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Effective p-wave Fermi-Fermi 
Interaction Induced by Bosonic 
Superfluids
Yongzheng Wu✉, Zheng Yan, Zhi Lin, Jie Lou✉ & Yan Chen✉

We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature by using the 
determinant quantum Monte Carlo method within the weakly interacting regime. Here we consider 
the attractive Bose-Hubbard model and free spinless fermions. In the absence of boson-fermion 
interactions, we obtain the boundary of the collapsed state of the attractive bosons. In the presence of 
boson-fermion interactions, an effective p-wave interaction between fermions will be induced as far as 
the bosons are in a superfluid state. Moreover, we find the emergence of the composite fermion pairs at 
low temperatures.

During the past years, the techniques of loading ultra-cold atoms gases on the optical lattices have been extensively 
explored in simulating quantum many-body systems. Various lattice models with strong correlations, such as the 
Bose or Fermi-Hubbard model1, have been realized experimentally by using the optical lattices. Besides, with the 
Feshbach resonances technique2–4, interactions between particles can be tuned from attractive to repulsive in a 
controlled way, which is not entirely possible in other systems like the solid state materials. The advancements in 
the experimental techniques have made it possible to study fundamental and interesting many-body physics, for 
example, the superfluid to Mott insulator transition5 of dilute Bose gas, the Bardeen-Cooper-Schrieffer (BCS) to 
Bose-Einstein Condensate (BEC) crossover in the Fermi gas6. Another landmark achievement which exhibits the 
prominent advantages of optical lattice systems is the observation of maximal antiferromagnetic spin correlations 
in the 2D Fermi-Hubbard model at half-filling1. Furthermore, the mixtures of Bose and Fermi superfluid have 
been realized by using dilute gases of two lithium isotopes, 6Li and 7Li7, as well as two different alkali elements, 
174Yb and 6Li8. Several phenomenon such as double-degenerate and phase-separation state in the mixture has 
been probed in R. Grimm’s experiment9,10. These experimental progress has stimulated lots of interest in the the-
oretical study of Bose-Fermi mixtures at low temperature recently.

On the other hand, it has been shown that in a 3D optical lattice with dilute Bose-Fermi mixture, degenerate 
Fermi Gas can be trapped by a BEC state bosons11 and interactions between the two-component fermions can be 
induced due to the density fluctuations of superfluid bosons12. Two fermionic atoms in such systems can interact 
with each other by exchanging a phonon that propagates through the Bose condensate, which acts a role similar to 
the phonons in the BCS superconductivity. The emergence of topological p + ip fermionic superfluid with a high 
critical temperature was recently proposed for a 2D spin-polarized Fermi gas immersed in a 3D BEC13,14. In par-
ticular, the fermions attract each other via an induced interaction mediated by the bosons. Moreover, an effective 
trapping potential, damping, attractive boson-boson interactions has been given rise by interspecies interactions 
when a BEC of 133Cs atoms is embedded in a degenerate Fermi gas of 6Li atoms15. Meanwhile, previous numerical 
studies suggest that the composite fermionic pairs (particle-particle or particle-hole), which are formed by the 
bosons and fermions in the mixtures, show standard Fermi liquid or polaronic behaviors16–18. However, most of 
the previous studies have been focused on 1D or mixed dimensions (2D-3D)19 or 3D systems.

In this paper, we investigate the 2D Bose-Fermi mixture system on the square lattice by using the determinant 
quantum Monte Carlo (DQMC) method in the parameter regimes free of sign problem. Our calculations obtain 
the boundary of collapse state of the attractive Bose-Hubbard model at finite boson density. The numerical results 
reveal the emergence of an effective p-wave interaction between two fermions, which is induced by the underlying 
bosonic superfluid. Moreover, we find the appearance of the composite fermion pairs at low temperatures.

Here we consider that a homogeneous mixture of ultracold bosons and spinless fermions is loaded into an 
optical lattice with a square well potential. The system can be described by the Bose-Fermi Hubbard model. 
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Here we consider a mixture composed of single component bosons and spinless fermions. The corresponding 
Hamiltonian for such a system is given by:
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where the operator †bi  (bi) creates (annihilates) a boson on site i while †ci  and ci are the corresponding fermionic 
operators, =ˆ †n b bi i i =ˆ †m c c( )i i i  corresponds to the boson (fermion) number operator, tb and tf are the bosonic 
and fermionic hopping integrals between two nearest neighboring sites, εb (εf) represents the chemical potential 
for bosons (fermions), Ub is the two bodies interaction between bosons, and Ubf is the coupling strength between 
bosons and fermions. Throughout this paper, we take tb = tf = 1 as the energy unit.

We employ the finite temperature determinant Monte Carlo (DQMC) method20–25 for numerical simulations. 
It is a field-theoretic method where many-body propagators resulting from two-body interactions can be trans-
formed into one-body propagators by using the Hubbard-Stratonovich (HS) transformation. The resulting inte-
grals can then be computed by Monte Carlo sampling. In ref. 26, the DQMC method was first used to study 
Bose-Fermi mixtures via a combination of bosonic and fermionic Monte Carlo techniques. Though some exact 
results can be obtained in the small size lattices, the sign problem is still quite severe in most parameter ranges 
(strong repulsive interaction in the large size lattices at low temperature). Interestingly, we find that there are two 
cases where the sign of the determinant is always equal to one. One example is the attractive Bose-Hubbard model 
at low particle density, whose Hamiltonian can be acquired by ignoring the whole fermionic part of the Eq. (1). 
Another case is in the Bose-Fermi mixture with the interaction between bosons and fermions being weaker than 
that of the bosons, namely ≤U Ubf b  and Ub ≤ 0. On the other hand, a repulsion between bosons and fermions 
prefers a demixing to minimize the overlapping region, whereas in the case of an attraction the mixture can col-
lapse, as long as the particle numbers are sufficiently large or interspecies interaction is strong27,28. In the follow-
ing, we mainly focus on dilute Bose-Fermi mixture with weak interspecies interaction where the sign of the 
corresponding determinants in these two cases which are used to express the trace over one-body propagators is 
always positive in our calculation (Monte Carlo samples up to 104) so that the many-dimensional integrals can be 
performed accurately by the Monte Carlo sampling.

Results
Bose-Hubbard model with attractive interaction.  In this section, we investigate the Bose-Hubbard 
model by considering only the bosonic part of the Hamiltonian in Eq. (1). According to the previous studies on 
the atomic Bose gas with negative scattering lengths, the number of the bosons would be quite limited due to the 
collapse of the BEC29–31. More specifically, the maximum of the boson number Nc of a system under experiment 
is inversely proportional to the negative scattering length as, that is Nc · as = constant. Here we choose the average 
particle density n̂b  of a square lattice system with size 6 × 6 to be 0.02 ± 0.0006 which could be realized within 
experimental reach12. The on-site attractive interactions are set to be Ub = −0.1, −0.2, −0.3.

Off-diagonal long-range order of bosons.  Here we study the superfluidity of bosons at low temperature. The 
off-diagonal correlation function †g r b b( ) i j= 32,33, where 

= −r i j
 is the distance between two lattice site i and 

j, has been investigated. We rewrite the correlation function as g r b b( ) i j
†=  for a better comparison. The calcu-

lations are performed for several different inverse temperatures with lattice size 4 × 4, 6 × 6, 8 × 8, and the corre-
sponding results are presented in Fig. 1(a–c) respectively. Note that the bosons in our system are quite dilute. As 
a result, the on-site interactions have little effects on the density distribution or the off-diagonal correlation, and 
we only present results with Ub = −0.2. From the off-diagonal correlation function shown in Fig. 1(a–c), we can 
observe that at the high temperature such as β = 0.5, the off-diagonal correlation goes down to zero quickly. While 
as the temperature is progressively reduced, the decay of the correlation become more and more slowly with a 
finite value at the longest distance r = rmax which indicates that the finite size system has entered the superfluid 
state.

To show finite size effect, finite size extrapolations of the off-diagonal long-range order g(rmax) has been done 
for lattice size 4 × 4, 6 × 6, 8 × 8 at various inverse temperature. The results are shown in Fig. 1(d). For high 
temperature β = 0.5, 1.0, 2.0, the off-diagonal long-range order decay quickly to zero. While a finite value g(r-
max) ≈ 0.014 can be obtained by doing linear fitting at β = 5.0. To verify the superfluidity of bosons in the thermo-
dynamic limit, larger system sizes are need to be considered.

Critical value of the collapsed state at finite temperature.  The influence of a larger number of bosons, which can 
be tuned by increasing the chemical potential εb, can also be analyzed by the numerical method. Interestingly, the 
particle densities at certain lattice sites increase abruptly while densities at other sites are decreased. This phenom-
enon is consistent with the collapsed state observed in previous experimental studies31. To better characterize the 
collapsed state, we introduce the inverse participation ratio (IPR) α34, which is usually adopted as the criteria for 
localization in numerical studies. The IPR is defined as:
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where αi is the particle density at site i, and N is the number of lattice sites. α has a small value of O(N−1) when the 
system is in a uniform state. However, it will reach 1 when all the particles are localized at a certain lattice site. In 
the inset of Fig. 2, the variation of α as the chemical potential εb changed is presented at the inverse temperature of 

Figure 1.  The off-diagonal correlation function g(r) of the boson at different inverse temperatures for lattice 
sizes 4 × 4 (a), 6 × 6 (b) and 8 × 8 (c). The finite size extrapolations have been done for g(rmax) to show the size 
effect (d). Here N = 4 × 4, 6 × 6, 8 × 8 and the interaction is set to be Ub = 0.2.

Figure 2.  The critical value of density vs the absolute value of attractive interaction Ub for various temperatures 
with lattice size 6 × 6. Obviously, the region of the collapse state enlarges as the temperature goes down. The 
inset displays the participation ratio of density versus the chemical potential εb for several attractive interaction 
at inverse temperature β = 0.5. Note that normally the density of boson increases linearly as the the chemical 
potential decreases.
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β = 0.5. It can be found that when the system is in the normal state, the IPR is a constant value α = 1/36. While if 
the system enters the collapsed state in which the system becomes unstable, the IPR will suddenly jump to a much 
larger value closed to 1. For example, when Ub = −0.3, as indicated by the blue dotted line in the inset, α is quite 
close to 1. As we suppress the attractive interaction between the bosons, the abrupt change of IPR still shows up as 
the system goes into the collapsed state (see the dotted lines corresponding to Ub = −0.2 and −0.1, respectively). 
We have also calculated the IPR of the system at several other temperatures (not shown here), and find that when 
the system undergoes a phase transition between a normal state and the collapsed state, the IPR will always show 
a sudden jump at the critical value.

In Fig. 2, we also show the critical value of the particle number density n̂c  which corresponds to the onset of 
the sudden jump of IPR for different temperatures β = 0.25, 0.5 and 3.0. It can be observed that the critical value 
will be reduced as we enhance the attractive interaction between the bosons. Besides, as the temperature is low-
ered down (i.e., with β increasing from 0.25 to 3.0), the reduction of the critical value will become sharper. This is 
consistent with the result from the previous study in which the equation describes the connection between the 
critical value and the interaction strength × =n̂ U kc b , with k being a constant which decreases for lower 
temperatures. A lattice of size 4 × 4 has also been investigated, and similar results are obtained (results not shown 
here). We can conclude that the regime of the collapsed state will be enlarged as the temperature goes down.

Bose-Fermi mixture with spinless fermions.  Setup.  For the sake of simplicity, we consider the spinless 
fermion only in the Bose-Fermi mixture system. To avoid the sign problem, we set the interaction strength 
between the bosons and fermions Ubf to be equal to the interaction between bosons Ub unless otherwise stated. 
Here we mainly concentrate on the square lattice system with size N = 6 × 6 in which densities of bosons and 
fermions are tuned to be = . ± .n̂ 0 02 0 0006b  and ˆ〈 〉 = . ± .m 0 2 0 007f  respectively. To show finite size effect of 
p-wave pair correlation function, different lattice sizes 4 × 4 and 8 × 8 have also been investigated. Here we choose 
a relatively low temperature with β = 5.0. Besides, to avoid the collapse of the superfluid state in the attractive 
Bose system, which is shown in Sec. II, the interactions in the mixtures should be chosen to be very weak at low 
temperature. So we set −| | = = − .U U 0 05bf b , −0.1 and −0.2. It is noteworthy that the boson-fermion interac-
tion will change from Ubf to − Ubf  under particle-hole transformation, which can be shown by changing the 
operator ci to − †c( 1)i

i  in Eq. (1)16.

Charge fluctuation and p-wave pair correlation.  Due to the coherence of the superfluid bosons and interaction 
between boson and fermion, two fermions can affect each other via the bosons in the mixture. To study the influ-
ences of the superfluidity on the fermions, we calculate the equal time charge fluctuation of the fermions and the 
density fluctuation between bosons and fermions. The numerical results for systems with various coupling 
strengths are presented in Fig.  3. Generally speaking, the charge fluctuation of fermions is given by 

= − 〈 〉C r mm m m( ) i j i jˆ ˆ ˆ ˆ  with = −r i j . Note that the angle bracket denotes both the quantum mechanical 
average over the whole space-time configuration and the statistical average of the samples (HS field configura-
tions)24. To reduce the statistical errors, we redefine charge fluctuation as:

C r g i i g j j g j i g i j

g i i g j j g j i g i j
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Figure 3.  Charge fluctuation versus distance r with Bose-Fermi couplings Ubf = ±0.05, ±0.1, ±0.2 at inverse 
temperature β = 5.0. The inset is the density fluctuation between boson and fermion with various couplings. The 
density fluctuation remain to be a finite value at long range denotes that the long range off-diagonal order may 
exist between boson and fermion.
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where the Wicks theorem have been used to decompose the time ordered expectation value of two-body opera-
tors into the expectation value of the single fermionic Greens function = †g i j c c( , )f i j and g i j g i j( , ) ( , )f i j f, δ= − . 
The last term in Eq. (3) is introduced because each term like g gf f〈 〉 corresponds to a term of the form 〈 〉〈 〉g gf f . 
Under this definition, the charge fluctuation will be always strictly equal to zero as long as there is no coupling 
between the bosons and fermions. Similarly, the density fluctuation between bosons and fermions is defined as:

C r n m n m( ) (4)bf i i r i i rˆ ˆ ˆ ˆ= −+ +

By applying the particle-hole transformation to Eq. (3) and Eq. (4), it is easy to check that C r( ) may remain 
unchanged while ( )C rbf  may change its sign. From Fig. 3, we can find that the charge fluctuation is enhanced at 
the short-range due to the occurrence of the superfluid bosons. The sign of the interaction between the bosons 
and fermions has no evident effect on the results within numerical errors. In addition, a long range correlation 
between the bosons and fermions can be observed from the ( )C rbf , as shown in the inset of Fig. 3. Here for posi-
tive and negative Ubf, the density fluctuations are symmetric about line of zero fluctuation. This is consistent with 
our analysis.

More interestingly, due to the interaction between the bosonic and fermionic components in the Bose-Fermi 
mixture, the effective p-wave pairing interactions between fermions could be induced. The p-wave pair correla-
tion is defined as ⟨ ⟩†P r i j( ) ( ) ( )= Δ Δ 35. Here σΔ = ∑ →

σ σ→ → →
+→i f c c( ) ( ) i i  with σ→ =f ( ) 0 for σ→ = ± →y  and 

σ→ = ±f ( ) 1 for σ→ = ± →x  respectively. i (j) corresponds to the lattice site involving the p-wave pairing. Similar 
to the definition of the charge fluctuation, we can also redefine the p-wave pair correlation as

= −P r P r P r( ) ( ) ( ) (5)0

where P(r)0 is the uncorrelated pair correlation36,37. Namely, for each g gf f〈 〉 in P(r), there will be a term of the form 
〈 〉〈 〉g gf f . We have calculated the pair correlation along both the x and y-direction in our numerical calculations 
and the results are shown in Fig. 4. P r( ) becomes weaker as the distance increases in both directions. The sign of 
Ubf has no significant effect on the results. From Fig. 4(a), we can also find that at the same distance, a stronger 
coupling between bosons and fermions will lead to a stronger p-wave pairing and the sign of P r( ) will not change. 
However, in the x-direction (see Fig. 4(b)), the correlation will change sign at the same distance while the strength 
of Ubf changes. The conclusion that stronger coupling between bosons and fermions will result in stronger p-wave 
pair correlation still holds along the x-direction. So the pair correlation will always be zero if there is no coupling 
between the bosons and fermions but will become finite if Ubf is turned on. We can conclude that the superfluid 
bosons mediate the effective p-wave pairing between the fermions.

At this stage, we need to address whether the superfluidity of the boson is a necessary condition for the induc-
tion of p-wave correlation of fermions. According to the results shown in Fig. 1, the bosons enter the superfluid 
state, which is demonstrated to be the second order phase transitions, with the temperature goes down. This 

Figure 4.  P-wave pair correlation with Bose-Fermi interactions Ubf = ±0.05, ±0.1, ±0.2 at inverse temperature 
β = 5.0. (a) along y-direction of lattice, (b) along x-direction of lattice.

https://doi.org/10.1038/s41598-020-67020-7


6Scientific Reports |        (2020) 10:10822  | https://doi.org/10.1038/s41598-020-67020-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

superfluid state often can be described by the off-diagonal long-range order. Here we consider the g(rmax) as the 
long-range order parameter of the bosons with =r 3 2max  for system sites 6 × 6. Meanwhile, we take the p-wave 
correlation P r( )max  as the off-diagonal long-range order parameter for the p-wave of the fermion with rmax = 3 in 
the y-direction. For clarification, P r( )max  of the different interaction strengths Ubf are rescaled to the Ubf = −0.1 by 
dividing | |Ubf . And g(rmax) is divided by 1200. These results are shown in Fig. 5. Note that the weak Bose-Fermi 
couplings have little effect on g(rmax), so we only show the g(r) of Ubf = −0.2 in the figure. It is obvious to find that 
the boson goes into the superfluid state as the temperature goes down shown by the real olive line. Due to the 
finite size effect, g(rmax)/1200 turns into zero smoothly. It is important that the P r( )max  of the different interaction 
strengths Ubf (dashed line) show the almost same trend with g(rmax), which indicate that the superfluid state of the 
bosons is a prerequisite for the p-wave correlation of the fermions.

Both the charge fluctuation and the p-wave pair correlation indicate that an effective interaction38 can be 
induced by the superfluid bosons. To further understand this effective interaction, we use the DQMC method to 
calculate a simplified spinless fermion model whose Hamiltonian is given by:

∑ ∑ ∑ ε= − + +ˆ ˆ ˆ†H t c c m m mV
(6)

f f
ij

i j eff
ij

i j
i

f i

The Veff here represents the effective interaction between the nearest neighboring fermions. Since the boson-fermion 
coupling is weak, we can neglect the interactions between fermions separated by larger distances and only consider the 
nearest-neighboring situation. Generally, the spinless fermion model is sensitive to the sign problem at low temperature 
except the positive definite case39. Fortunately, we just care about the weak interaction region (Veff ∈ [−0.5, 0]) at the low 
density = .m̂( 0 2) where the sign is always positive with samples up to 104. For a better comparison, we introduce the 
ratio r P r P r( ) ( ) / ( )p bf effγ =  where P r( )bf  and P r( )eff  are the p-wave pair correlation at distance r in the mixture and 
spinless fermion system respectively. It is similar to the ratio of charge fluctuation r C r C r( ) ( ) / ( )c bf effγ = . The numeri-
cal results about the C r( ) and P r( ) for lattice sizes 6 × 6 and 8 × 8 are shown in Fig. 6. Surprisingly, both the ratios of 
charge fluctuation and p-wave pair correlation γ(r)p/c at | | = . . .U 0 05, 0 1, 0 2bf  are closed to 1.0(±0.1). The correspond-
ing effective attractive interaction − = . . .V 0 025, 0 05, 0 1eff , respectively. The results are shown in Fig. 6 (blue line). 
These results indicate that an effective interaction between fermions are indeed induced by the superfluid bosons. 
What’s more, the strength of effective interaction is a half of the Bose-Fermi interaction, which is much different form 
the induced effective interaction in 3D Bose-Fermi mixture12.

Finite size extrapolations for P-wave pair correlation function.  As the temperature goes down, the p-wave pair corre-
lation decays slowly shown in the inset of Fig. 7. It is obvious that the lower of the temperature, the slower decay of the 
p-wave pair correlation. And a finite value at the longest distance r = rmax = 3, which is served as the off-diagonal long 
range order of p-wave pair correlation function, can be observed at low temperature β = 2.0, 5.0 for lattice size 6 × 6.

To investigate the finite size effect, the p-wave pair correlation functions for different lattice sizes 4 × 4, 6 × 6, 
8 × 8 have been calculated at various inverse temperatures.

The results of p-wave pair correlation function P r( )max  have been shown in Fig. 7. It is observed that the 
p-wave pair correlation function decays quickly to zero as a function of lattice size at the high temperature β = 2.0, 
1.0, 0.5, while appears a finite value at low temperature β = 5.0, 3.0. To verify the superfluidity of the fermion 
unquestionably in the thermodynamic limit, larger size and low temperature are still needed.

Composite pair correlation function.  In this subsection, we concentrate on the correlations between the bosons 
and fermions which can be characterized by the composite pair Greens function. A general definition of the 

Figure 5.  P-wave pair correlation P r( )max  along y-direction of the lattice for interactions Ubf = −0.05, −0.10, 
−0.15, −0.20 at various inverse temperature β and the off-diagonal long range order g(rmax) of the boson at 
various temperatures. P r( )max  are resacled by dividing Ubf| | and g(rmax) is rescaled by dividing 1200. P r( )max  and 
g(rmax) show almost same trend.
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Greens function is ∆ ∆=G r j i( ) ( ) ( )bf
†  with Δ(i) = bici. Due to the particle-hole transformation, the sign of Gbf 

changes when the interaction Ubf is changed to −Ubf. For the sake of clarity, we redefine the composite pair corre-
lation as:

= − † †G r G r b b c c( ) ( ) (7)bf bf j i j i

By using this definition, the composite pair correlation is equal to zero when there is no interaction between 
the bosons and fermions.

Figure 6.  Charge fluctuation (a) and p-wave pair correlation along y-direction (b) for Bose-Fermi interactions 
Ubf = −0.2, −0.1, −0.05 (red line) and Veff = −0.1, −0.05, −0.025 (blue line) respectively at same inverse 
temperature β = 5.0 with lattice size 6 × 6. Here (c,d) are corresponding results of the charge fluctuation and p-
wave pair correlation for lattice size 8 × 8.

Figure 7.  Finite size extrapolations for the off-diagonal p-wave pair correlation function P r( )max  at r = rmax 
along y-direction of lattice with the Bose-Fermi interaction Ubf = −0.2 at various inverse temperature β = 0.5, 
1.0, 2.0, 3.0, 5.0 as a function of lattice size 1/N. Here N = 4 × 4, 6 × 6, 8 × 8. The inset is the p-wave pair 
correlation functions P r( ) for lattice size 6 × 6 along y-direction at various inverse temperature β = 0.5, 1.0, 2.0, 
5.0 with Ubf = −0.2.

https://doi.org/10.1038/s41598-020-67020-7


8Scientific Reports |        (2020) 10:10822  | https://doi.org/10.1038/s41598-020-67020-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

The numerical results of G r( )bf  is presented in Fig. 8. It is obvious that the stronger interaction between bos-
ons and fermions may result in stronger composite pair correlation. However, the evolution of G r( )bf  as a func-
tion of r shows a non-monotonic behavior. The values of G r( )bf  for different Ubf intersects and vanishes around 
r = 2.5 and reaches the negative maximum around r = 3 and then become much suppressed as r further increases. 
As the inset displayed, the correlation becomes smeared out by increasing temperatures.

Discussion
In conclusion, we have studied the 2D Bose-fermi mixture on square lattice by using the DQMC method at a finite 
temperature in the ranges where the sign problem can be ignored. Our results show the boundary of the collapsed 
state at various temperatures in the attractive Bose-Hubbard model. More interestingly, when the interaction 
between bosons and fermions turns on, the off-diagonal long-range order of composite fermions pair shows a fairly 
flat finite value at a distance r = 2.5 at low temperature, which denotes that the composite fermi pairs exist in the 
mixture. Meanwhile, we also have observed a slowing decay p-wave pair function due to the effective attractive 
interaction induced by the superfluid boson, which denotes that the p-wave superconductivity may be detected in 
the Bose-Fermi mixture. This super-pairing mechanism is different from the conventional BCS pairing mechanism 
in which effective interactions are induced by exchanging massless phonons. Moreover, to overcome finite size effect, 
finite size extrapolations have been done for p-wave pair correlation function at various inverse temperatures. It is 
obvious that a larger finite value can be observed as the temperature goes down. To verify the superfluid of the fer-
mion unquestionably in the thermodynamic limit, larger size system and lower temperature are still needed to do 
finite size scaling. None zero off-diagonal long range order may be observed in larger system near zero temperature. 
While there is a notorious sign problem in the DQMC method when the particle number is away from half-filling 
in the large lattice size system at low temperature. In this case, the results will drastically deviate form the exact solu-
tions. More effort is needed to obtain the results in the thermodynamic limit.

By the way, spinless non-interaction fermions embedded into superfluid boson have been considered in this 
work. Here the superfluidity of bosons play a vital role to induce the effective interaction between fermions and 
non-zero p-wave pair correlation have been observed. It is easy to imagine that the s-wave pairing or d-wave 
pairing may be observed in the two components non-interaction Fermi system which could be realized in the 
experiment. On the other way, bosons with mediated interaction embedded into the superfluid fermions is also 
worth to consider in the experiment. The strong correlated fermions may induce the effective interaction between 
bosons. Then both of them may enter into an exotic superfluid state.
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