

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

tert-Butyl 4-(3,4-dichloroanilino)piperidine-1-carboxylate

Mehr-un-Nisa,^a Munawar Ali Munawar,^a Gabriel B. Hall,^b Sue A. Roberts^{b*} and Victor I. Hrubv^b

^aInstitute of Chemistry, University of The Punjab, Qaid-i-Azam Campus, Lahore 54590, Pakistan, and ^bDepartment of Chemistry and Biochemistry, 1306 E University Boulevard, The University of Arizona, Tucson, AZ 85721, USA Correspondence e-mail: suer@email.arizona.edu

Received 20 December 2012; accepted 26 December 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.034; wR factor = 0.079; data-to-parameter ratio = 65.3.

In the title compound, $C_{16}H_{22}Cl_2N_2O_2$, the substituted piperidine ring adopts a chair conformation with both substituents in equatorial positions. In the crystal, $N-H \cdots O$ and C-H...O hydrogen bonds connect molecules into ribbons along the *a*-axis direction.

Related literature

For the biological activity of piperazine derivatives, see: Hamed et al. (2012); Joergen et al. (1997); Peter et al. (2009). For the synthesis of the title compound, see: Vardanyan et al. (2009).

Experimental

Crystal data

 $C_{16}H_{22}Cl_2N_2O_2$ $M_r = 345.25$ Orthorhombic, P212121 a = 9.7825 (6) Å b = 10.6075 (6) Å c = 16.8215 (10) Å

V = 1745.53 (18) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^{-1}$ T = 100 K $0.40 \times 0.40 \times 0.30 \; \text{mm}$ 34136 measured reflections

 $R_{\rm int} = 0.024$

13197 independent reflections

11079 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.662, T_{\max} = 0.749$

Refinement

 $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.034$ $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ $wR(F^2) = 0.079$ S = 1.00Absolute structure: Flack (1983), 13197 reflections 6110 Friedel pairs 202 parameters Flack parameter: -0.01 (2) H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} N1{-}H1{\cdots}O2^i\\ C3{-}H3{\cdots}O2^i \end{matrix}$	0.88	2.12	2.9740 (8)	163
	0.95	2.58	3.3486 (9)	138

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge a grant from the Higher Education Commission of Pakistan under the IRSIP programme to support PhD students. The Bruker Kappa APEXII DUO was purchased with funding from NSF grant CHE-0741837. The work was supported in part by grants from the US Public Health Service and National Institutes of Health (DA06284 and DA13449).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2529)

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hamed, A., Christoph, B., Olivier, C., Bibia, H. & Romain, S. (2012). US Patent Appl. 2012316178.
- Joergen, S.-K., Peter, M. & Frank, W. (1997). World Patent WO9730997.
- Peter, D., Eriksen, B. L., Munro, G. & Nielsen, E. (2009). World Patent WO 2009/077585.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vardanyan, R., Vijay, G., Nichol, G. S., Liu, L., Kumarasinghe, I., Davis, P., Vanderah, T., Porreca, F., Lai, J. & Hruby, V. J. (2009). Bioorg. Med. Chem. 14, 5044-5053
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2013). E69, o205 [doi:10.1107/S1600536812051896]

tert-Butyl 4-(3,4-dichloroanilino)piperidine-1-carboxylate

Mehr-un-Nisa, Munawar Ali Munawar, Gabriel B. Hall, Sue A. Roberts and Victor J. Hruby

Comment

Piperazine derivatives have been shown to inhibit re-uptake of the monoamines dopamine, noradrenaline and serotonin in synaptosomes (Joergen *et al.*, 1997), and their use for the treatment of protozoal infections, particularly malaria, has also been reported (Hamed *et al.*, 2012). Selective serotonin reuptake inhibitors (SSRI) provide efficacy in the treatment of numerous *CNS* disorders, including depression and panic disorders, and are usually observed to be effective, well tolerated and simply administered (Peter *et al.*, 2009)). During our search to find new synthetic novel multivalent ligands for the treatment of pain and depression, the title compound was synthesized as an intermediate. Compounds prepared from this intermediate are now under study for possible opioid and SSRIs activities.

The piperidine ring is in a chair conformation with both substituents in equatorial positions. An intermolecular hydrogen bond is present between N1—H1 and O2 with a donor-hydrogen-acceptor angle of 163.40° and a donor-aceptor distance of 2.9740 (8) Å. Hydrogen bonds connect molecules into ribbons extending in the crystallographic *a* direction. The hydrogen bonding graph set is C1,1(8)a.

Experimental

tert-Butyl 4-((3,4-dichlorophenyl)amino)piperidine-1-carboxylate (**1**) was synthesized by modification of a reported method (Vardanyan *et al.*, 2009) by refluxing N-Boc-4-piperidone (5.0 g, 25.1 mmol) and 3,4-dichloroaniline (4.07 g, 25.1 mmol) in toluene (100 ml) with a catalytic amount of *p*-toluene sulphonic acid using a Dean and Stark apparatus for 4–5 h. The reaction was left to cool overnight. Toluene was evaporated under reduced pressure. The crude product was dissolved in diethyl ether, passed through a bed of neutral alumina, and the ether evaporated under reduced pressure. The residue was dissolved in CH₃OH (50 ml) and NaBH₄ (1.05 g, 27.6 mmol) was added slowly at room temperature. The reaction mixture was left to stir overnight. The reaction was quenched with aqueous NaHCO₃ (5 ml). The solvent was removed under reduced pressure and the residue was dissolved in diethyl ether, dried over anhydrous MgSO₄, filtered and evaporated under reduced pressure. The residue was recrystallized from CH₃OH to obtain (**1**) as a white crystalline solid. Crystals appropriate for X-ray diffraction were grown from methanol by slow evaporation at room temperature. 8.22 g (95%) yield; m.p. 155–157 °C; MS (ESI): *m/z*: [*M*+H]⁺: 345; HRMS: Calcd for C₁₆H₂₃Cl₂N₂O₂: 345.113; found: 345.1131.

Refinement

All hydrogen atoms were visible in a difference Fourier map and were added at calculated positions. Bond distances are set to 0.95 Å for carbon-hydrogen bonds, and 0.88 Å for nitrogen-hydrogen bonds. Thermal parameters for hydrogen atoms were set to 1.2 times the isotropic equivalent thermal parameter of the atom to which the hydrogen atom is bonded.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound. Anisotropically refined atoms are shown as 50% probability ellipsoids.

Figure 2

Hydrogen bonding interactions, shown as dashed lines. The molecules are connected into a chain running along the *a* direction in the crystal.

tert-Butyl 4-(3,4-dichloroanilino)piperidine-1-carboxylate

Crystal data	
$C_{16}H_{22}Cl_{2}N_{2}O_{2}$ $M_{r} = 345.25$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 9.7825 (6) \text{ Å}$ $b = 10.6075 (6) \text{ Å}$ $c = 16.8215 (10) \text{ Å}$ $V = 1745.53 (18) \text{ Å}^{3}$ $Z = 4$ $F(000) = 728$	$D_x = 1.302 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9939 reflections $\theta = 2.8-40.0^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 100 K Rod, clear colourless $0.40 \times 0.40 \times 0.30 \text{ mm}$
Data collection	
Bruker Kappa APEXII DUO CCD diffractometer Radiation source: fine-focus sealed tube	Graphite monochromator Detector resolution: 8.3333 pixels mm ⁻¹ φ and ω scans

Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.662$, $T_{max} = 0.749$ 34136 measured reflections 13197 independent reflections 11079 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.079$	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 0.1129P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
13197 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
202 parameters	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), ???? Friedel pairs
Secondary atom site location: difference Fourier	Flack parameter: -0.01 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $R_{\rm int} = 0.024$

 $h = -19 \rightarrow 17$

 $k = -20 \longrightarrow 15$ $l = -32 \longrightarrow 22$

 $\theta_{\rm max} = 43.7^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	-0.08164 (2)	0.97197 (2)	0.972015 (11)	0.02294 (4)	
C12	0.13863 (19)	0.75577 (18)	0.941766 (10)	0.01982 (3)	
01	0.10534 (5)	0.83348 (5)	0.29230 (3)	0.01589 (9)	
O2	-0.11737 (5)	0.79311 (6)	0.32343 (3)	0.01988 (10)	
C14	0.06777 (12)	0.63102 (8)	0.22473 (6)	0.03006 (19)	
H14A	0.1276	0.595	0.2655	0.045*	
H14B	0.0822	0.5867	0.1743	0.045*	
H14C	-0.0278	0.6217	0.2412	0.045*	
C3	0.13364 (7)	0.82954 (6)	0.78917 (4)	0.01425 (10)	
H3	0.2006	0.7658	0.7815	0.017*	
C13	0.10078 (8)	0.77016 (7)	0.21416 (4)	0.01681 (11)	
C12	-0.00406 (7)	0.83543 (6)	0.34047 (4)	0.01344 (10)	
N2	0.02566 (6)	0.89021 (6)	0.41112 (4)	0.01450 (9)	
C10	0.15552 (7)	0.95171 (7)	0.43015 (4)	0.01648 (11)	
H10A	0.1433	1.0444	0.4296	0.02*	
H10B	0.2247	0.9295	0.3895	0.02*	
C11	0.20526 (7)	0.90986 (8)	0.51199 (4)	0.01733 (12)	
H11A	0.2881	0.9585	0.5263	0.021*	

H11B	0.2306	0.8196	0.5099	0.021*
C7	0.09632 (7)	0.92909 (7)	0.57613 (4)	0.01480 (10)
H7	0.0784	1.0215	0.5816	0.018*
N1	0.14933 (7)	0.88223 (7)	0.65131 (4)	0.01898 (11)
H1	0.2255	0.8381	0.6502	0.023*
C4	0.08893 (7)	0.90197 (6)	0.72395 (4)	0.01433 (10)
C5	-0.01262 (8)	0.99380 (7)	0.73731 (4)	0.01686 (12)
Н5	-0.0468	1.0417	0.6939	0.02*
C6	-0.06310 (7)	1.01490 (7)	0.81332 (4)	0.01730 (11)
H6	-0.1303	1.0783	0.8215	0.021*
C1	-0.01660 (7)	0.94440 (7)	0.87772 (4)	0.01538 (11)
C2	0.08092 (7)	0.85036 (6)	0.86435 (4)	0.01397 (10)
C9	-0.08241 (7)	0.91113 (7)	0.46944 (4)	0.01573 (10)
H9A	-0.1662	0.8659	0.4528	0.019*
H9B	-0.1039	1.0022	0.4724	0.019*
C8	-0.03699 (7)	0.86400 (7)	0.55099 (4)	0.01653 (11)
H8A	-0.0228	0.7716	0.549	0.02*
H8B	-0.1092	0.8818	0.5906	0.02*
C16	0.24662 (8)	0.78782 (8)	0.18424 (5)	0.02256 (14)
H16A	0.2688	0.8779	0.1832	0.034*
H16B	0.2547	0.753	0.1305	0.034*
H16C	0.3101	0.7439	0.2198	0.034*
C15	0.00084 (9)	0.83714 (10)	0.15914 (5)	0.02569 (16)
H15A	-0.0908	0.8352	0.1826	0.039*
H15B	-0.0007	0.7944	0.1075	0.039*
H15C	0.0297	0.9249	0.1519	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.01965 (7)	0.03505 (10)	0.01412 (7)	0.00661 (7)	0.00311 (6)	0.00055 (6)
Cl2	0.02267 (7)	0.02154 (7)	0.01526 (6)	0.00232 (6)	-0.00074 (6)	0.00598 (6)
01	0.0154 (2)	0.0189 (2)	0.01340 (19)	-0.00364 (16)	0.00210 (15)	-0.00379 (17)
O2	0.0162 (2)	0.0272 (3)	0.0163 (2)	-0.00867 (19)	-0.00053 (17)	-0.00255 (19)
C14	0.0419 (5)	0.0163 (3)	0.0320 (4)	-0.0073 (3)	0.0078 (4)	-0.0062 (3)
C3	0.0142 (2)	0.0149 (2)	0.0137 (2)	0.0010 (2)	-0.0004 (2)	0.0009 (2)
C13	0.0203 (3)	0.0166 (3)	0.0135 (2)	-0.0034 (2)	0.0022 (2)	-0.0035 (2)
C12	0.0144 (2)	0.0139 (2)	0.0120 (2)	-0.0024 (2)	-0.00017 (19)	0.00076 (19)
N2	0.0122 (2)	0.0189 (2)	0.0124 (2)	-0.00349 (18)	0.00084 (17)	-0.00202 (18)
C10	0.0145 (2)	0.0219 (3)	0.0131 (2)	-0.0061 (2)	-0.0004 (2)	0.0001 (2)
C11	0.0132 (2)	0.0253 (3)	0.0135 (3)	0.0000 (2)	-0.0002(2)	-0.0005 (2)
C7	0.0151 (2)	0.0174 (3)	0.0119 (2)	0.0014 (2)	-0.00057 (19)	0.0005 (2)
N1	0.0201 (3)	0.0252 (3)	0.0116 (2)	0.0098 (2)	0.0005 (2)	0.0014 (2)
C4	0.0145 (2)	0.0160 (2)	0.0124 (2)	0.0019 (2)	0.0001 (2)	0.00067 (19)
C5	0.0173 (3)	0.0190 (3)	0.0142 (3)	0.0052 (2)	0.0003 (2)	0.0022 (2)
C6	0.0166 (3)	0.0199 (3)	0.0155 (3)	0.0044 (2)	0.0011 (2)	0.0010 (2)
C1	0.0140 (2)	0.0188 (3)	0.0133 (2)	0.0005 (2)	0.0013 (2)	0.0004 (2)
C2	0.0135 (2)	0.0150 (2)	0.0134 (2)	-0.0005 (2)	-0.0013 (2)	0.00250 (19)
C9	0.0132 (2)	0.0197 (3)	0.0143 (2)	-0.0003 (2)	0.0008 (2)	-0.0017 (2)
C8	0.0159 (3)	0.0197 (3)	0.0140 (3)	-0.0014 (2)	0.0024 (2)	0.0007 (2)

supplementary materials

C16	0.0219 (3)	0.0250 (3)	0.0208 (3)	-0.0014 (3)	0.0062 (3)	-0.0042 (3)
C15	0.0246 (3)	0.0378 (4)	0.0147 (3)	0.0000 (3)	-0.0006(3)	0.0007 (3)
Geome	etric parameters	(Å. °)				
<u>C11</u>	 C1	1 73	38 (7)	C7 N1		1 4544 (9)
C12_	C^2	1.75	38 (7) 82 (7)	C^{7}		1.4344(9) 1 5350 (10)
01_{-}	C2 712	1.75	$\frac{32}{25}$	С7—Н7		1.5550 (10)
01 - 0	713	1.54	67 (8)	N1 - C4		1.3734 (9)
0^{2}	C12	1.47	98 (8)	N1—H1		0.88
C14—	-C13	1.52	13 (11)	C4-C5		1 4093 (10)
C14—	H14A	0.98	15 (11)	C5—C6		1.3888 (10)
C14—	H14B	0.98		С5—Н5		0.95
C14—	H14C	0.98		C6-C1		1.3928 (10)
C3—C	22	1.38	35 (10)	С6—Н6		0.95
C3—C	24	1.40	90 (9)	C1—C2		1.3984 (10)
С3—Н	13	0.95		C9—C8		1.5261 (10)
C13—	C15	1.52	23 (12)	С9—Н9А		0.99
C13—	C16	1.52	44 (11)	С9—Н9В		0.99
C12—	-N2	1.35	45 (9)	C8—H8A		0.99
N2	C9	1.45	92 (9)	C8—H8B		0.99
N2—0	C10	1.46	35 (9)	C16—H16A		0.98
C10—	-C11	1.52	60 (10)	C16—H16B		0.98
C10—	H10A	0.99		C16—H16C		0.98
C10—	H10B	0.99		C15—H15A		0.98
C11—	·C7	1.53	02 (10)	C15—H15B		0.98
C11—	H11A	0.99		C15—H15C		0.98
C11—	H11B	0.99				
C12—	-O1C13	121.	34 (5)	C4—N1—H1		117.7
C13—	C14—H14A	109.	5	C7—N1—H1		117.7
C13—	C14—H14B	109.	5	N1—C4—C3		118.43 (6)
H14A-		109.	5	N1—C4—C5		123.40 (6)
C13—	C14—H14C	109.	5	C3—C4—C5		118.14 (6)
H14A-		109.	5	C6—C5—C4		120.58 (6)
H14B-		109.	5	C6—C5—H5		119.7
C2—C	С3—С4	120.	59 (6)	C4—C5—H5		119.7
C2—C	С3—Н3	119.	7	C5—C6—C1		120.90 (7)
C4—C	С3—Н3	119.	7	С5—С6—Н6		119.6
01-0	C13—C15	110.	38 (6)	C1—C6—H6		119.6
01-0	C13—C16	102.	11 (6)	C6—C1—C2		118.73 (6)
C15—	-C13C16	110.	06 (7)	C6-C1-Cl1		120.08 (5)
01-0	C13—C14	110.	10 (6)	C2—C1—Cl1		121.19 (5)
C15—	C13—C14	112.	80 (7)	C3—C2—C1		121.01 (6)
C16—	-C13C14	110.	89 (7)	C3—C2—Cl2		118.14 (5)
02-0	012-01	124.	91 (6)	C1 - C2 - C12		120.85 (5)
02-0	_12—N2	123.	0/(0) 42(0)	N2-C9-C8		110.10 (6)
01-0	D12—N2	111.	42 (6)	N2—C9—H9A		109.6
C12—	-N2	119.	98 (6) 71 (6)	C8—C9—H9A		109.6
C12—	IN2-UIU	124.	/1 (0)	N2—C9—H9B		109.0

C9—N2—C10	114.45 (6)	С8—С9—Н9В	109.6
N2—C10—C11	110.14 (6)	H9A—C9—H9B	108.2
N2-C10-H10A	109.6	C9—C8—C7	110.34 (6)
C11—C10—H10A	109.6	С9—С8—Н8А	109.6
N2-C10-H10B	109.6	С7—С8—Н8А	109.6
C11—C10—H10B	109.6	С9—С8—Н8В	109.6
H10A—C10—H10B	108.1	C7—C8—H8B	109.6
C10—C11—C7	112.04 (6)	H8A—C8—H8B	108.1
C10-C11-H11A	109.2	C13—C16—H16A	109.5
C7—C11—H11A	109.2	C13—C16—H16B	109.5
C10-C11-H11B	109.2	H16A—C16—H16B	109.5
C7—C11—H11B	109.2	C13—C16—H16C	109.5
H11A—C11—H11B	107.9	H16A—C16—H16C	109.5
N1—C7—C11	108.61 (6)	H16B—C16—H16C	109.5
N1—C7—C8	112.88 (6)	C13—C15—H15A	109.5
C11—C7—C8	109.72 (6)	C13—C15—H15B	109.5
N1—C7—H7	108.5	H15A—C15—H15B	109.5
С11—С7—Н7	108.5	C13—C15—H15C	109.5
С8—С7—Н7	108.5	H15A—C15—H15C	109.5
C4—N1—C7	124.62 (6)	H15B—C15—H15C	109.5
C12—O1—C13—C15	65.40 (8)	C2-C3-C4-N1	176.69 (7)
C12—O1—C13—C16	-177.61 (6)	C2—C3—C4—C5	-1.34 (10)
C12—O1—C13—C14	-59.79 (9)	N1-C4-C5-C6	-175.62 (7)
C13—O1—C12—O2	-4.42 (11)	C3—C4—C5—C6	2.31 (11)
C13—O1—C12—N2	175.50 (6)	C4—C5—C6—C1	-1.23 (12)
O2—C12—N2—C9	-5.18 (11)	C5-C6-C1-C2	-0.86 (11)
O1—C12—N2—C9	174.90 (6)	C5-C6-C1-Cl1	-179.73 (6)
O2-C12-N2-C10	-174.00 (7)	C4—C3—C2—C1	-0.72 (11)
O1—C12—N2—C10	6.08 (10)	C4—C3—C2—Cl2	178.95 (5)
C12—N2—C10—C11	-134.30(7)	C6—C1—C2—C3	1.83 (11)
C9—N2—C10—C11	56.33 (8)	Cl1—C1—C2—C3	-179.31 (6)
N2—C10—C11—C7	-53.30 (8)	C6—C1—C2—Cl2	-177.83 (6)
C10-C11-C7-N1	177.63 (6)	Cl1—C1—C2—Cl2	1.03 (9)
C10—C11—C7—C8	53.82 (8)	C12—N2—C9—C8	131.49 (7)
C11—C7—N1—C4	169.17 (7)	C10—N2—C9—C8	-58.59 (8)
C8—C7—N1—C4	-68.92 (9)	N2—C9—C8—C7	56.87 (7)
C7—N1—C4—C3	166.47 (7)	N1—C7—C8—C9	-176.41 (6)
C7—N1—C4—C5	-15.61 (12)	C11—C7—C8—C9	-55.13 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	D···A	D—H··· A
N1—H1···O2 ⁱ	0.88	2.12	2.9740 (8)	163
C3—H3…O2 ⁱ	0.95	2.58	3.3486 (9)	138

Symmetry code: (i) x+1/2, -y+3/2, -z+1.