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Abstract
COVID-19 is an infectious pneumonia caused by 2019-nCoV. The number of newly confirmed cases and confirmed deaths
continues to remain at a high level. RT–PCR is the gold standard for the COVID-19 diagnosis, but the computed tomography
(CT) imaging technique is an important auxiliary diagnostic tool. In this paper, a deep learning network mutex attention
network (MA-Net) is proposed for COVID-19 auxiliary diagnosis on CT images. Using positive and negative samples
as mutex inputs, the proposed network combines mutex attention block (MAB) and fusion attention block (FAB) for the
diagnosis of COVID-19. MAB uses the distance between mutex inputs as a weight to make features more distinguishable
for preferable diagnostic results. FAB acts to fuse features to obtain more representative features. Particularly, an adaptive
weight multiloss function is proposed for better effect. The accuracy, specificity and sensitivity were reported to be as high as
98.17%, 97.25% and 98.79% on the COVID-19 dataset-A provided by the Affiliated Medical College of Qingdao University,
respectively. State-of-the-art results have also been achieved on three other public COVID-19 datasets. The results show
that compared with other methods, the proposed network can provide effective auxiliary information for the diagnosis of
COVID-19 on CT images.
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1 Introduction

Coronavirus disease 2019 (COVID-19), named by the
World Health Organization, refers to pneumonia caused
by the 2019 novel coronavirus (2019-nCoV) [1, 2]. As of
August 5, 2021, more than 200 million confirmed cases and
4.2 million confirmed deaths had occurred worldwide. More
importantly, the number of newly confirmed cases and new
confirmed deaths remains at a high level and some specific
variants of SARS-CoV-2 that are more transmissible and
possibly more virulent have appeared worldwide [3]. With
global vaccine production still insufficient, it is very
important to find a fast and effective COVID-19 detection
method.

The gold standard for diagnosing COVID-19 is reverse
transcription polymerase chain reaction (RT–PCR) [4].
However, existing data show that the sensitivity of RT–PCR
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to COVID-19 infection is not high [5]. This leads to many
patients who are infected with COVID-19 being mistaken as
uninfected during rapid screening, which is not conducive
to COVID-19 prevention and treatment.

As a common medical imaging tool, computed tomog-
raphy (CT) imaging technology is a sensitive diagnostic
method for COVID-19. Chest CT is an important supple-
ment to RT–PCR in COVID-19 diagnosis[6]. Long et al.
[7] reported that CT sensitivity was 97.2%, while the initial
rRT-PCR sensitivity was 83.3%. In addition, CT can observe
the pulmonary manifestations with different infections in
different periods, which can assist doctors in diagnosis and
treatment [8].

Although chest CT technology can be used as a
diagnostic auxiliary tool for COVID-19, a large number
of experienced radiologists are needed for screening. It
increases work, and it is also prone to misdiagnosis caused
by fatigue and other reasons. With successful deep learning
(DL) applications in the image classification [9] and natural
language processing fields [10, 11], considerable progress
has been achieved in DL-based medical image processing
task [12]. Deep learning is widely viewed as a crucial tool
in COVID-19 diagnosis[13, 14], as they provide auxiliary
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information, which is very different from other computer
vision tasks, such as head pose estimation [15], intelligent
recommendation [16, 17], robot vision [18], and infrared
imaging enhancement [19].

It is difficult to diagnose COVID-19 because the shape,
size, and Hounsfield unit (Hu) value of the lesions on the CT
images have large variation, as shown in Fig.1. Furthermore,
the COVID-19 patients CT images are similar to CT images
of other diseases (such as community-acquired pneumonia,
H1N1), which also makes the diagnosis of COVID-19 very
difficult, as shown in Fig. 2. In response to these problems,
we propose a novel network MA-Net including mutex
attention blocks and fusion attention blocks to achieve
effective feature representation for COVID-19. We also
design an adaptive weight loss function for a preferable
diagnosis effect. The contributions of this paper are as
follows:

1. Aiming at the problem that the COVID-19 CT images
are similar to other diseases, this paper designs a multi-
inputs network with shared parameters and a mutex
attention block. The mutex input include a pair of
positive and negative samples. The purpose of the
mutex attention block is to amplify the difference
between positive and negative samples, which enables
the network to obtain better distinguishable features. It
can significantly improve the ability of deep networks
to diagnose COVID-19.

2. In this paper, the fusion attention block is designed
to fuse features in the channel direction, which
selects features between two inputs to obtain more
representative features. It can further strengthen the
network COVID-19 diagnostic capabilities.

3. Joint training of multiple loss functions is used in
the work. An adaptive weight adjustment mechanism
is proposed to automatically tune the weight of
different losses. The experimental results show that the
adaptation weight can effectively improve the diagnosis
effect of the proposed network.

2 Related work

Due to the COVID-19 outbreak, many researchers have
proposed deep learning methods to analyze COVID-19 CT
or X-ray images [21–23]. For COVID-19 diagnosis on X-
ray, [24, 25] proposed methods and achieved good results.
For COVID-19 diagnosis on CT images [26–28], many
methods have been proposed and validated on different
COVID-19 datasets.

2.1 COVID-9 diagnosis on CT

For private datasets, Ma et al. [29] proposed a new
COVID-19 diagnosis network based on the multireceptive
field attention module. This attention module includes
pyramid convolution module (PCM), spatial attention block
(SAB) and channel attention block (CAB). PCM is used
to obtain multi-receptive field feature sets and send the
multi-receiving field feature sets to SAB and CAB to
enhance the feature. The proposed method was trained
and verified on the DTDB provided by the Beijing Ditan
Hospital Capital Medical University, which includes 40
patients infected with COVID-19 in different periods and
40 people without COVID-19 infection. 97.12% accuracy,

Fig. 1 COVID-19 Dataset-A CT images
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Fig. 2 COVID-19 Dataset-C CT images[20]

96.89% specificity and 97.21% sensitivity are obtained.
Li et al. [30] developed a 3D deep learning framework
for COVID-19 diagnosis (COVID-19, community-acquired
pneumonia and non-pneumonia), referred to as COVNet.
It consists of a sequence of shared parameters ResNet50.
Experiments on collected dataset containing 4352 chest
CT scans from 3322 patients, the per-scan sensitivity and
specificity in the independent test set were 90% and 96%
, respectively. Harmon et al. [31] proposed 3D model for
differentiation of COVID-19 from other clinical entities.
Training in a diverse multinational cohort of 1280 patients
to localize parietal pleura/lung parenchyma followed by
classification of COVID-19 pneumonia, it can achieve up to
90.8% accuracy, with 84% sensitivity and 93% specificity,
as evaluated in an independent test set (not included
in training and validation) of 1337 patients. For public
datasets, Zhao et al. [20] provided a collated COVID-19 CT
dataset containing 349 CT images believed to be positive
for COVID-19. [20] also proposed a DensNet169 method
combining contrastive self-supervised learning (CSSL) [33]
and transfer learning (TL) for COVID-19 diagnosis and
used CT images with a lung mask as input. Performing
COVID-19 diagnosis on the proposed COVID-19 CT
dataset, the accuracy, F1-Score and AUC were 85.0%,
85.9% and 92.8% respectively, although the number of
CT images for training was only a few hundred. The
COVID-19 CT dataset [20] provided by Zhao et al. has
been widely used. Due to the limited size of the COVID-
19 dataset, Mittal et al. [32] proposed a new clustering
method for COVID-19 diagnosis. A novel variant of a
gravitational search algorithm is employed to obtain optimal
clusters. To validate the performance on the proposed
variant, a comparative analysis of recent metaheuristic
algorithms is conducted. The proposed method was verified
on the COVID-19 CT dataset [20] and an accuracy of
0.6441 was obtained. Underperforming with traditional
methods, many researchers focus on using deep learning
for COVID-19 diagnosis. He et al. [34] proposed a

self-transformation method that integrated comparative
self-monitoring learning and transfer learning to learn
strong and unbiased feature representations on the limited
size dataset [20] to reduce the risk of overfitting. 86%
accuracy, 85% F1-Score and 94% AUC were obtained,
respectively. Wang et al. [35] proposed a new joint learning
framework to achieve accurate diagnosis of COVID-
19 by effectively learning heterogeneous datasets with
distributed differences. A powerful backbone was built by
redesigning the recently proposed COVID-Net [36] in terms
of network architecture and learning strategy. Additionally,
a contrastive training objective was applied to enhance the
domain invariance of semantic embedding to boost the
classification performance on each dataset. On the COVID-
19 CT dataset [20], the proposed method achieved 78.69%
accuracy, 78.83% F1-score and 85.32% AUC.

Ma et al. [29] used the pyramid convolution module to
solve the problem of different sizes and shapes of COVID-
19 lesions. Zhao et al. [20], Mittal et al. [32] and He et al.
[34] focused on solving the problem of limited COVID-19
dataset. Li et al. [30] and Harmon et al. [31] focused on
the use of large datasets for the diagnosis of COVID-19 and
other lung diseases. These works have achieved excellent
results. However, most of them used large-scale private
datasets or were evaluated directly using commonly used
deep learning network models.In this paper, we propose
a COVID-19 diagnostic method based on mutex attention
block to distinguish COVID-19 from other pulmonary
diseases with limited data.

2.2 Image attentionmechanism

The attention mechanism was first used in the field of
natural language processing(NLP) and achieved state-of-
the-art results.Then, using attention mechanism in the field
of computer vision has recently received more research.
Many outstanding attention modules have been proposed
[37, 38]. The attention mechanism can be simply divided
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into channel attention, spatial attention, mixed attention and
special attention models.

SE-Net [39] was proposed in 2017, which is a
typical channel attention model and can be embedded in
any basic network. SE-Net proposed a novel attention
unit, the squeeze-and-excitation module (SE module),
which adaptively recalibrates the channel characteristic
response by explicitly modeling the interdependence
between channels. Experiments show that by embedding
the SE module into existing basic models (such as
ResNet and VGG), it can bring significant performance
improvements to the most advanced deep architecture at a
small computational cost. Different from the SE module
which only focuses on the feature correction of the channel
dimension, CBAM [40] introduces an attention mechanism
in both the spatial and channel dimensions. A set of feature
maps is input, and the CBAMmodule sequentially infers the
attention map along two independent dimensions (channel
and spatial), and then multiplies the attention map with the
input feature map to perform adaptive feature refinement.

3 Datasets andmethods

3.1 Datasets

We conduct experiments on different COVID-19 datasets to
verify our method. All experiments are based on 2D slices.
Each dataset is tested separately. The details of the four
datasets are shown in Table 1.

The COVID-19 Dataset-A was provided by The Affil-
iated Hospital of Qingdao University Medical College,
including 21 CT scans with COVID-19 and 18 CT scans
without COVID-19, which were labeled by experienced
doctors. We extracted 2499 slices of positive samples con-
taining COVID-19 infection from CT scans with COVID-19
and randomly selected 1908 slices of negative samples from
18 CT scans without COVID-19 as “NonCOVID” . We
conducted slice-level and patient-level experiments. At the
slice-level, the dataset was divided into 3527 images for
training, and 880 images for verification. At the patient-
level, slices from 16 CT scans with COVID-19 and 14 CT
scans without COVID-19 were used for training and the rest
were used for verification.

The COVID-19 Dataset-B [41] was provided by Ma et
al., and it includes CT scans of 20 patients. The infection
area was marked by two radiologists and verified by an
experienced radiologist. The slices containing COVID-19
infection were extracted as COVID, for a total of 1844.
The remaining slices that did not contain COVID-19 were
regarded as “NonCOVID”, for a total of 1676. The dataset
was divided into 2816 images for training, and 704 images
for verification.

The COVID-19 Dataset-C [20] was provided by Zhao
et al. The practicability of the dataset was confirmed by
a senior radiologist at Tongji Hospital in Wuhan, China,
who diagnosed and treated a large number of patients with
COVID-19 during the outbreak from January to April. The
dataset provides 8-bit CT images of png instead of DICM
with the Hu value, which results in resolution loss. Second,
the original CT scan contained a series of CT slices, but only
a few key slices were selected in the dataset, which also had
a negative impact on the diagnosis. The COVID-19 Dataset-
C is shown in Fig. 2. This dataset contains 349 COVID-19
CT images and 397 other CT images without COVID-19.
The dataset was divided into 597 images for training and
148 images for verification. Because the number of images
in the dataset was too small, we enhanced the training data
by flipping and rotating.

The COVID-19 Dataset-D [42] is a publicly available
COVID-19 CT dataset, containing 1252 CT scans that are
positive for SARS-CoV-2 infection (COVID-19) and 1230
CT scans for patients with other pulmonary diseases or
normal, 2482 CT scans in total. The dataset was divided into
1984 images for training, 498 images for validation.

3.2 Methodology

The network we proposed is based on the ResNet50 [43].
The architecture of the proposed network is shown in Fig. 3.
Similar to ResNet, the feature extraction layers of this
network consist of 5 mutex attention Res-Layers followed
by the global pooling layer and the fully connected layer.
The inputs of this network are designed specifically with a
pair of mutex CT images that contain opposite categories. In
the training process, the pair of mutex inputs are randomly
selected from the training data. Since in the forward process,
nothing has to do with mutex input, we do not need to enter
mutex input in the testing process.

The architecture of the mutex attention Res-Layer is
shown in the blue dashed box in Fig. 3. Similar to ResNet,
the Res-Layer in mutex attention Res-Layer0 is a 7 × 7
convolution layer with a stride of 2 and a max pool layer
with a stride of 2. The Res-Layers in mutex attention Res-
Layer1 to mutex attention Res-Layer4 are made up of
different numbers of blocks connected in series. In mutex
attention Res-Layer0, the inputs are a pair of mutex CT
images. The inputs of mutex attention Res-Layer1 to mutex
attention Res-Layer4 are the output feature maps of the
previous mutex attention Res-Layer. Assume that the input
of the mutex attention Res-Layers is Fi and Fm. Frei and
Frem are first obtained through the same Res-Layer, and
the two Res-Layers share parameters, as shown in the blue
dotted frame of Fig. 3. Frei directly obtainsFo. Fam is
obtained by putting Frei andFrem into the mutex attention
block (MAB). Then, the obtained Fam and Frem are passed
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Table 1 The number of COVID
and nonCOVID CT images of
the three COVID-19 datasets

Datasets COVID NonCOVID Train Test

COVID-19 2499 1908 2000 COVID 499 COVID

dataset-A 1527 NonCOVID 381 NonCOVID

COVID-19 [41] 1844 1676 1107 COVID 369 COVID

dataset-B 1006 NonCOVID 335 NonCOVID

COVID-19 [20] 349 397 280 COVID 70 COVID

dataset-C 317 NonCOVID 78 NonCOVID

COVID-19 [42] 1252 1230 1001 COVID 251 COVID

dataset-D 984 NonCOVID 246 NonCOVID

through the fusion attention block (FAB) to obtain the
output mutex feature maps Fom. The above process can be
described by (1) and (2), as follows:{

Frei = Wrl ∗ Fi

Frem = Wrl ∗ Fm
(1)

{
Fo = Frei

Fom = FAB (MAB (Frei, Frem) , Frem)
(2)

where Wrl is the Res-Layer parameter. FAB is the fusion
attention block. MAB is the mutex attention block. We
introduce them in detail as follows.

3.3 Mutex attention block (MAB)

The MAB inputs are the feature maps Frei and Frem

(RC×H×W) after the Res-Layer, as shown in Fig. 4. First,
perform elementwise subtraction on Frei and Frem to obtain
the distance matrix D(RC×H×W), as equation:

dcij =
(
arei
cij − arem

cij

)2
(3)

where dcij represents the value of (i, j) of D on c
channels, arei

cij and arem
cij represent the value of (i, j) of Frei

and Frem on c channels. c ∈ [1, C], i ∈ [1, H ], j ∈ [1, W ].
Then D(RC×H×W) is reshaped to C × HWand softmax
is performed in the spatial dimension (HW). The attention
map AD is reshaped to (RC×H×W), as shown in (4).

AD = reshape(σ (reshape(D), dim = HW)) (4)

σ is the softmax function.
Further perform element-wise multiplication between the

obtained attention map AD and the input Frem to obtain
Fam, as shown in (5).

Fam = AD � Frem (5)

The purpose of MAB is to reduce the similarity between
input feature maps and mutex feature maps. Using the
distance between mutex feature maps as an attention map
can effectively increase the discrimination of the two inputs.
Therefore, the network achieves a better discrimination
effect. In the experiments, we visualize the changes in the
feature maps to verify the effect of the mutex attention
block.

Fig. 3 Architecture of the proposed network
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Fig. 4 Mutex attention block
architecture

3.4 Fusion attention block (FAB)

The structure of FAB is shown in Fig. 5. The inputs of
FAB are Fam obtained by MAB and Frem. First, we use
elementwise summation on two inputs to obtain mixed
feature maps Fmix .

Fmix = Fam + Frem (6)

Then, global average pooling and max pooling are
performed on the obtained mixed feature maps, and element
addition is used to obtain the channel feature vector V (RC):
⎧⎨
⎩

Vc1 = 1
H×W

· ∑H
i=1

∑W
j=1 Fc

mix(i, j)

Vc2 = max
(
Fc
mix(i, j)

)
Vc = Vc1 + Vc2

(7)

where Vc is the value on the c-th channel of the channel
feature vector V . Furthermore,two fully connected layers
are used to perform feature fitting and channel dimension
reduction to obtain the channel feature vector Z:

Z = f BR
C′

(
f BR

C (V )
)

(8)

where C in f BR
C represents the number of neurons in the

fully connected layer, and BR in f BR
C represents the batch

normalization [44] and ReLU [45] layers. The obtained Z

is passed through two independent fully connected layers to
obtain two weight vectors M and N :
{

M = fC(Z)

N = f ′
C(Z)

(9)

where C is the number of neurons in the fully connected
layer, and the obtained M and N all belong to RC . Softmax
is used for the corresponding channels of M and N to
obtain the attention weights A of Fam for each channel. In
addition, the attention weights of Frem is 1−A. Channelwise

multiplication and addition are performed together to obtain
the output fusion feature maps Ff m, as following:

ac = eMc

eMc + eNc
(10)

Fc
f m = ac × Fc

am + (1 − ac) × Fc
rem (11)

where ac is the value of channel weight A on the c-th
channel , and Fc

f m is the feature map on the c-th channel of
Ff m, c ∈ (0, C − 1).

The FAB function is to perform feature fusion on two
sets of feature maps. Through self-learning parameters, the
two sets of input feature maps are weighted in the channel
dimension.

3.5 Loss functions

As shown in Fig. 3, our network contains two losses. LCE is
the classification loss corresponding to the input image and
the mutex input image, and LCS is a cosine similarity loss
between the pair of inputs.{

L1 = −yi log y′
i + (1 − yi) log

(
1 − y′

i

)
L2 = −ym log y′

m + (1 − ym) log
(
1 − y′

m

) (12)

LCE = L1 + L2 (13)

LCS = cos(θ) =
∑C×H×W

i=1

(
V i

i × V m
i

)
√∑C×H×W

i=1

(
V i

i

)2 ×
√∑C×H×W

i=1

(
V m

i

)2 (14)

where L1 and L2 are cross-entropy loss, yi and ym are
opponent labels of the input and mutex input. y′

i , y
′
m are the

predicted values. LCS uses cosine distance to minimize the
similarity between two feature maps. In (14), V i

i and V m
i

(RCHW) are the vectors obtained by reshaping the feature
maps of the input and the mutex input.
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Fig. 5 Fusion attention block
architecture

In this paper, the adaptive weight loss is shown in (16).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 = e
1

LCE

e
1

LCE +e
1

LCS

a2 = e
1

LCS

e
1

LCE +e
1

LCS

(15)

L = a1LCE + a2LCS (16)

In this way, the three loss functions can be adjusted
adaptively to make the final loss more balanced.

3.6 Inference process

In the inference process, since the mutex path has no effect
on the main path, only the test images need to be input
and mutex input is not needed. The prediction network is
a simple ResNet50, which is the same as the backbone.
Therefore, the time complexity of the proposed method is
the same as ResNet50 and smaller than SE-Net and CBAM
based on ResNet50. The model size/Flops/speed are also the
same as the backbone and our proposed method does not
increase any cost in the test process.

4 Experiment

We provided experiments with four datasets: COVID-
19 dataset-A, COVID-19 dataset-B, COVID-19 dataset-
C and COVID-19 dataset-D. For COVID-19 dataset-A
and COVID-19 dataset-B, to verify the effectiveness of
the attention we proposed, we used the state-of-the-art
attention methods in image classification and backbone for
comparison. For public COVID-19 dataset-C and COVID-
19 dataset-D, we compared the excellent algorithms
proposed by other researchers, both of which achieved
good results on COVID-19 dataset-C or COVID-19 dataset-
D. We show the results from quantitative analysis and
qualitative analysis. For qualitative analysis, we used Grad-
CAM [47] for visualization.

4.1 Experimental details

The proposed method was implemented in PyTorch [46].
All the COVID-19 CT images in our experiments were
resized to 224 × 224. Due to the small amount of data
on COVID-19 dataset-C, we performed data enhancement
including horizontal flip, vertical flip and random rotation.
Both inputs and mutex inputs during the training process
were randomly selected. We used SGD [47] as the
optimization function with an initial learning rate of 0.01.
The learning rate decays with the epoch, and the change
equation is shown as follows:

lrd = lr ×
(
0.5

epoch
30

)
(17)

where epoch is the number of iterations. Momentum was
set to 0.9. The batch size was 16, and 120 epochs were run.
An NVIDIA GeForce GTX 1070 GPU with 8 GB memory
was used. In the test process, only the test images needed
to be input. Since in the forward process, nothing has to do
with mutex input, we did not need to enter mutex input in
the testing process.

For the training process, COVID-19 dataset-A, COVID-
19 dataset-B and COVID-19 dataset-C took 3.1 hours, 2.5
hours and 2.1 hours respectively. For the testing process, it
took 0.032 seconds to an image.

Table 2 Slice-level results of different methods on COVID-19
Dataset-A

Methods Acc (%) Sen (%) Spe (%) AUC(%) p

ResNet [43] 95.11 96.19 93.70 99.28 4.4e-8

ResNet+CBAM [40] 95.45 95.79 95.01 99.46 3.7e-14

SE-Net [39] 96.02 98.00 93.44 99.53 7.3e-8

Ma et al. [29] 97.12 97.21 96.89 99.34 1.9e-5

Ours (ResNet50) 98.18 98.60 97.64 99.84

Acc: accuracy, Spe: specificity, Sen: sensitivity (best in bold)
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Table 3 Patient-level results of different methods on COVID-19
Dataset-A

Methods Acc (%) Sen (%) Spe (%) AUC(%) p

ResNet [43] 90.15 91.03 88.95 93.37 3.2e-9

ResNet+CBAM [40] 92.49 91.85 93.37 96.98 6.3e-11

SE-Net [39] 93.90 95.92 91.16 95.01 3.3e-10

Ma et al. [29] 93.23 93.63 93.24 96.03 7.5e-7

Ours (ResNet50) 96.36 96.94 95.58 97.63

Acc:accuracy, Spe: specificity, Sen: sensitivity (best in bold)

4.2 Evaluation

The metrics employed to quantitatively evaluate classifica-
tion were accuracy, sensitivity, F1-score, AUC and speci-
ficity. The equation of accuracy is as follows:

Accuracy = TN + TP

N + P
(18)

The sensitivity and specificity measure the classifier’s
ability to identify positive samples and negative samples,
respectively, as shown in (19) and (20):

Sensitivity = TP

FN + TP
(19)

Specificity = TN

FP + TN
(20)

F1-score is the classification problems measurement. In
machine learning competitions with multiple classification
problems, the F1-score is often used as the final evaluation
method. It is a harmonic average of the precision and recall,
with a maximum of 1 and a minimum of 0.

Precision = TP

TP + FP
(21)

Recall = TP

TP + FN
(22)

F1 = 2 × Precision × Recall

Precision + Recall
(23)

5 Results

5.1 COVID-19 dataset-A

COVID-19 Dataset-A was provided by The Affiliated
Hospital of Qingdao University Medical College. Detailed
information was introduced in the previous section (Section
3.1). We used state-of-the-art attention methods in image
classification and backbone for comparison, including
ResNet [43], ResNet+CBAM [40] and ResNet+SE [39].
The attention module proposed by Ma et al. [29] for
COVID-19 diagnosis is also compared. We conducted
slice-level and patient-level experiments to verify the
effectiveness of our method. Table 2 and 3 summarize the
experimental results.

For the slice-level experiment, Table 2 shows that
compared with the basic network ResNet, our method
improved accuracy, sensitivity and specificity, increasing
by 3.07%, 2.41% and 3.96%, respectively. Compared with
SE-Net, our method improved accuracy, sensitivity and
specificity by 2.16%, 0.6% and 4.20%, respectively. For
ResNet + CBAM, 2.67%, 2.81% and 2.63% improvements
were obtained. Compared with Ma et al. [29], the proposed
attention blocks obtained more satisfactory results in terms
of accuracy, sensitivity and specificity. The results illustrate
that compared to the widely used classification networks
and attention modules, our proposed method had better
accuracy and the least false-positives. Fig. 6 shows the ROC

Fig. 6 The ROC curve (left) and confusion matrix (right) of different methods on COVID-19 dataset-A at the patient-level
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Table 4 Experimental results of different methods on COVID-19
dataset-B

Methods Acc (%) Sen (%) Spe (%) AUC (%) p

ResNet [43] 88.90 92.53 84.39 96.49 9.3e-18

ResNet+CBAM [40] 91.62 88.08 95.52 97.84 6.4e-12

ResNet+SE [39] 87.07 93.22 80.30 95.57 4.4e-8

Ours (ResNet50) 95.88 95.12 96.72 98.85

Acc: accuracy, Spe: specificity, Sen: sensitivity (best in bold

curve (left) and confusion matrix (right) of the different
methods.

As seen in Table 3, first, the proposed method obtained
better results at the patient-level compared to state-of-the-
art methods, which is similar to the slice-level experiment.
Second, there was little difference between patient-level
and slice-level experimental results, which verifies the
effectiveness of the proposed method.

In particular, we discovered that SE-Net tended to obtain
higher sensitivity, while ResNet + CBAM tended to have
higher specificity. Therefore, the probability of missing
detection was lower than that of ResNet + CBAM, but
ResNet + CBAM had fewer false-positives. From statistical
analysis, all p values were less than 0.001, which confirmed
that our method was significantly different from other
classification methods.

5.2 COVID-19 dataset-B

COVID-19 dataset-B [41] was provided byMa et al. Similar
to COVID-19 dataset-A, we also used the state-of-the-art

attention modules in image classification and backbone for
comparison, including ResNet [43], ResNet+CBAM [40]
and ResNet+SE [39]. Table 4 summarizes the experimental
results.

Similar to the results obtained on COVID-19 dataset-A,
the proposed method achieved better accuracy, sensitivity
and specificity. Comparing with ResNet, ResNet + CBAM
and SE-Net, the proposed methods improved accuracy by
6.98%, 4.26% and 8.81%, and improved sensitivity by
2.59%, 7.04% and 1.90%, respectively. The specificity
increased by 12.33%, 1.20% and 16.42%, respectively.
Fig. 7 shows the ROC curve (left) and confusion matrix
(right) of different methods.

5.3 COVID-19 dataset-C

COVID-19 dataset-C [20] was provided by Zhao et al.
It is a public dataset used for COVID-19 diagnosis. The
characteristics of COVID-19 Dataset-C were explained in
detail in Section 3.1. Due to the small amount of data in it,
we choose to compare with the papers that propose different
solutions. Yang et al. [20], [32], [34] and [35] were selected
for comparison due to their excellent performance. Table 5
summarizes the experimental results.

Table 5 reports that compared to the method proposed
in [20], our method achieves better accuracy, F1-score and
AUC without the assistance of a lung mask. Compared
to the method proposed in [34], our method used random
initialization, and achieved better results without pretraining
on other datasets. Both the F1-score and AUC value were
significantly improved. The results confirmed that our
method can achieve satisfactory results without using other
complex methods when the dataset was small.

Fig. 7 The ROC curve (left) and confusion matrix (right) of different methods on COVID-19 dataset-B
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Table 5 Experimental results of different methods on COVID-19
dataset-C

Methods Acc (%) F1 (%) AUC (%)

Mittal et al. [32] 64.41 62.25 -

DenseNet-169 [20] 79.5 76.0 90.1

DenseNet-169+ [20] 85.0 85.9 92.8

ResNet-50 (Self-Trans) [34] 84 83 91

DenseNet-169 (Self-Trans) [34] 86. 85.0 94

Wang et al. [35] 78.69 78.83 85.32

Ours (ResNet50) 84.32 83.9 91.6

Ours (DenseNet-169) 87.15 87.60 95.29

+ represents using lung mask as auxiliary input. (Best in bold)

5.4 COVID-19 dataset-D

COVID-19 dataset-D [42] was provided by Soares et al.
It is a public dataset used for COVID-19 diagnosis. The
characteristics of COVID-19 Dataset-D were explained
in detail in Section 3.1. Some researchers have achieved
excellent results on this dataset. we focused on comparing
with papers that propose new methods. Wang et al. [35],
[29] and [48] were choose for comparison. We also used the
state-of-the-art attention modules in image classification for
comparing. Table 6 summarizes the experimental results.

Experimental results illustrated that the proposed net-
work achieved better result than other methods and atten-
tion models. Comparing with state-of-the-art methods, our
method achieves better accuracy, F1-score and AUC. The
experimental results illustrated the effectiveness of the pro-
posed method for COVID-19 discrimination.

5.5 Ablation experiments

To verify the effectiveness of our proposed loss and
attention blocks, we conducted two ablation experiments.
For the loss function, we verified the influence of LCS on
the diagnosis results. The results are shown in Table 7.

Table 6 Experimental results of different methods on COVID-19
dataset-D

Methods Acc (%) F1 (%) AUC (%)

Wang et al. [35] 90.83 90.87 96.24

ResNet+CBAM [40] 91.55 92.31 97.52

ResNet+SE [39] 91.95 91.42 96.99

Harsh et al. [48] 95 95 -

Ma et al. [29] 95.16 95.60 99.01

Ours (DenseNet-169) 96.98 97.01 99.38

(Best in bold)

Table 7 Diagnosis results using different loss functions (based on
COVID-19 dataset-B)

Loss function Acc (%) Sen (%) Spe (%)

LCE 94.03 93.22 94.93

LCE + LCS (1:1) 94.89 96.21 93.43

LCE + LCS (Adaptive) 95.88 95.12 96.72

Adaptive means adaptive weight loss. Acc:accuracy, Spe: specificity,
Sen: sensitivity (best in bold)

The experimental results show that the cosine similarity
loss LCS can improve the diagnosis result. Especially
when combined with the adaptive weighting method, it can
significantly improve the accuracy.

We also performed ablation experiments on the influence
of different attention blocks. Table 8 shows that MAB
significantly improved the diagnostic effect of the network
on COVID-19, and FAB further improved the diagnostic
effect of the network on this basis. This result was consistent
with the visualized result in Fig. 9.

6 Discussion

In this work, we proposed a new Res-Layer structure for
COVID-19 diagnosis on CT images named mutex attention
Res-Layer. It is composed of MAB, FAB and a Res-
Layer and can extract more distinguishable features to
obtain better COVID-19 diagnosis results with the proposed
adaptive weight loss. Experiments on four different
COVID-19 datasets verified that our method can achieve
better results than other state-of-the-art methods. This
reflects the effectiveness and robustness of the proposed
method.

For the more regular CT image datasets COVID-19
dataset-A and COVID-19 dataset-B [41], the proposed
network obtains 98.18% and 95.88% accuracy, which
achieves significant improvement compared to other state-
of-the-art attention models. Furthermore, the proposed
method achieves higher sensitivity and specificity, which
means that our method can better avoid the existence of
false negatives (FNs) and false-positives (FPs) than other

Table 8 Diagnosis results using different attention blocks (based on
COVID-19 dataset-B)

MAB FAB Acc (%) Sen (%) Spe (%)

88.90 92.53 84.39√
93.26 92.17 94.63√ √
95.88 95.12 96.72

Acc: accuracy, Spe: specificity, Sen: sensitivity (best in bold)
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Fig. 8 Visualization results of the proposed network using Grad-CAM. The first line is the input CT images; the second line is the visualization
results

methods. As shown in Table 2, the experimental results
indicate that ResNet+CBAM [40] tends to obtain better
specificity. In other words, it will produce many FNs, which
is not conducive to COVID-19 diagnosis. Although SE-
Net [39] can obtain very good sensitivity, only 0.6% lower
than our method, it produces a large number of FPs. The
specificity of SE-Net is 4.2% lower than our method. Both
experiments demonstrate the superiority of the proposed
method.

For the noisy dataset, COVID-19 dataset-C [20],
the proposed method also obtains satisfactory results.
Compared with the methods proposed by [34], [20], our
method can obtain higher accuracy, F1-score and higher
AUC with fewer labels than [34] and without transfer
learning, as in [20]. This shows that our method can still
obtain satisfactory results even when the quantity of data is
small and the noise is complex, which fully demonstrates
the robustness of our method. For another public COVID-19
dataset-D [42], more satisfactory results are obtained than
other state-of-the-art algorithms.

This article proposes two new attention blocks, MAB and
FAB. The experimental results indicate the effectiveness of
the two attention blocks. In Table 8, compared with the
basic ResNet, MAB can significantly improve the accuracy
and specificity by 4.36% and 10.24% respectively. MAB
can amplify the degree of feature differences in various
categories, and tends to obtain fewer FPs. Based on MAB,
FAB performs feature fusion to obtain more representative
features.With the improvement in accuracy by 1.62% and
sensitivity by 3.22%, specificity was nearly unchanged.

To confirm the results of the experiments, we visualized
the feature maps of different categories extracted by the

network and their COVID-19 images in Fig. 8. We use
Grad-CAM [47] to visualize the feature maps outputted by
the mutex attention Res-Layer4.

The visualization results show that our method focuses
on the lesion area more accurately. For example, the lesion
area in Column 3 was very small, while the lesion area in
Column 4 was diffuse in both lungs. From the visualization
results of the feature maps in the two columns, we can see
that the proposed network is robust to lesions of different
sizes. For different types of lesions, our network also
achieves satisfactory localization. For example, the first
column is mixed ground glass opacity, the third column is
ground glass opacity and the second column is solid. The
high response areas of these visualizations approach the
lesion area. Visualization results confirm that our method
can extract more representative features to achieve effective
COVID-19 diagnosis, which proves the effectiveness of our
method.

We also visualized the influence of different attention
blocks on the feature maps. We extracted the feature
maps outputted by the mutex attention Res-Layer4 for
visualization. Since the output feature map size of mutex
attention Res-Layer4 was [2048,7,7], we use the average
superposition method to obtain a feature map 7×7. The final
results were obtained by upsampling to 224 * 224 using
bilinear interpolation, as shown in Fig. 9. It shows that MAB
focuses the features on the most significant lesion region,
but it cannot completely cover some subsidiary lesion areas.
For example, in the second row, the original feature map
has a diffuse appearance on both sides of the lung, but
its coverage area far exceeds the lesion area. As shown in
the third column, MAB focuses the feature most on right
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Fig. 9 Visualization results of feature maps after using different atten-
tion blocks in mutex attention Res-Layer4. The first column is the
input CT images, the second column is the visualization of features

after Res-Layer, the third column is the visualization of features after
MAB, and the fourth column is the visualization of features after FAB

lung, which is the most distinctive area. The region with
the highest response shrank to the lesion area. However, the
lesion area in the left lung was ignored. For this problem,
the FAB module may provide an explainable improvement.
FAB performs feature fusion between the original feature
maps and the MAB feature maps. It can also be described
as the feature selection of the channel dimension. As the
same example, the visualization in the fourth column of the
second row shows that FAB focuses on the right lung as
well as on the left lung, which can enhance the network’s
diagnostic effectiveness. Furthermore, the proposed method
will be helpful to precisely localizing and segmenting
lesions.

7 Conclusion

This paper proposed the COVID-19 diagnosis network MA-
Net, which takes a pair of multiple CT images as inputs.
In particular, this paper proposed a mutex attention block.
The mutex attention block aims to distinguish the features of
mutex input pairs. The network can extract distinguishable
features to improve the diagnostic effect of the network.
Then, the fusion attention block is designed to perform
feature fusion further improving the diagnosis accuracy.
Regarding the loss function, the proposed network includes
three losses, namely the cross-entropy classification loss of
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the two mutex inputs and the cosine similarity loss of mutex
input pairs. Adaptive weight is used to adjust the weights
of the three losses. Our method is very robust and achieved
satisfactory results on multiple datasets. The accuracy,
specificity, sensitivity, and AUC are reported as high as
98.17%, 97.25%, 98.79% and 99.84% on our own COVID-
19 dataset-A and 94.88%, 95.39%, 94.33% and 99.00% on
the public COVID-19 dataset-B. The diagnosis result of our
method is better than state-of-the-art the attention modules
of classification method. For public COVID-19 dataset-
C and COVID-19 dataset-D, we achieved better result
than other excellent COVID-19 diagnosis methods. The
experiments and analysis indicate that the proposed network
can provide auxiliary quantitative analysis in COVID-19
diagnosis.
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