in sex classification of faces. [47] 200 40 8000

Relationship between sexual behaviour and masculinity/femininity [5] 362 109 40952

Womens’ preference and mate choice based on masculinity of men [48] [7] 40 20 800

Relationship between masculinity and semen quality in men [12] 118 12 1416

Relationship between sociosexuality and gender ratings [6] 8+50 195+17 2410

Role of masculinity in the functioning of a male endocrine system [19] 57 72 4104

Role of masculinity and femininity in distinguishing homosexuals [49] 95 58 5510

Effects of syndrome on masculinity/femininity [11] 103 8 824

Comparison between masculinity (attractiveness) and intelligence as cues for health and
provision of resources in mate selection

[8] 32 689 22048

Evaluating the outcome of facial cosmetic surgery in terms of perceptual attractiveness;
pre and post surgery

[15] [14] 32; 20 163; 90 5216; 1800

Applications of perceptual gender ratings by employing human raters. Notice the huge number of ratings performed in case. References are provided for interested
readers.
doi:10.1371/journal.pone.0099483.t001
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not find a positive correlation between their objective scores and

the perceptual subjective scores obtained by asking 13 participants

to rate the subjects’ faces for masculinity/femininity. The

correlation coefficient was {0:32 for male faces and {0:33 for

female faces. In another study, Thornhill and Gangestad [18] used

DFA based on five measures of masculinity (chin length, jaw

width, lip width, eye width, and eye height) to yield 75% sex

classification accuracy on 2D images of 295 subjects. Discriminant

function scores were then used to measure facial masculinity. The

authors then analysed the relationship between these masculinity

scores and health in terms of respiratory diseases and their

duration. There was a significant negative correlation for men and

positive for women, between health and facial masculinity. Note

that Rhodes et al. [10] did not find any such correlation between

perceived masculinity and the actual health of female subjects.

A similar technique was employed by Scott et al. [21] to obtain

a morphometric masculinity index. Two datasets of textured

images of 20 male faces and 150 (75 male/75 female) faces were

used for this purpose. Principle Component Analysis (PCA) was

performed on 129 landmarks duly registered using Procrustes

analysis and only 11 Principle Components (PCs) were retained.

Using DFA, the authors classified facial sex with an accuracy of

96.8% in the first dataset and 98.7% in the second dataset.

Discriminant function scores were used as the masculinity index.

The relationship between these objective scores and perceived

attractiveness was then analysed. The authors did not find any

correlation between the male facial masculinity index and

perceived attractiveness. However, the relationship between

masculinity and attractiveness in female faces was significant and

negative. Using the same approach, Stephen et al. [22] measured

the masculinity index of 34 male participants using their 2D

images. Interestingly, the authors found no correlation between

their objective measure of sexual dimorphism and perceived

attractiveness. Perhaps the absence of correlation is due to the fact

that the authors have used 2D texture images in their experiments.

Distances on 2D images are unable to model the facial surface

accurately.

The above mentioned studies, on the one hand, highlight the

importance of gender rating in evaluating various psychological

and medical aspects in humans, and on the other hand, present

the obvious difficulty in obtaining these scores. Our literature

review shows that, so far, the methods employed for measuring

objective masculinity/femininity scores fail to explain the under-

lying processes in perceptual gender scoring. That is why the

objective scores obtained using these methods do not correlate well

with subjective perceptual scores, making it difficult to use them

instead of, or in combination with, perceptual scores in different

studies. Note that, the main aim of these studies was to find

relationship between different characteristics/attributes of the face

with perceived (or objective) facial gender scores instead of looking

for a direct relationship between their perceptual and objective

facial masculinity/femininity. The requirement, therefore, is to

understand the facial features used by humans to score the

masculinity/femininity from faces and to evaluate the plausibility

of reproducing these scores using objective measures. Once

reliable objective measures are established, computer algorithms

can be used to predict the perceived masculinity/femininity of a

face with high confidence.

Understanding human perception or Human Visual System

(HVS) for particular tasks has been of great interest to researchers

(Note that, ‘‘Human Visual System’’ also refers to the anatomical

structure of the visual system. However, throughout this paper we

have used this term to refer to the cognitive mechanism employed

by the human mind to perceptually asses and analyse visual

information). Bruce et al. [23] performed Discriminant Function

Analysis (DFA) for sex classification using 2D and 3D Euclidean

distances extracted from 73 landmarks, the ratios of these distances

and angles between them. The authors suggested that perhaps the

human visual system takes into account a subset of 16

measurements to classify facial sex, since these features result in

a classification accuracy of 94%. Similarly, to understand human

and machine sex classification behaviour, Graf et al. [24] used 2D

images as stimuli to perform perceptual as well as computational

sex classification. The authors asked human subjects to visually

classify the 2D images for sex. Next, they used the Principle

Components of the images and several state of the art classifiers to

understand human internal decision space for sex classification.

To the best of our knowledge, there is no exclusive work on

understanding the broad features used by HVS to give a measure

to the degree of masculinity/femininity of the face. In the absence

of such an understanding, the objective scores calculated by

researchers, as evident from our survey, either do not correlate

significantly with the perceptual scores or go against the

established findings on relationship between perceived sexual

dimorphism and other facial traits. This research gap has also

resulted in the lack of development of robust algorithms for

objective scoring of masculinity/femininity.

There are two major cues used by humans for facial sex

classification: shape and appearance. Given the 3D nature of the

face, a large amount of shape information gets lost in the 2D

images of the face. On the contrary, a 3D face image, although

more difficult to capture, has more shape-rich information.

O’Toole et al. [25] showed that 3D geometric information

outperforms the texture in classifying sex of a face. Similarly,

Bruce et al. [26] claimed that visually-derived semantic informa-

tion like age, expression, gender etc. depend mainly on the

geometric form of the perceived face. Therefore, we focus on using

3D geometric faces in this work to capture human perceptual

ratings on gender. The main research questions that we want to

address are the following:

N Which geometric features are used by the HVS in perceiving

the degree of gender of a 3D face?

N Can a mathematical model mimic human performance and

objectively rate the gender of a 3D face?

The answers to these questions will help in understanding facial

sexual dimorphism and the diagnosis of related syndromes. In this

study, we present 3D face models of 64 subjects in frontal, oblique

and profile views to 75 raters to obtain perceptual ratings and

analyse the physical features used by the raters to rate the faces.

Next, we build a computational model based on the results of the

perceptual study to objectively rate the gender using 3D Euclidean

and geodesic features and their combinations. Using this model,

we present our findings on the nature of geometric features used

by the HVS in rating gender. Our results suggest that humans take

into account a combination of 3D Euclidean and geodesic

distances while perceiving the amount of sexual dimorphism in a

face.

Materials and Methods

This study was performed at University of Western Australia

(UWA) and Princess Margaret Hospital (PMH). All participants

completed an informed consent form having been given written

and verbal details of the tasks to be completed. The study was

approved by the Princess Margaret Hospital Ethics Committee

vide Approval Reference Number: 1532/EP. For developing the

mathematical model for objective gender scores, the digital data

Geometric Facial Gender Scoring: Objectivity of Perception
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was analysed anonymously. All identification features like the

meta-data, texture etc. were stripped from the 3D images before

hand.

Subjects
Images were obtained from participants recruited from the

student body of UWA. 3D images of a total of 64 participants

between the ages of 18 and 25, of varying population affinities,

who had not undergone significant craniofacial surgery, and had

no craniofacial abnormalities or injuries were captured for the

current study. The self-reported population affinities were grouped

into two categories of Europeans (Caucasian) and non-Europeans

(‘Other’).

Fifty two percent of 64 subjects were females and 48% were

males. 80% of the faces were Caucasian/European. The

remaining 20% were allocated to the ethnicity category ‘‘other’’

which included Asians (n = 6), Blacks(n = 1), Anglo-Indian (n = 1),

Eurasian (n = 2) and Indo-Chinese (n = 1). The majority (78%) of

rated faces were of people between the ages of 18 and 21. Sixty

eight percent of the rated subjects were born in Australia. Fourteen

percent of these identified themselves as having an ethnicity other

than Caucasian. The majority of the ‘‘other’’ group were born in

Australia (46%), or in Asia (38%), the remainder having been born

in Africa (n = 2). Caucasians born outside of Australia were born in

Africa (n = 2), New Zealand (n = 6), and the UK (n = 6).

Raters
Raters of a similar background to the imaged subjects were

recruited from within and outside the student body at The

University of Western Australia. These raters were also categorised

as European/Caucasian or non-European/Other.

The panel of raters (n = 75) was composed of 40 females (53%)

and 35 males (47%). Sixty four of the raters were Caucasian/

European (84%). The majority, n = 48 (64%), of raters were aged

between twenty one and twenty three, although the full age range

extended from eighteen to twenty five. The mean age of the raters

(21.9 years) was greater than that of the rated image subjects (19.9

years) (F~0:34,6z1488d:f :,p~0:914). Seventy seven percent of

all raters were born in Australia. Seven percent of these identified

themselves as having an ethnicity other than Caucasian/Europe-

an. The majority of the ethnic group Other/non-European was

born in Asia (58%), or in Australia (33%), the remainder having

been born in Africa (n = 1). Europeans born outside of Australia

were born in Asia (n = 2), New Zealand (n = 2), and the UK

(n = 4).

3D Facial Stereophotogrammetry
Three dimensional (3D) images of the faces of participants were

captured using the 3dMDface 3D stereophotogrammetry system

(3dMD LCC, Atlanta Georgia, USA). The 3dMDface system

generates 180 degree (ear to ear) 3D images by employing the

technique of triangulation. These high-resolution images are

captured within 1.5 milliseconds (ms) [27]. Image capture was

undertaken in an office environment under standard clinic/office

lighting conditions. Subjects were positioned so that imaging of the

full face from ear to ear could be achieved. Images were taken of

participants with faces holding a neutral expression, and jaws in

centric relation with temporomandibular joint seated and natural

dental contact without clenching force.

Stimuli Preparation for Perceptual Scoring
Texture maps were stripped from the 3D images to remove

features such as eyebrow shape and skin colour. Facial surface was

smoothed to diminish the effects of skin texture and eyebrow

coarseness. This is done in order to ensure that the raters’

perceptions are based solely on facial geometry.

Processed images were prepared into individual packages of 20

randomly chosen faces for viewing on a visual display unit by each

individual rater. Packages comprised equal number of males and

females, drawn randomly from sex and population subgroups.

Stimuli Preparation for Objective Scoring
We annotated 23 biologically significant landmarks [28] on

each image as shown in Figure 2. The motivation for using these

landmarks comes from the fact that they represent the sexual

dimorphism of the face [29]. These landmarks and Euclidean

distances measured from them are used to measure a quantitative

dimension for the morphological deviation from the normal face

[28], to delineate syndromes [30] and to measure objective

masculinity/femininity [21]. We have selected the facial land-

marks that relate to the bony structure of the face which is effected

by the ratio of testosterone to estrogen (oestrogen) during

adolescence [31]. It is believed that facial masculinity is associated

with levels of circulating testosterone in men [19]. Hence it is

intuitive to use features extracted from these bony landmarks for

facial gender scoring.

The pose of each 3D face is corrected to a canonical form based

on four landmarks (Ex(L), Ex(R), N and Prn). This step is required

to eliminate any error due to pose in the extraction of geodesic

distances which will be discussed in detail in the Study 2 of the

Experiments Section. Holes are filled and noise removed by re-

sampling the 3D face on a uniform grid using the gridfit [32]

algorithm. Since some portions of the face are expected to be self

occluded (e.g. region around Ac) when re-sampled on a grid, we

bisect the 3D face along the vertical axis at the nose tip and rotate

each half by 450 before re-sampling to mitigate this problem.

Besides hole filling, another advantage of bisecting and rotating

the halves before re-sampling is that the resulting 3D face has a

more uniform sampling in the 3D space. The processed halves are

then rotated back and stitched seamlessly to form a single mesh.

Figure 3 shows the different preprocessing steps.

Evaluation Criteria
The main focus of this paper is to find geometric features that

are used by HVS for rating gender. Since it is well known that

texture itself is very informative on sex classification [20], we used

textureless 3D rendered images to avoid any bias in the results due

to texture. Abdi et al. [33] show that hair is one of the major

contributors in sex classification. To avoid bias resulting from this

feature, ratings were obtained on 3D images with the hair

concealed or cropped.

Consequent to the above considerations, raters were asked to

rate each of the 64 faces for perceived masculinity/femininity and

nominate the facial regions they used for this judgement. A

computational model was then developed based on this study to

objectively score the gender. Our evaluation criterion is the

correlation between perceptual ratings and objective scores from

the model. Given two random variables X and Y with n samples

each, their correlation r is defined as,

r~

Pn
i~1 Xi{X
� �

Yi{Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 Xi{X
� �2Pn

i~1 Yi{Y
� �2

q ð1Þ

In each study, we depict the correlation for males and females in

a plot. We also project the objective and subjective perceptual
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scores on a Bland-Altman plot [34]. Bland et al. [34] proposed a

technique for comparing the outcome of two methods in clinical

practice. They argue that a comparison between the average of the

outcomes to the difference is a better way of assessing the

agreement between two different methods. The Cartesian

coordinates of the Bland-Altman plot t(x,y) are given by,

t xi,yið Þ~ O1izO2i

2
,O1i{O2i

� �
ð2Þ

where i~1,:::,n are the samples of each observation O belonging

to male/female class.

Perceptual Scoring
As mentioned earlier, the stimuli were prepared into individual

packages of 20 randomly chosen faces for viewing on a visual

display unit by each individual rater. The rater was unaware of the

sex and population composition of the package. As shown in

Figure 4, a series of five facial views: left profile, left oblique,

straight, right oblique, right profile, were prepared for each subject

and displayed on the screen. Raters were able to toggle between

these images in making their ratings.

Questionnaires were presented and filled out electronically

while viewing the images on a second computer screen. Raters

were asked to do the following

N Fill out a personal information questionnaire detailing age, sex

and population affinity.

N View each face and rate the degree of masculinity or

femininity of the face on a 20 point scale.

N Nominate the facial regions that they used to make their

judgement. The options available were forehead, eyes, nose,

cheeks, mouth, chin, jaw and no specific features.

N Identify the sex of the individual depicted.

Objective Scoring
An overview of our gender scoring algorithm is given in

Figure 5. Gender classification is an important prerequisite for

obtaining objective gender scores. Using the annotated landmarks,

44 distances (22 each of the 3D Euclidean and geodesic) related to

the regions indicated in Table 2 were extracted as features.

Figure 6 shows some of the features used. Further details on these

features are given in the Experiments Section.

We begin with feature selection which is a process of selecting

the most relevant features for classification while removing the

redundant ones. For this purpose we use the minimal redundancy

maximal relevance (mRMR) algorithm packed in a forward-

selection wrapper [35]. The algorithm first calculates the intrinsic

information (relevance) within a feature and also the mutual

information (redundancy) among the features to segregate

different classes. Then it maximizes the relevance and minimizes

the redundancy simultaneously. Let X[Rm|n be the feature

matrix with m observations and n features, F be the target reduced

feature set and c be any arbitrary class from the set of classes C,

then relevance is defined by,

D F ,cð Þ~ 1

DF D

X
xi[F

I xi; cð Þ, ð3Þ

and redundancy is defined by,

R Fð Þ~ 1

DF D2
X

xixj[F

I xi; xj

� �
, ð4Þ

where I(x; y) is the mutual information between x and y. Maximal

relevance and minimal redundancy is obtained by taking the

Figure 2. Landmarks used in our algorithm. 23 landmarks
annotated on a shaded textureless 3D image. The image is the average
face of 10 male subjects from our database.
doi:10.1371/journal.pone.0099483.g002

Figure 3. Different steps in preprocessing. (A) The raw input face. (B) Bisected raw face rotated by 450. Notice the holes in the eye region. (C)
Processed face. (D) Processed face stitched back seamlessly.
doi:10.1371/journal.pone.0099483.g003
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maximum and minimum values of (3) and (4) respectively. The

goal of simultaneously maximizing the relevance and minimising

the redundancy is achieved by maximizing the function (D,R)
where,

C(D,R)~D{R, ð5Þ

or

C(D,R)~
D

R
, ð6Þ

where equation (5) is the Mutual Information Difference and

equation (6) is the Mutual Information Quotient formulation of

mRMR algorithm. Since our feature set is small, we find the

classification accuracy yielded by both formulations and use only

the one giving the maximum accuracy on training data. The

reduced number of candidate features k is selected by first

obtaining n feature sets Fn using the mRMR sequential search (Eq.

5 or 6 depending on which one gives better accuracy). More

specifically F15F25:::5Fn{15Fn. Next we compare the clas-

sification accuracy for all feature subsets F1,,:::,Fk,:::,Fn

(1vkvn) to find a range for k where the classification accuracy

is maximum. Finally, we select a compact set of features by

exploiting the forward-selection wrapper [36]. The wrapper first

searches for a single feature H1 from the feature set Fk which gives

the maximum classification accuracy. Then, from the subset

fFk{H1g we search for another feature such that the subset

fH1,H2g gives the maximum accuracy irrespective of the previous

one. This is a deviation from the original mRMR algorithm [35]

which desires a feature subset that produces better or equal

accuracy than the previous subset in order to minimize the

number of evaluations due to the greater number of candidate

features in Fk. Since our original feature set X contains fewer than

50 features and the size of candidate feature set Fk is even smaller

than X , therefore, we let the wrapper evaluate all possible subsets

of Fk in a forward selection scheme enabling us to find the reduced

feature subset that gives the best accuracy. Consequently, we

obtain a feature set fH1,:::,Hp,:::,Hkg where 1vpvk and we

select the feature subset fH1,H2,:::,Hpg which corresponds to the

highest accuracy. Note that this is the most compact feature subset

as 1vpvkvn.

We train a Linear Discriminant Analysis (LDA) classifier using

an exclusive set of training data. Let Xi[Rm|ni be the matrix of

features of class i with ni samples. LDA maximizes the ratio of

between-class scatter to within-class scatter. Between-class scatter is

defined as

SB~
Xc

i~1

ni mi{mð Þ mi{mð Þ>, ð7Þ

and within-class scatter is defined as

SW~
Xc

i~1

X
xk[Xi

xk{mið Þ xk{mið Þ>, ð8Þ

where m is the mean of all classes, mi is the mean of class Xi and ni

is the number of samples in Xi. Fisher [37] proposed to maximise

the ratio between SB and SW relative to the projection direction

by solving

Figure 4. Facial views for perceptual rating. Series of facial views of each subject shown to raters. From left to right: left profile, left oblique,
straight, right oblique, right profile.
doi:10.1371/journal.pone.0099483.g004

Figure 5. Block Diagram. Block diagram of the proposed gender classification and scoring algorithm. For details see the Objective Scoring Section.
The synthetic images are from [45,46].
doi:10.1371/journal.pone.0099483.g005
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J wð Þ~ arg max
W S W
>

B

W S W>
W

: ð9Þ

By differentiating the equation with respect to

to zero, we get S SB { Jw~0, which is a generalized

eigenvalue problem and the eigenvector � of S{1
W SB is the

desired optimal direction. Given the learnt LDA projection � , a

query face is classified into one of the two genders. The projection

of feature vector xq (of a face with unknown gender) on the LDA

space is given by �~ �ð Þ>xq.

Gender classification is performed based on the distance

between the x�q and the means of the projected classes m�1 and

m�2 such that

Cq~f
1 if m�

1
{x�q

��� ���
2
v m�

2
{x�q

��� ���
2

2 otherwise , ð10Þ

where m�~( �)>m
Interestingly, the directional distance of a projected test face

from the center of the projected means of the two classes gives an

intuitive insight into the amount of masculinity or femininity of the

face. Let p~(m�1zm�2)=2 be the center of the projected means.The

gender score G of a test face xi, whose gender has already been

determined with Eqn. 10, is defined as

G~1{
p{x�i
�� ��

1

2 p{m�k k1

� l ð11Þ

where m� is the projected mean of either class (1 or 2) and l is a

scaling factor for comparability with the available human

perceptual ratings. In our case l~20. Hence we score the gender

on a scale of 0 to 20 (0 being most masculine and 20 being most

feminine). Figure 7 illustrates the process of scoring the gender of a

query face in the LDA projected space.

Results and Analysis

Perceptual Scoring
While ratings of masculinity/femininity were clearly bimodal

(Figure 8) with most males rated at the lower one third of the scale,

and most females in the upper one third, a substantial proportion

of images (29%) were rated in the middle one third, or perceived

to be ambiguously masculine/feminine. The ratings from all the

75 raters were found to be significantly consistent

(k~0:783,pvv0:001) using the Fleiss Agreement Test [38].

The sex and ethnicity of the person represented in images had a

significant influence on how they were rated by all groups

(F~333:69, 3z1479 d:f:, pv0:001). In general the perceived

masculinity or femininity of the imaged subject was independent

of the background of the person doing the rating. Both European

male and female faces were considered to be more masculine than

their non-European counterparts.

There was a strong tendency for the chin and jaw to be

nominated as significant indicators in judgements of faces rated as

extremely masculine (ratings 0 to 4), while the eyes, cheeks and

mouth were the most frequently nominated features used in

judgements of faces receiving high femininity ratings (ratings 15–

20). Table 2 gives the detailed test values for each feature.

Gender was correctly identified in 86% of the instances. All sex

and ethnic groups had the same ability to identify gender overall

(x2~1:51, 3 d:f :, p~0:680). Raters were adept at correctly iden-

tifying sex for their own ethnic group (87:7% correct). Raters were

slightly better at identifying the sex of the dominant culture when

they were a minority born amongst the dominants than if they

were a member of the dominant culture trying to identify the sex

of one of the minorities (Europeans~86:5% correct; non-

Europeans~83:3%). Europeans were better at classifying the sex

of non-Europeans (85:5% correct) than non-Europeans were at

classifying the sex of Europeans (80:5%)

(x2~30:69, 1 d:f:, pv0:0:001). Gender identification errors were

Figure 6. Features used in our algorithm. Some of the 3D
Euclidean (left) and geodesic (right) distances used in gender scoring
algorithm.
doi:10.1371/journal.pone.0099483.g006

Table 2. Significant facial features in perceptual gender scoring.

Feature x2 p Masculinity/Femininity association

Forehead 5.28 0.071 No particular association

Eyes 23.69 ,0.001 Femininity

Nose 3.08 0.214 No particular association

Cheeks 36.39 ,0.001 Femininity

Mouth 23.63 ,0.001 Femininity

Chin 19.38 ,0.001 Masculinity

Jaw 58.29 ,0.001 Masculinity

No Spec 2.97 0.227 No particular association

Chi-square and propability values for the correlation between facial features and their use in rating masculinity/femininity.
doi:10.1371/journal.pone.0099483.t002
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more likely to be made amongst female faces (23% wrong) than

amongst male faces (10% wrong) (x2~29:32, 1 d:f:, pv0:001). In

particular, there was a strong tendency for female Europeans to be

wrongly identified as males (29% wrong), while male Europeans

(5% wrong) were very unlikely to be mistaken for females

(x2~50:39, 3 d: f:, pv0:001). Correctly identified females were

perceived to be significantly more feminine than those that were

mistaken for males (x2~275:37, 1z746 d: f:, pv0:001). Correctly

identified males were perceived as more masculine than those

mistaken for females (x2~137:33, 1z745 d:f:, pv0:001). The

ability to identify sex did not improve with the number of faces

that were viewed (x2~26:25, 19 d:f:, pv0:123).

Objective Scoring
Our first study constitutes

obtaining objective gender scores using 3D Euclidean distances.

Let Li~½xi,yi,zi,�> be the ith landmark. The 3D Euclidean

distance D(Li,Lj) between landmarks i and j is defined as,

D Li,Lj

� �
~DDLi{Lj DD2 ð12Þ

Figure 6(Left) shows some of the 3D Euclidean distances used in

this experiment.

Using 3D Euclidean distances as features, our proposed

algorithm classifies 94:21% subjects correctly as males or females.

The correlation between objective gender scores and the

perceptual scores is 0:284 and 0:458 for males and females

respectively. Figure 9(a & b, first row) show the correlation and

best fit line for males and females while Figure 9(c, first row) shows

the Bland-Altman plot between the objective and perceptual

subjective scores.

It is evident that objective scores for masculinity and femininity

do not correlate well with the perceptual subjective scores. In

Figure 9(c, first row) ideally the mean of the difference of objective

and subjective gender scores should have been zero. However, we

can see that the mean difference line is well above zero and the

width of the limits of agreement in this case is 13:86.

Clearly, 3D Euclidean distances do not seem to be the features

that HVS concentrates on while scoring the facial gender.

However, it is interesting to note that the forehead width (Ft-Ft),

nasal bridge length (N-Prn), nasal tip protrusion (Sn-Prn), nasal

width (Al-Al) and chin height (Sto-Pg) are selected as the most

differentiating features by our algorithm (see Figure 10(a)). This is

in line with the findings of Burton et al. [20] who performed

Figure 7. Gender scoring in LDA projected space. Diagram depicting the process of objectively scoring the gender in LDA space to assign a
metric for masculinity/femininity of the test face.
doi:10.1371/journal.pone.0099483.g007

Figure 8. The perceptual subjective gender scores. A histogram of mean perceptual masculinity and femininity ratings obtained from 75 raters.
doi:10.1371/journal.pone.0099483.g008
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experiments on a subset of 2D and 3D Euclidean distances. Note

that the authors handpicked these features based on knowledge

from existing literature, whereas our approach relies on a

mathematical feature selection algorithm. This endorses the

mathematical model we use for obtaining discriminant features.

In the second study, we use

geodesic distances to predict the facial gender scores. Some

examples of the geodesics can be seen in Figure 6(Right). We

define geodesic distance m(GAB) between points A and B as the

length of the curve GAB generated by orthogonal projection of the

Euclidean line AB
�!

on the 3D facial surface. This is precisely the

reason for normalising the pose of each 3D face as variation in

pose can present a different surface to the viewing angle. Less

curved distances like the upper lip height (Sn-Sto) are modelled by

a second order polynomial while more curved distances with

multiple inflection points, like the biocular width (Ex-Ex) are

modelled by higher order polynomials. Studies suggest that

geodesic distances may represent 3D models in a better way as

compared to 3D Euclidean distances [39]. Gupta et al. [40] argue

that algorithms based on geodesic distances are likely to be robust

to changes in facial expressions. In support of this argument

Bronstein et al.[41] have suggested that facial expressions can be

modelled as isometric deformations of the 3D surface where

intrinsic properties of the surface like geodesic distances are

preserved. Figure 11 depicts the variation in 3D Euclidean and

geodesic distances in biocular width on two models. The left model

has a protuberant nose and hence a larger geodesic distance than

the right model which has a flatter nose. Euclidean distance in

both the models is similar. Figure 12(a) shows some of the

extracted geodesic features and Figure 12(b–c) show the process of

fitting a polynomial to these features.

Geodesic distances classify facial sex with an accuracy of

98:57%. The correlation between objective gender scores and the

perceptual subjective scores also increases to 0:386 and 0:537 for

males and females respectively. Figure 9(a & b, second row) show

the correlation and best fit line for males and females while

Figure 9(c, second row) shows the Bland-Altman plot between the

objective and perceptual subjective scores.

Figure 9. Results of objective gender scoring. (A) Correlation for males. (B) Correlation for females. (C) Cumulative Bland-Altman plot.
Correlation and Bland-Altman plots between objective and subjective gender scores for males and females using only 3D Euclidean distances (First
Row), only geodesic distances (second row) and combination of Euclidean and geodesic distances (third row).
doi:10.1371/journal.pone.0099483.g009
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Even though the correlation has improved, the geodesic

distances alone do not seem to be the features of choice for

HVS while ascribing a score to facial gender. Figure 9(c, second

row) shows that the mean of the difference is still well above zero

and the width of limits of agreement in this case is 13:15. Once

again the forehead width (Ft-Ft), nasal bridge length (N-Prn), nasal

width (Al-Prn-Al) and chin height (Sto-Pg) are amongst the most

differentiating features. However, with geodesic distances, the

upper lip height (Sn-Sto), eye fissure length (Ex-En) and

intracanthal width (En-En) are added as the most discriminating

sex classification features (see Figure 10(b)).

In the last experiment, we use a

combination of 3D Euclidean and geodesic distances as our

features for gender scoring. Since most of the gender discriminat-

ing features are common between the two families of distances, it

seems intuitive to combine them and analyse their effect.

Equipped with a combination of 3D Euclidean and geodesic

distances, our algorithm classifies facial sex with an accuracy of

99.93%. There is also a significant boost in the correlation

between the objective and subjective gender scores which now is

0:794 and 0:895 for males and females respectively. The Bland-

Altman plot shows the mean of the difference between the two

scoring methods to be 0:21 while the width of limits of agreement

is 4:95. This is a significant improvement as compared to the

previous experiments. Figure 9(a & b, third row) show the

correlation and best fit line for males and females while Figure 9(c,

third row) shows the Bland-Altman plot between the objective and

perceptual subjective scores.

The most differentiating features between the two sexes are

once again common between the two families of distances. The

Euclidean and geodesic distances for forehead width (Ft-Ft), nasal

bridge length (N-Prn), nasal width (Al-Al), eye fissure length (Ex-

En), chin height (Sto-Pg) and upper lip height (Sn-Sto) are the

most discriminating features in our algorithm (see Figure 10(c)).

However, this time the forehead height (Tr-G) is added to the list

of discriminating features.

The above results suggest that the human visual system looks at

the combination of Euclidean and geodesic distances between

certain features on the face to give a gender score.

General Discussion

In the three studies involving various families of features, we

have tried to find the predictors that the human visual system uses

to attribute a measure to the facial gender. Beginning with 3D

Euclidean distances alone, we see that there is little correlation

between objective gender scores and subjective scores. This

situation improves slightly when geodesic distances are used.

The reason is straight forward as geodesic distances can model the

facial surface curvature better than the Euclidean distances.

However, the results are still below an acceptable significance

threshold. Finally, when we use a combination of Euclidean and

geodesic distances we see that the correlation between the two

methods of scoring improves significantly and so does the

agreement between them. This seems to corroborate the claim

of Bruce et al. [23] that humans use a combination of predictors to

perceive the sex of a face. Furthermore, as is evident from

Figure 10(c), the most discriminating features from both families of

distances seem to be common. This indicates that HVS might

actually be taking into consideration the ratio between 3D

Euclidean and geodesic distances while making a decision on the

gender score of a face.

Relating the sex classification results to the gender scores in the

three studies gives us a very interesting clue. In all three studies,

sex classification results are very impressive. In fact, the base

accuracy of 94.21% using only the 3D Euclidean distances tends to

agree with the findings of Burton et al.[20] who classified facial sex

with 94% accuracy using 2D and 3D Euclidean distances.

However, the objective gender scores obtained with this family

of distances do not significantly agree with the perceptual scores.

Even when the classification results improve to 98.57% using the

geodesics, the correlation between the objective and subjective

gender scores remains below an acceptable significance threshold.

This trend changes significantly when a combination of the two

families of distances is used as predictors even though the sex

classification results improve by 1.36% only. It shows that even

though facial sex can be classified accurately using only the 3D

Euclidean or geodesic distances, perfect and more meaningful

Figure 10. Most discriminating features between males and females found in the three experiments. (A) Euclidean distances only. (B)
Geodesic distances only. (C) Combined Euclidean and geodesic distances.
doi:10.1371/journal.pone.0099483.g010

Figure 11. Robustness of geodesic distances to facial expres-
sion. Geodesic and 3D Euclidean distances of biocular width shown on
two models. Left model has a protuberant nose and hence a greater
geodesic distance than the right model which has a flatter nose.
Euclidean distance in both the models is similar.
doi:10.1371/journal.pone.0099483.g011
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gender scores can only be obtained when a combination or ratio of

these distances are taken as features for gender scoring.

Commenting on the method of obtaining gender scores, it is

observed that a classification algorithm is a necessary prerequisite.

However, the scoring result itself is invariant to the sex

classification accuracy. This is evident from the gender scores

obtained for females in the three experiments. There are a few

female subjects who score below the boundary line of 10 giving

them a more masculine gender score. This is indicative of a failure

in classifying their sex but correlates very well with the perceptual

subjective scores. Therefore, even though the algorithm misclas-

sifies their sex, it still gives them a meaningful gender score which

tends to agree with the subjective scores. Hence, our proposed

algorithm puts the facial gender in the category of a continuum

rather than binary.

From the Categorical Perception (CP) point of view, our results

corroborate the findings of Armann and Bülthoff [42], that there is

no evidence for naturally occurring CP for the sex of faces. Results

of perceptual scoring, although bimodal, show that the gender

ratings are on a continuum and do not follow a decision boundary.

Consequently, a few female subjects were rated more masculine,

hence crossing the decision boundary. This trend was replicated

by our proposed computational model which ascribes the correct

gender scores to even those subjects which fall on the other side of

the decision boundary. Furthermore, the participants in Armann

and Bülthoff’s study [42] show a consistent bias to judge faces as

male rather than female. Our findings from perceptual sex

classification replicated this observation as we found a strong

tendency for female Europeans to be wrongly identified as males

(29% wrong), while male Europeans (5% wrong) were very

unlikely to be mistaken for females (x2~50:39, 3 d:f:, pv0:001).
Our choice of features was motivated by the results from

perceptual scoring. Instead of taking
L

2

	 

combinations of

distances, where L is the number of landmarks, we developed our

model around the facial features that our raters indicated were

instrumental in giving a score. It is evident from Figure 10(c) that

our algorithm also selects the features that were significant in

subjective perceptual scoring. However, distances relating to the

jaw (Go-Go) and mouth (Ch-Ch) were not highly discriminating.

While there is no plausible reason for the mouth width (Ch-Ch) to

be excluded from the list, mandible width (Go-Go) may have been

excluded due to localization error of the related landmarks.

Gonions (Go,L and Go,R) are a palpable landmarks indicating the

extremes of the jaw and as such are very difficult to annotate

consistently on 3D images.

Facial rating for attractiveness and sexual dimorphism plays an

important role in planning reconstructive and cosmetic surgery.

This procedure depends on a number of physiological and

psychological constraints, like, age, sex, health state, structure,

shape of the face and patient’s needs and expectations. Patients

who undergo such procedure are rated by human observers pre

and post surgery to assess any improvement in perceptual

attractiveness [14,15]. With the development of 3D simulation

techniques to preview the aesthetical results of facial cosmetic

surgery [43], our proposed algorithm can assist in predicting the

attractiveness of the surgical outcome as it correlates significantly

with human perceptual results. For example, secondary rhino-

plasty is a nose operation carried out to correct or revise an

unsatisfactory outcome from a previous rhinoplasty [44]. Lee et al.

[8] have proposed a three-dimensional (3D) surgical simulation

system, which can assist surgeons in planning rhinoplasty

procedures. Our proposed algorithm can be used in such cases

to assess the improvement in facial attractiveness of the resulting

rhinoplasty through gender scoring, thus reducing the chances of

further secondary procedures.

We can conclude by claiming that our proposed algorithm helps

us in a better understanding of the Human Visual System. It is the

first algorithm that has such a significantly high correlation with

the mean perceptual scores given by 75 raters on 64 subjects.

Hence, it may be possible to use these gender scores in a myriad of

applications in medical and psychological fields where human

raters are employed to obtain these scores.
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