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Abstract: Human action recognition methods in videos based on deep convolutional neural networks
usually use random cropping or its variants for data augmentation. However, this traditional data
augmentation approach may generate many non-informative samples (video patches covering only
a small part of the foreground or only the background) that are not related to a specific action.
These samples can be regarded as noisy samples with incorrect labels, which reduces the overall
action recognition performance. In this paper, we attempt to mitigate the impact of noisy samples by
proposing an Auto-augmented Siamese Neural Network (ASNet). In this framework, we propose
backpropagating salient patches and randomly cropped samples in the same iteration to perform
gradient compensation to alleviate the adverse gradient effects of non-informative samples. Salient
patches refer to the samples containing critical information for human action recognition. The
generation of salient patches is formulated as a Markov decision process, and a reinforcement learning
agent called SPA (Salient Patch Agent) is introduced to extract patches in a weakly supervised manner
without extra labels. Extensive experiments were conducted on two well-known datasets UCF-101
and HMDB-51 to verify the effectiveness of the proposed SPA and ASNet.

Keywords: action recognition; 3D-CNN; deep reinforcement learning; data augmentation

1. Introduction

Video-based human action recognition is one of the key tasks in video understand-
ing. It provides a wide range of applications [1–5] in intelligent surveillance, health care,
human–computer interaction, robot learning, etc. Due to the availability of large-scale
video datasets and the advances in deep learning technologies, such as deep convolutional
neural networks (CNN) and LSTM [6–9], video-based action recognition has made sig-
nificant progress in the last decade. In CNN-based action recognition algorithms, data
augmentation is usually used to increase the diversity of samples. Random cropping is the
most common data augmentation method to improve the generalization and robustness
of the trained model [6,10–12]. However, it is found that the data augmentation methods
based on random cropping often generate non-informative samples (video patches cover-
ing only a small part of the foreground or only the background). Basically, these samples
can be considered as noisy samples with incorrect labels. These samples may confuse
the supervised neural network training process, thereby reducing the performance of the
action recognition accuracy.

As the videos in the commonly used action recognition datasets [6,13–16] are based
on an aspect ratio between 1.3 and 1.8, isotropic resizing of input videos is usually required
in the implementation of neural network training and inference [6,8,10,17–22].

The neural network is fed with video patches, which are the randomly cropped
samples from the input video frames. About 30–80% of the frame area may be lost in the
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cropping process. In the worst case, the cropped samples may have nothing to do with
human action. For example, Figure 1 shows several multi-ratio corner cropping results
using the four corners and the center of the video frames for randomly patch cropping with
size ratios of 1 and 0.5. It is not difficult to observe that the process may generate many non-
informative samples which are the patches covering only a small part of the foreground
or only the background of the input video. If these samples are associated with the action
labels of the input video, they would become noisy samples for neural network training
because the context of these samples is not closely related to the corresponding action labels.
In addition, it was verified in [23–26] that such noise samples may reduce the training
performance of neural networks due to the introduction of wrong gradients direction.
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Figure 1. A schematic diagram for multi-ratio corner cropping on inputs. Multi-ratio corner cropping
will randomly crop the four corners and the center with the size ratio 0.5∼1. Five different colors
represent five different locations (Yellow: left top corner; Green: left bottom corner: Red: center;
Navy Blue: right top corner; Light Blue: right bottom corner). The solid line is the original cropping
size with a ratio 1.0. The dotted box represents a ratio 0.5 of the cropping size. Actions from the top
to the bottom row are climbing stairs, abseiling, archery, and dancing ballet, respectively.

Correspondingly, neural network inference also encounters a similar problem as
center-cropping is adopted in inference [6,11]. If center-cropped input video preprocessing
cannot cover the action context, it will be difficult for the neural network to recognize
action based on the non-informative input patch. In order to improve the accuracy of
inference, a common technique is to evenly crop three clips along the longer side of the
input video [8,27]. However, this still cannot avoid the input of non-informative video
patches, and the computational requirements of the inference process will also increase by
three times.

Considering the above issues, we propose an Auto-augmented Siamese Neural Net-
work (ASNet), which is trained using a reinforcement learning-based SPA (Salient Patch
Agent) to reduce the negative impact of noisy samples generated during random cropping
and to enhance salient information for action recognition. Figure 2 shows the network
architecture of ASNet, which contains two shared-weight CNNs in context stream and
saliency stream. The CNN in context stream receives input from data augmentation based
on random cropping, and the CNN in saliency stream receives salient patches from SPA. A
salient patch is defined as a spatial region in a video that contains critical information for
action recognition.



Sensors 2021, 21, 4720 3 of 20

Sensors 2021, 21, x FOR PEER REVIEW 3 of 21 
 

 

A salient patch is defined as a spatial region in a video that contains critical information 
for action recognition. 

 
Figure 2. An overview of the proposed ASNet: ASNet is a two-stream CNN with shared weights. The top stream is the 
context stream. The bottom stream is the saliency stream. The context stream is fed with the clip cropped by conventional 
data augmentation while the saliency network is fed with the salient clip cropped by SPA. 

In addition, we formulate the generation of salient patches as a Markov decision pro-
cess. Using deep reinforcement learning to extract salient patches in a weakly supervised 
manner without extra labels provides an effective strategy to select the patches that can 
actively enhance the performance of ASNet for action recognition. In ASNet, the salient 
patches can compensate for the misleading gradient of non-informative samples in the 
training phase, thereby reducing the adverse effects of these samples. On the other hand, 
the CNN architecture aims to introduce attention in the final feature layer, which can en-
hance salient information in the inference stage. Extensive experiments were conducted 
to verify the effectiveness of the proposed SPA and ASNet on two well-known datasets 
UCF-101 and HMDB-51. In particular, the proposed method can achieve state-of-the-art 
performance on both datasets. To sum up, the main contributions of this work are four-
fold: 
• We addressed the issue of using random cropping methods for data augmentation 

in CNN-based video action recognition: generating noisy samples through random 
cropping will adversely affect the performance of the trained action recognition 
model. 

• We proposed a Siamese neural network architecture that can reduce the negative im-
pact of non-informative samples through gradient compensation and enhance critical 
information in the inference process. 

• We proposed a new type of reinforcement learning agent, called SPA (Saliency Patch 
Agent), to generate salient patches. SPA can be weakly supervised to crop the critical 
information for action recognition from input video clips without additional labels. 

• The proposed method has undergone end-to-end training and achieved state-of-the-
art performance on UCF-101 and HMDB-51 datasets. 
The rest of this paper is organized as follows. Section 2 provides a literature review 

of the most advanced methods in action recognition. Section 3 introduces our proposed 

Figure 2. An overview of the proposed ASNet: ASNet is a two-stream CNN with shared weights. The top stream is the
context stream. The bottom stream is the saliency stream. The context stream is fed with the clip cropped by conventional
data augmentation while the saliency network is fed with the salient clip cropped by SPA.

In addition, we formulate the generation of salient patches as a Markov decision pro-
cess. Using deep reinforcement learning to extract salient patches in a weakly supervised
manner without extra labels provides an effective strategy to select the patches that can
actively enhance the performance of ASNet for action recognition. In ASNet, the salient
patches can compensate for the misleading gradient of non-informative samples in the
training phase, thereby reducing the adverse effects of these samples. On the other hand,
the CNN architecture aims to introduce attention in the final feature layer, which can
enhance salient information in the inference stage. Extensive experiments were conducted
to verify the effectiveness of the proposed SPA and ASNet on two well-known datasets
UCF-101 and HMDB-51. In particular, the proposed method can achieve state-of-the-art
performance on both datasets. To sum up, the main contributions of this work are four-fold:

• We addressed the issue of using random cropping methods for data augmentation
in CNN-based video action recognition: generating noisy samples through random
cropping will adversely affect the performance of the trained action recognition model.

• We proposed a Siamese neural network architecture that can reduce the negative
impact of non-informative samples through gradient compensation and enhance
critical information in the inference process.

• We proposed a new type of reinforcement learning agent, called SPA (Saliency Patch
Agent), to generate salient patches. SPA can be weakly supervised to crop the critical
information for action recognition from input video clips without additional labels.

• The proposed method has undergone end-to-end training and achieved state-of-the-art
performance on UCF-101 and HMDB-51 datasets.

The rest of this paper is organized as follows. Section 2 provides a literature review of
the most advanced methods in action recognition. Section 3 introduces our proposed method
in detail. Section 4 discusses the experimental results. Section 5 provides conclusions.
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2. Related Work
2.1. Deep Learning-Based Action Recognition

Before the widespread use of CNN-based techniques, traditional video action recogni-
tion methods are mainly based on handcrafted features [28–32]. Inspired by the impres-
sive performance of deep learning in image classification and object recognition, CNN
is widely used in action recognition and has already been dominant in this field. The
CNN-based video action recognition framework can be summarized into five main fami-
lies: two-stream architecture [33], 2D-CNN with temporal aggregation [10], 3D-CNN [17],
convolutional RNN [34], and reinforcement architecture using attention mechanism and
non-local structure [35].

More recent methods are the combinations of these architectures. Ji et al. [36] first
designed 3D-CNN and applied it to the stack of frames, frame gradients and optical flow,
thus verifying the effectiveness of CNN in video action recognition. Karpathy et al. [37]
studied different fusion strategies of 2D-CNN semantic features to obtain spatiotempo-
ral information with different input resolutions for action recognition. In order to make
better use of temporal information, Simonyan and Zisserman [38] proposed a two-stream
architecture composed of a spatial stream and a temporal stream. The system separately
encodes spatial and temporal information, and then combines them in the last feature
layer for classification. This method is considered to be a milestone for the CNN model to
outperform traditional action recognition methods.

On the other hand, in order to encode long-term information of video, Donahue et al. [34]
proposed a long-term recurrent convolutional network (LRCN) combining CNN and LSTM
to learn perceptual representation and temporal dynamics at the same time. Tran et al. [17]
extended 2D-CNN to 3D-CNN by introducing C3D neural network, which provides
spatiotemporal feature extraction capabilities for the CNN models. In addition, to encode
video-level information through 2D-CNN, Wang et al. [10] proposed a Temporal Segment
Network (TSN) architecture and video-level prediction based on a two-stream method.
In [39], Qiu et al. recycled off-the-shelf 2D networks for 3D-CNN, and studied different
combinations of 2D-CNN and 3D-CNN to reduce the computational cost and memory
requirements of 3D-CNN while improving the performance.

Based on 3D-CNN and two-stream architecture, Carreira and Zisserman [6] proposed
two-stream inflated 3D ConvNet (I3D), which combined two-stream architecture with
3D-CNN and achieved the state-of-the-art performance. Tran et al. [18] mixed 2D-CNN
and 3D-CNN, which resulted in a new spatiotemporal convolutional block R (2 + 1)D for
action recognition. Zhou et al. [40] developed Temporal Relation Network (TRN) to enable
2D-CNN with inference ability to achieve better performance. In [35], Wang et al. were
inspired by the classic non-local mean operation in computer vision and proposed a non-
local structure that applies the attention mechanism in 3D-CNN. Xie et al. [41] proposed
to replace 3D-CNN with low-cost 2D-CNN at the low-level layer of I3D, and suggested
that temporal representation learning on high-level semantic features is useful. Feicht-
enhofer et al. [8] presented the SlowFast architecture to capture the semantic features of
different video playback rates to improve performance. Lin et al. [42] proposed a temporal
shift module (TSM) to shift the channel along the temporal dimension to integrate 2D-CNN
based on temporal information. In [19], Feichtenhofer et al. proposed X3D—a group of
efficient video networks to improve efficiency by expanding multiple axes in the features.
Li et al. [22] proposed a channel-independent directional convolution to encode ordered
temporal information at the clip level for action recognition.

Among these CNN-based action recognition methods, data augmentation with random-
cropping derivatives is widely used. Although these data augmentation techniques increase
the diversity of samples, they also generate non-informative samples, which is likely to
degrade the overall recognition performance. In order to alleviate this shortcoming, we
propose to use Siamese neural network architecture to mitigate the adverse effect of non-
informative samples and SPA to detect salient patches as input to the network.
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2.2. Data Augmentation

Volume and diversity of data are critical for deep learning models, but collecting la-
beled data is time-consuming and laborious. Therefore, data augmentation strategies were
proposed to increase the diversity of existing data by applying various transformations,
which turned out to be successful in training deep learning models.

Lecun et al. [43] applied several affine transformations, such as translation (horizontal
and vertical), scaling, shearing for data augmentation for hand-written character recogni-
tion. Bengio et al. [44] applied more diverse transformations such as Gaussian blur, salt and
pepper noise, Gaussian smoothing, motion blur, various occlusions. Krizhevsky et al. [45]
applied random cropping, horizontal flipping, and color jittering (randomly changing
color intensity) in AlexNet, which is a revolutionary work in image classification. Lem-
ley et al. [46] proposed an end-to-end learnable augmentation process to decide the suitable
augmentation method. DeVries and Taylor [47] proposed Cutout that randomly removes
square regions of the input training images to improve the robustness of the model. Re-
cently, Yun et al. [48] proposed CutMix which randomly cuts and mixes image patches
among training samples where the image labels are also mixed proportionally. Based on
CutMix, Uddin et al. [49] propose to use a saliency map to carefully pick salient training
patches and mix this indicative patch with the target images. Gong et al. [50] used saliency
maps to preserve salient informative regions during augmentation.

Random cropping-based data augmentation methods are comprehensively used in
video action recognition. C3D [17], P3D [39], R (2 + 1)D [18], I3D [6] used random crop-
ping to randomly crop fix-sized patches from isotropically resized videos; TSN [10], 3D
ResNext [11], TSM [42], V4D [21], TEA [20] used multi-ratio corner cropping methods to
randomly crop four corners and center with random size from isotropically resized videos.
SlowFast [8], X3D [19] used multi-scale random cropping to random crop patches with
random size from isotropically resized videos. In those data augmentation methods, it
often generates non-informative samples which could be regarded as noisy labels which
affect the overall performance. In this work, we propose ASNet to settle the problem.

2.3. Saliency Detection for Action Recognition

The use of saliency detection to improve the performance of action recognition first
appeared in [37] by Karpathy et al. To enhance action recognition performance, they
proposed a two-stream network, in which one branch is used to resize the entire image,
and the other branch is used for the center cropped image. In [51], Megrhi et al. made use
of optical flow and clustering techniques to reduce the noise and camera motion, thereby
generating saliency regions for large datasets. Xu et al. [52] applied a morphological
gradient to RC-map for salient mask generation to improve dense trajectories, thereby
enhancing the performance of action recognition. For action recognition, Tu et al. [53]
proposed a human-related multi-stream CNN architecture with six CNN branches, in
which the human detection algorithm is applied to salience detection of the saliency
stream. Zhang et al. [54] proposed a Siamese Neural Network guided by motion patches
based on optical flow to enhance motion information. Jiang et al. [4] proposed the use of
Mask R-CNN detection to establish a saliency attention layer to eliminate CNN’s intra-
frame redundancy. Tu et al. [55] proposed a combination of video object detection and
motion saliency detection methods, which are based on pre-trained models from other
datasets with extra labels to form a multi-stream neural network for action recognition.
Weng et al. [56] utilized boundaries and optical flow to generate background-independent
motion masks for action recognition.

On the other hand, there are two types of spatiotemporal-based saliency detection.
One is to use handcrafted features, such as optical flow or iDT. The other one is to use pre-
trained models for other tasks, such as human detection or object detection. Handcrafted
features are susceptible to camera motion and environmental changes, while the perfor-
mance of pre-trained detection models is easily affected by the original training datasets.
In addition, saliency detection is also used in data augmentation in image recognition such
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as SaliencyMix [49] and KeepAugment [50]. Udding et al. also proposed to carefully select
representative image patches and mix them with the target image with the help of saliency
maps, so that the model can learn more appropriate feature representations. Gong et al.
used saliency maps to measure the importance of each randomly cropped patch, and to
avoid cropping saliency patches for region-level data augmentation.

In this paper, we propose an intelligent agent that uses policy learning to automatically
learn where the salient regions are based on the loss output of the action recognition
neural network under weak supervision without extra labels. Since the proposed saliency
detection agent is trained on the main networks using the action recognition dataset, it can
adapt to the distribution of the action recognition dataset and, thus, avoid the problem of
using pre-trained models.

2.4. Deep Reinforcement Learning in Action Recognition

Deep reinforcement learning is a reinforcement learning framework based on deep
learning, which was successfully applied to many computer vision applications [57–60].
Han et al. [61] first attempted to apply enhanced cropping agent learning to determine the
video object segmentation scheme. Li et al. [59] proposed a weakly supervised aesthetic
aware reinforcement learning framework to replace the sliding window mechanism to
improve image cropping efficiency.

For action recognition, Dong et al. [62] proposed an attention-aware sampling agent
based on deep reinforcement learning to select the most discriminative frame in the in-
ference step to improve performance. Wu et al. [63] proposed a frame sampling agent
based on multiagent reinforcement learning to drop non-informative frames of untrimmed
video. Zheng et al. [64] used reinforcement learning agents to select effective segments
for inference. Meng et al. [65] proposed to use reinforcement learning to select the opti-
mal resolution for each frame in the video input for effective action recognition in long
untrimmed videos.

Basically, traditional action recognition methods only use reinforcement learning for
frame selection. However, in this paper, we treat salient patch clipping as a sequential
decision-making process, and propose a new bounding box clipping strategy based on
weakly-supervised reinforcement learning. While most patch selection methods based
on reinforcement learning use sliding window methods, our proposed method directly
determines the bounding box and only takes a few steps to complete the decision-making
process. As far as we know, this is the first work to apply reinforcement learning agents in
a weakly supervised manner to select salient patches in action recognition and to solve the
problem of non-information samples in network training data augmentation.

3. ASNet Framework

The network architecture of the proposed ASNet framework is shown in Figure 2. The
architecture consists of two CNN streams with shared weights. The top stream CNN is
called context network, which receives input video patches generated by the traditional
data augmentation method of video action recognition (i.e., random cropping for neural
network training and center cropping for inference). We name it context network as it
uses full information of input video through random cropping during network training
with many iterations. Basically, context network plays the role of conventional single-
stream CNN-based action recognition. The bottom stream CNN is called saliency network,
which receives salient video patches extracted by SPA to increase the chance of capturing
action-related information as input to the network. SPA is a reinforcement learning-based
agent used to detect salient patches from the entire video scene. It is trained by the loss
information from the action classifier output of the ASNet to ensure that the extracted
regions are highly correlated with human actions.
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3.1. Model Formulation

Let X = {Xi}, i ∈ [1, N] denotes the training dataset, where N is the total num-
ber of the videos in the training set and Xi = {xi1, xi2, . . . , xiG} is the ith video with G
non-overlapping clips. xr

ij denotes the patches generated from the jth video clip by a
conventional random cropping data augmentation method and xs

ij represents patches
generated from the jth video clip in the ith video of the training set by the proposed SPA.
F
(

xij; W
)

is the function of ASNet with the parameters W, input xij, and output scores

sij =
{

s1
ij, s2

ij, . . . , sC
ij

}
, where C is the number of classes and sc

ij is the score of the cth class.
In order to predict the likelihood, we use the normalization Softmax function S , which is
computed as

sc
ij =

e
sc
ij

∑C
k=1 e

sk
ij

(1)

where sc
ij is the normalized score of the cth class. In addition, the loss function of the

network with a regularized cross-entropy loss is given by

L(y, x, W) = −
C

∑
k=1

yk logSk(F (x; W)) (2)

where y = (y1, . . . , yC)
T is the one-hot vector of the ground truth of the input x, and Sk is

equal to sk
ij. Therefore, F (x; W) of ASNet can be expressed as

F (x; W) = C(G(Fs(xr, Ws),Fs(xs, Ws)), Wc) (3)

where Fs is the function of the weight-shared CNN and the well-known 3D ResNext [11] is
used in our experiments as backbone CNNs. G is a feature combination function (e.g., sum,
concatenation, multiply). C is a fully-connected neural network classifier. W = {Ws, Wc}.
Ws represents the parameters of the shared weight in the context network and saliency
network. Wc represents the parameters of the classifier. To simplify the explanation, we
denote Fp

s as the feature maps activated by the information in the salient patch and denote
Fo

s as the feature maps activated by the information outside the salient patch. We assume
that there is no information outside the salient patch in the saliency stream, that is, Fo

s = 0
in the saliency stream. Substituting the symbols of these feature maps into Equation (3),
we have

F (x; W) = C
(
G
(
Fs

({
Fp

s ; Fo
s

}
, Ws

)
,Fs

(
Fp

s , Ws
))

, Wc
)

. (4)

For a single-stream neural network, it can be expressed as

F (x; W) = C
(
Fs

({
Fp

s ; Fo
s

}
, Ws

)
, Wc

)
. (5)

Comparing Equation (4) to Equation (5), the proposed two-stream architecture of
ASNet can obtain more information than a single-stream neural network. If SPA can
provide action-related salient patches in the saliency stream, the performance of ASNet can
be significantly improved as compared with single-stream architecture.

3.2. Salient Patch Agent

The key to achieving good performance of the proposed ASNet is to provide action-
related salient video patches for the saliency network. This is realized through the deep
reinforcement learning-based SPA, which can automatically extract salient patches from the
input video clips, and then provide ASNet with critical information. However, it is not easy
to extract salient patches from input video clips without additional labels and identify the
most suitable region for action classification. To achieve this challenging patch extraction,
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a reinforcement learning agent relying on the deviation of the action classification loss as a
reward is used. The cropping process of the salient patch is formulated as a Markov decision
process, which uses a weakly supervised learning method to crop the patch without extra
labels. The reward of SPA is calculated based on the loss of the fully connected neural
network classifier C, which uses concatenated features [4,54] from the context network and
saliency network as shown in Figure 2.

In this way, the agent can adjust the strategy to crop the patch, thereby reducing the
loss of action classification. The architecture of the proposed SPA is shown in Figure 3.
The system adopts the Actor–Critic model and directly regards the position and size
of the bounding box of the salient patch as an action. With these settings, the process
can be completed in just a few steps. The detailed description of SPA in terms of deep
reinforcement learning terminology is as follows.
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3.2.1. State and Action Space

The state of SPA, sr
t , consists of three components – sg, sp

t and sl
t. sg is the extracted

feature of the full-scale input patch. sp
t is the extracted feature of a salient patch at step t. sl

t
is the logits of the ASNet classifier based on the concatenation of sg and sp

t . In the state sr
t ,

sg provides the features of random cropping for SPA, which provides global information
in multiple iterations and sp

t provides the features of action salient information in ASNet.
Most cropping methods based on reinforcement learning use the sliding window approach.
However, this approach needs moving and stretching the bounding box, which requires
many steps to obtain accurate results. In the proposed SPA, we use a 3-action space{

at
m
∣∣m = 1, 2, 3

}
to directly locate the bounding box. These three actions

(
at

1, at
2, at

3
)

are the
left corner location

(
at

1, at
2
)

and the length of the squared bounding box at
3, respectively.

We set the actions range at
1 ∈ [0, w], at

2 ∈ [0, h], at
3 ∈ [0, min(w, h)], and (w, h) representing

the width and height of the input frames, respectively.

3.2.2. Reward

The reward represents the result value obtained through the agent’s interaction with
ASNet. We calculate the reward based on the action classification output, and design the
reward r0 as

r0 = λ1sgn
(
L
(

y, x, xp
t+1, W

)
−L

(
y, x, xp

t , W
))

+ λ2 ∑
U={b,o}

PU(at) (6)
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where at is the action at step t, L is the loss of the classifier with the concatenated features
of x and the saliency patch xp extracted by SPA. PU is the punishment. λ1 and λ2 adjust
the weights of loss deviation and punishment. We set two punishment rules, namely box
size punishment and out of boundary punishment, to make SPA training converge faster
and more stable. The punishments are defined as

Pb =

{
0, if at

3 >= L
Ω, otherwise

Po =

{
0, if at

1 + at
3 <= w or at

2 + at
3 <= h

Ω, otherwise

(7)

where L is the threshold for box size punishment, and Ω is the punishment value. L is set
as 56, and Ω is set as −5 through experimental tests.

Algorithm 1. Training procedure of the SPA model

Input : Original input frame clips xg

Output: θ of SPA model
1: Initialize xp, θ0, t = 0
2: fglobal = Feature_extractor(xg)

3: while k ≤ K do
4: while t ≤ T do

5: fsaliency = Feature_extractor
(

xp
t

)
6: Get logits through fglobal , fsaliency

7: sr
t = cat

(
fglobal , fsaliency, logits

)
8: Get

{
at

m
}

from Policy π(at|sr
t ; θ)

9: Crop xg by
{

at
m
}

getting xp
t+1

10: rt = reward
(

xg, xp
t , xp

t+1

)
11: Estimate advantage Ât

12: t = t + 1
13: end while
14: while j ≤ Nbatch do

15: Calculate LCLIP
θk

(
θ

j
k

)
16: Update θ

j
k with gradient ∇LCLIP

θk

(
θ

j
k

)
17: end while
18: k = k + 1
19: end while

Algorithm 2. Training procedure of ASNet

Input: Original input frame clips xg

Output: θcnn and θspa

1: Initialize θcnn and θspa

2: while k ≤ K do
3: Get xc through conventional cropping on xg

4: Get xs through SPA on xg

5: Take xc and xs as inputs; Fix θspa; Train θcnn

6: Fix θcnn; Train θspa through Algorithm 1

7: end while
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3.2.3. Training of Salient Patch Agent

In SPA, we adopt the PPO algorithm with a clipped objective to train the patch
selection policy. We designed the SPA model to share weights between the policy and
value function. According to the setting of [58], the loss function is defined as

LCLIP
θ (θ) = Ê

[
LCLIP

t (θ)− c1LVF
t (θ)

]
(8)

and
LCLIP

t (θ) = Ê
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
LVF

t (θ) =
(

Vθ(st)−Vtarget
t

)2 (9)

where the probability ratio is rt(θ) = πθ(at |st)

πθold
(at

∣∣∣st)
, θ is the network parameter of the SPA

model, πθ(at|st) is the probability distribution of the policy under state st and action at at
step t. We optimize the policy with minibatch AdamW. The estimated advantage function

according to [66–70] is Ât =
T−t
∑

i=0
γirt+i −Vθ(st), where γ is the discount factor, rt is the SPA

reward at step t, T is the number of steps of SPA. Vθ(st) is the value output with θ under

state st. Vtarget
t =

T−t
∑

i=0
γirt+i represents the accumulated reward at step t.

4. Experiments
4.1. Experiment Settings and Implementation Details
4.1.1. Datasets

The experiments were conducted on two well-known datasets-UCF-101 [13] and
HMDB-51 [15] for video action recognition. UCF-101 is a dataset with three splits containing
13,320 videos from 101 action categories, avoiding non-motion frames. HMDB-51, which is
more challenging than UCF-101, includes 7000 activity videos distributed across 51 action
categories with natural disturbances with three splits.

4.1.2. Training of CNN

The input frames were extracted at 25 fps and resized isotopically, with a minimum
size of 256 pixels. We use RGB training settings in accordance with [11] and [7]. All the
experiments were performed on a Pytorch platform with a GTX 2080Ti GPU. The backbone
network is 3D ResNext-101 [9] (if not specified). The training process starts with a learning
speed of 0.001. The batch size is 32. When the verification loss reaches a stable level, the
learning speed is divided by 10. The weight decay was set to 1e-5 and used a stochastic
gradient descent (SGD) optimization method with a momentum of 0.9.

The PPO model was trained with a learning rate of 0.0001, a weight decay of 1× 10−5,
and AdamW optimization for SPA. In addition, batch normalization [71] is applied to all
convolutional layers. It should be noted that the weight initialization in SPA uses conven-
tional initialization, which can make the training more stable. In order to generate input
for the context stream of the proposed ASNet, we randomly selected 16 or 64 consecutive
frames (16/64f-clip) from one video in the temporal dimension, and randomly sampled
224× 224 crops with multi-scale corner cropping and random flipping in the spatial di-
mension according to [10]. Then the crops were resized into 112× 112 as the inputs for the
context stream.

For the saliency stream, we use the same clip as the context stream in the temporal
dimension but spatially resize the inputs into 112× 112 so that SPA can crop according to
the entire scene of the clip. Then, SPA crops the salient patches from the original size clips
according to the action context of the video and resize the salient patches to 112× 112.
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It took 2 days and 4 days to conduct the training with ResNext-101 with 64f samples
on a 1080ti GPU on HMDB-51 and UCF-101, respectively. The response/inference time is
about ~600 ms per 10 s video with ResNext-101 with 64 f samples on a 1080 ti GPU.

4.1.3. Training of ASNet

The detailed training process of the SPA model and ASNet are elaborated in Algo-
rithm 1 and Algorithm 2, respectively. K is the iterations for training SPA. N is the number
of samples for minibatch Adam. θcnn and θspa are the parameters of the ASNet and SPA
models, respectively.

4.1.4. Inference Details

In the ASNet inference, we sampled non-overlapping 16f/64f-clips along the temporal
dimension with center cropping in the spatial dimension for the context stream. For the
saliency stream, the inputs were generated by SPA in the same way in training. We average
scores of all non-overlapping inputs for the prediction.

4.2. Ablation Studies
4.2.1. Comparison with Different Cropping Strategies

In the saliency stream of ASNet, we replaced SPA with various conventional data
augmentation methods, and the action recognition results are shown in Table 1. Obviously,
although the traditional data augmentation of random, corner, multiscale and center
cropping methods can improve accuracy, their accuracy improvement is less than that of
using SPA, especially on the HMDB-51 dataset. When saliency stream uses multi-scale
cropped video patch input, the performance on HMDB-51 even decreases. In addition,
we studied different fixed location cropping (fully resized, top left, top right, bottom left,
bottom right) in the saliency stream of ASNet, and observed that the SPA strategy still
outperforms them. The performance of fully resized video input is worse than that of
SPA. A possible reason is that the fully resized video contains entire frame information,
but the quality of the fully resized video is poor and contains a lot of useless background
information, which can hurt the recognition performance.

Table 1. Comparison with different cropping strategies in the saliency stream of ASNet. Top-1
accuracy using 16f clips of split-1 of UCF-101 and HMDB-51. The experiment’s backbone is
3D ResNext-101.

Cropping Strategy UCF-101 (%) HMDB-51 (%)

Baseline 91.7 66.7

Random-cropping 92.2 66.8

Corner-cropping 92.3 67.0

Multiscale-cropping 91.9 64.7

Center-cropping 92.5 67.6

SPA-cropping 93.7 69.2

Fully-resize 92.3 67.2

Left Top Corner 92.1 66.9

Right Top Corner 91.5 67.0

Center 92.5 67.6

Left Bottom Corner 92.0 67.1

Right Bottom Corner 92.2 67.1
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4.2.2. ASNet with Different Backbones

We compared the proposed ASNet with a single-stream network and a Siamese net-
work with center cropping at the saliency stream (Siamesecenter) using different backbones
on the split-1 of UCF-101 and HMDB-51 datasets. The results are shown in Table 2, which
demonstrates that Siamesecenter is better than the single-stream network using all the tested
backbones. However, Siamesecenter is still not compatible with ASNet using SPA. For
UCF-101 and HMDB-51 datasets, the performance of ASNet with ResNext-101 (64 f) is im-
proved by 1.2% and 3.6%, respectively, compared with the single-stream network, and the
performance of Siamesecenter is improved by 1.0% and 2.5%. In addition, we observed that
as the network capabilities increase (i.e., deeper), the performance of ASNet will be better.

Table 2. Comparison with different backbones. Top-1 accuracy using 16 f clips of split-1 of UCF-101
and HMDB-51.

Backbone
Single Stream Siamesecenter ASNet

UCF-101 HMDB-51 UCF-101 HMDB-51 UCF-101 HMDB-51

ResNet-18 84.5 57.3 85.0 57.5 86.7 57.5

ResNet-50 88.7 62.4 88.8 62.4 90.5 62.4

ResNet-101 88.6 63.6 88.9 63.8 90.6 64.7

DenseNet-121 87.5 61.1 88.1 61.3 90.1 61.7

ResNext-101 91.7 66.7 92.1 67.0 93.7 69.2

ResNext-101 (64 f) 95.2 74.1 95.4 75.2 96.4 77.7

4.2.3. ASNet with Different Feature Fusion Strategies

In this section, we compare five different fusion strategies referring to [54,72], such as
Individual, Sum, Concatenation, Convolution and Multiply. The fusion layer is injected
after the last convolutional layer since the features at that point are highly informative
following [72]. In the Individual strategy, the features of the context stream and the saliency
stream of ASNet were trained individually with the same fully connected layer (the classify
layer) and the predictive scores of each stream were averaged for the final classification.
Other strategies are the same as [54,72]. The comparison results can be seen in Table 3,
where we report the accuracy on the first split of UCF-101 and HMDB-51 with 16 f clips.
From the results in the table, we can conclude that although the feature fusion strategies
benefit the performance, the Concatenation strategy performs better in our architecture.
One possible reason for this may be that the final fully connected layer adaptively ad-
justs the weights of the features of the two streams of ASNet, which makes it a better
performance. Thus, we adopt the Concatenation strategy in the proposed ASNet.

Table 3. Comparison with different feature fusion methods. Top-1 accuracy using 16 f clips of split-1
of UCF-101 and HMDB-51. The experiment’s backbone is 3D ResNext-101.

Fusion Strategy UCF-101 (%) HMDB-51 (%)

Baseline (single branch) 91.7 66.7

Individual 92.8 68.1

Sum 92.7 67.8

Concatenation 93.7 69.2

Convolution 92.6 67.8

Multiply 92.1 66.8
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4.2.4. Hyperparameters

In this section, we will show the experiments on SPA hyperparameters, that is, the
number of actions and training steps required in SPA. Three different kinds of actions and
four different numbers of training steps are conducted. The results are shown in Table 4
in which 2-action means that SPA has two actions (a1, a2) with spatial location (a1, a2) to
determine the salient patch. The patch size is fixed and selected as the sample size 112.
The 3-action means that SPA has three actions (a1, a2, a3) with location at (a1, a2) and the
salient patch size a3 × a3. The 4-actions means that SPA has four actions (a1, a2, a3, a4) at
location (a1, a2) with salient patch size of width a3 and height a4.

Table 4. Performance evaluation of multiple actions and steps of SPA in ASNet. Top-1 accuracy using
16 f clips of split-1 of UCF-101 and HMDB-51.

Steps
UCF-101 (%) HMDB-51 (%)

2 5 10 15 2 5 10 15

2-actions 92.4 92.5 92.8 93.0 67.5 67.8 67.8 67.9

3-actions 93.1 93.6 93.7 93.4 68.3 68.5 69.2 68.7

4-actions 92.9 93.2 93.7 93.5 67.9 68.2 68.5 68.5

From Table 4, we can observe that the 3-action with 10 training steps perform best,
although the 4-action with 10 training steps achieve the same performance as the 3-action in
UCF-101. However, it is not comparable with the 3-action in HMDB-51. Basically, 3-action
can maintain the aspect ratio of the input frame, and 4-action changes the input aspect
ratio, which would affect the performance. Although 2-action can also maintain the ratio of
the items, the size of the patch is fixed. However, if the item is larger than the predefined
size, the prominent patch will lose external information. For different training steps, we
can see that the 2-step training has the worst effect, and SPA tends to select a larger area
in the frame under this step. The possible reason is that when there are too few training
steps, SPA cannot obtain enough information to specify the critical information for action
recognition, and thus cannot select more general regions. As the number of steps increases,
we can see improvements in accuracy. However, when the training steps exceed 10, the
performance stops improving further. We believe that the reason is that the 10 training steps
have provided enough information for SPA to select an influential salient patch for ASNet.

Note that although the number of training steps is different, due to our strategy, when
the SPA was trained, SPA strategy can quickly converge. So, we only need to perform
two steps to test. Therefore, through this ablation study, we took three actions, 10 training
steps and two test steps for SPA in other experiments.

4.3. Analysis of ASNet

In this section, the performance of ASNet and SPA will be analyzed in detail. First, we
conducted two controlled experiments to explore the advantages of ASNet architecture.
Then, the cropping performance of SPA in ASNet and the activation maps of ASNet are
visualized. Finally, we analyze the action statistics of SPA on the HMDB-51 and UCF-101
datasets to prove its learning characteristics further.

4.3.1. Exploration of ASNet Architecture

We used a single-stream CNN framework to compare with the proposed two-stream
architecture of ASNet to demonstrate the advantages of co-training weights (backprop-
agated by randomly cropped patches and salient patches simultaneously), more salient
inputs in ASNet. In order to show these enhancements, we designed two controlled experi-
ments. In these experiments, the single-stream CNN and the two-stream ASNet with the
same basic 3D ResNext [11] backbone were trained with the first split and 64 f-clips of the
HMDB-51 dataset.
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For fair comparisons, the convolutional layers of these two networks and SVM are used
as feature extractors and classifiers, respectively. The Top-1 action recognition accuracies
of two networks on HMDB-51 dataset are shown in Table 5, in which Ws is the weights
of the CNN that trained by the single-stream neural network, Wa is the weights of the
shared-weight CNN that is trained by the two-stream ASNet. Xc and Xs denote the center
cropping input and the inputs extracted by SPA, respectively. The final-layer features
of ASNet are represented as Fa, which uses both the inputs of Xc and Xs for training.
In addition, the final-layer features of single-stream networks that trained with center
cropping input Xc and SPA input Xs are denoted as Fc and Fs, respectively.

First, the weights of the single-stream network Ws and the weights of ASNet Wa
are compared. We use two new single-stream neural networks with the use of Ws and
Wa (The shared weights of the ASNet of the two-stream network, thus it can be directly
transferred to a single-stream backbone). As shown in Table 5, when center cropping
(normal data preprocessing method [3]) is used in inference, the action recognition accuracy
comparison is 75.0% (Wa) vs. 73.9% (Ws), where Wa can achieve 1.1% improvement. While
SPA cropping is used for inference, the action recognition accuracy comparison is 75.8 (Wa)
vs. 74.5 (Ws), where Wa can achieve 1.3% improvement. These denote that the weights (Wa)
of ASNet outperform the weights (Ws) of the single-stream network and, thus, verifies that
the two-stream-based ASNet with the use of co-training for shared weights can benefit
the performance.

Secondly, the performances of using SPA cropping input Xs and center cropping input
Xc are compared. We use weights of Wa and Ws to evaluate a new single-stream neural
network with two different inputs Xs and Xc. From Table 5 with the use of Ws, the action
recognition accuracy comparison is 74.5 (Xs) vs. 73.9 (Xc), where Xs can achieve 0.6%
improvement. For the weights of Wa, the accuracy comparison is 75.8 (Xs) vs. 75.0 (Xc),
where Xs can achieve 0.8% improvement. These improvements demonstrate that the
performance of using SPA cropping input is better than that of using traditional center
cropping input.

Table 5. Exploration of each enhancement of ASNet. Top-1 accuracy using 64 f clips of split-1
of HMDB-51.

HMDB-51 (%)

Single-Stream Neural Network ASNet

Center Crop (Xc) SPA Crop (Xs) Center and SPA Crop (Xc and Xs)

Ws 73.9 (baseline) 74.5 75.5

Wa 75.0 75.8 76.6

Furthermore, we plot the average reward and loss at each epoch in SPA to see the SPA
training process in Figure 4. Average reward is the average reward of each taken action in
SPA. Average loss means the average loss of each taken action in SPA. The experiment was
conducted in the HMDB-51 dataset with 64 f training video clips. From these two figures,
we can observe that the average reward of actions increases from 0 to 22 epochs and
then jitters till the end and the average loss of SPA decreases gradually flatten out. This
phenomenon shows that SPA can learn to get higher rewards in training and can be trained
well with ASNet.
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4.3.2. Visualization of ASNet

The cropping performance of SPA and Grad-CAM [73] of ASNet are shown in Figure 5.
First, we observe that SPA tends to select most of the patches that contain the motion part
of the input frames. Secondly, from the image in the upper left corner, it can be seen that
SPA is selecting not only the human, but also the critical patch for action recognition from
the picture in the complex background. Thirdly, the traditional data preprocessing method
for inference is to isotropically resize input frames and then crop the center of the frames.
However, when the long side of the image is much larger than the short side, the critical
information will be lost. The examples shown in Figure 5 demonstrate that SPA is possible
to avoid the loss of critical information for action recognition. In addition, by comparing
Grad-CAM, we can find that ASNet’s Grad-CAM mapping is more action-specific than
single-stream neural networks. This phenomenon verifies the effectiveness of ASNet. It
should be noted that from Figure 5, some actions are not in the center of the bounding box.
We believe that this phenomenon is reasonable because the conventional convolutional
operation is not location-aware, i.e., the highlighted information of CNN is not related to
the location on the inputs.

4.4. Comparison with the State of the Art

In this section, we compare ASNet with the state-of-the-art action recognition methods
using the three splits of UCF-101 and HMDB-51 based on 64 f-clips. The action recognition
accuracies of these well-known methods are shown in Table 6. GFLOPs × Views represents
the FLOPs per view in the 10-s video, which is the normal duration of the action recognition
datasets. It is worth noting that the proposed model only uses the center crop in the spatial
dimension, and continuous non-overlapping clips in the temporal dimension. Table 6
shows that the proposed ASNet model could reach state-of-the-art performance on both
UCF-101 and HMDB-51 datasets. When using a single-stream network with 3D ResNext,
only 95.1% and 73.4% can be achieved on UCF-101 and HMDB-51, respectively. These
accuracies are 0.3% and 1.1% lower than I3D, 1.7% and 1.1% lower than R(2 + 1)D, and
1.4% and 2.5% lower than S3D. However, when ASNet is used with 3D ResNext, better
accuracies can be obtained. ASNet’s performance is 1.4% higher than that of I3D, and it
matches the performance of R(2 + 1)D and S3D on UCF-101. The performance is also better
than I3D, R(2 + 1)D, and S3D by 1.9%, 1.9%, and 0.5% on HMDB-51 dataset, respectively.
For HMDB-51, ASNet outperforms all these conventional methods with naïve 3D ResNext.
We can observe that the improved performance on HMDB-51 is more prominent than
UCF-101. One of the reasons is that HMDB-51 contains a larger aspect ratio video, and
the main body of the action in HMDB-51 is different from UCF-101. The ratio of main
bodies of actions locating at the center in UCF-101 is more than the ratio in HMDB-51. This
phenomenon demonstrates the effectiveness of SPA to extract salient video patches for the
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ASNet to perform action recognition. In addition, as ASNet shares weights in the network
and SPA is made of the three-layer perceptron, the number of additional parameters of
ASNet is less than 1% (0.475 M) of its backbone 3D ResNext (48.34 M). Overall, the results in
Table 6 show that the proposed ASNet can achieve state-of-the-art performance on UCF-101
and HMDB-51 with fewer total FLOPs.
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Table 6. Comparison with the state of the art. Top-1 accuracy of the mean accuracy across three splits
of UCF-101 and HMDB-51.

Methods Input Size GFLOPs × Views UCF-101 HMDB-51

C3D [17] 224 × 224 296.7 × 4 85.2 51.6
Res3D [74] 224 × 224 - 85.8 54.9
P3D [39] 224 × 224 - 88.6 -

3D-ResNext [11] 112 × 112 48.4 × 4 95.1 73.4
MRST-T [75] 224 × 224 99.6 × 4 96.5 75.4

StNet [76] 256 × 256 310.5 × 4 94.3 -
iDT-RCB [52] - - 94.8 -

STSAMANet [4] 128 × 128 - 95.9 -
STSVOS [55] 224 × 224 - 93.9 67.2
ATEN [56] - - 94.6 70.5

STS-ALSTM [77] - - 92.7 64.4
RSTAN [78] - - 94.6 70.5

TSN [10] 224 × 224 3.2 × 250 93.2 -
TSM [42] 224 × 224 65 × 30 95.9 73.5
STM [79] 224 × 224 66.5 × 30 96.2 72.2

TEINet [80] 224 × 224 66 × 30 96.7 72.1
DropPath [81] 224 × 224 254 × 2 96.5 -

I3D [6] 224 × 224 107.9 × 4 95.4 74.5
S3D [41] 224 × 224 66.4 × 30 96.8 75.9

R(2 + 1)D [18] 112 × 112 152.4 × 4 96.8 74.5
DSN [64] 112 × 112 158 × 4 96.8 75.5

ASNet 112 × 112 104.5 × 4 96.8 76.4

5. Conclusions

In this paper, we addressed the issue of noisy samples generated in data augmenta-
tion of CNN-based video action recognition. Traditional random and center video patch
cropping methods may generate many non-informative samples that only contain a small
part of the foreground or even only covering the background area. These noisy samples
may greatly degrade the neural network training quality as well as reduce the inference
accuracy of the action recognition. To alleviate this issue, ASNet using Siamese CNN archi-
tecture and SPA (Saliency Patch Agent) based on reinforcement learning for video action
recognition is proposed. The Siamese network architecture consists of a context network
and a saliency network. The context network preserves features extracted from traditional
random or center cropping video patch input while the saliency network increases the
chance of extracting human action-related features from video patches provided by SPA.
Weak supervision without extra labels is used to train SPA, and the deviation of ASNet’s
action classification loss is used as a reward for reinforcement learning. Then, SPA can
learn to crop the salient patches for improving the action recognition accuracy. Experiments
were conducted to verify the effectiveness of the proposed ASNet framework using SPA
and demonstrate that ASNet can achieve state-of-the-art action recognition performance.
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