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Abstract

Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of 

environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence 

suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent 

functions such as memory encoding and mood regulation. In addition, several brain diseases, such 

as neurological diseases and mood disorders, have deleterious effects on adult hippocampal 

neurogenesis, and some symptoms of those diseases can be partially explained by the 

dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the 

physiological functions of adult-born neurons and their roles in pathological conditions.

Introduction

Since the discovery and subsequent affirmation of neurogenesis in the dentate gyrus (DG) of 

the hippocampus, adult hippocampal neurogenesis has been implicated in cognitive 

processes under normal physiological conditions such as learning, memory, pattern 

separation, and cognitive flexibility. The addition of new neurons in the DG provides 

substantial structural and functional plasticity to the tri-synaptic hippocampal circuit through 

characterized physiological and connective features of immature adult-born neurons during 

their critical periods. Feedback inhibition onto mature dentate granule cells (DGCs) from 

immature adult-born neurons seems to regulate the sparse coding of DGCs, which may 

underlie contextual discrimination and a degree of meta-plasticity. Importantly, adult 

hippocampal neurogenesis is conserved in most mammalian brains, including human. 

Accumulating evidence suggests that dysregulation of adult hippocampal neurogenesis may 

be associated with cognitive decline in neurological disorders and psychological symptoms 

in psychiatric disorders. However, most of our knowledge regarding the physiological and 

pathological contributions of adult-born hippocampal neurons to brain function has been 

obtained from rodent models, which exhibit a significant amount of adult hippocampal 
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neurogenesis and provide technical advantages, such as the availability of genetic, imaging 

and detailed behavioral analyses. Due to the technical limitations of human studies, our 

understanding of the functional role of adult hippocampal neurogenesis in humans relies on 

retrospective analyses using post-mortem tissues. Therefore, it remains unclear how adult-

born DGCs functionally modulate complex behavior and how dysregulation of adult 

neurogenesis mediates brain disorders in the human brain.

In the first half of this review, we summarize the molecular mechanisms underlying the 

regulation of adult hippocampal neurogenesis and the functional contributions of adult-born 

neurons to the neural network and to hippocampus-dependent behavior with the main 

focuses on rodent experiments. In the latter half, we summarize how dysregulation of adult 

neurogenesis may mediate malfunctions of hippocampus-dependent processing and 

behavior, and we discuss whether future research can translate the findings from rodent 

models to humans to develop therapeutic strategies by manipulating adult hippocampal 

neurogenesis.

Overview of adult neurogenesis

Adult hippocampal neurogenesis is a process that describes the generation of new functional 

DGCs from adult neural stem cells through the amplification of intermediate progenitors and 

neuroblasts, as well as the integration of these new neurons into the existing neural circuits. 

In other words, adult hippocampal neurogenesis provides a substantial degree of structural 

and functional plasticity in the tri-synaptic hippocampal circuit. Adult hippocampal neural 

stem cells (radial glia-like cells, RGLs; Type 1 cells) exist in the subgranular zone (SGZ) of 

the DG (Fig. 1). The evidence for adult hippocampal neurogenesis was first observed in 

rodents1, 2 and was subsequently confirmed to exist in humans and non-human primates by 

several groups 3–8. Further evidence of adult hippocampal neurogenesis in humans was 

provided by immunohistochemical analysis, retrospective birth dating methods using the 

level of 14C9, double-immunohistochemical analyses7, and gene expression associated with 

neurogenesis10.

Various forms of activation of the environmental niche stimulate quiescent RGLs and 

facilitate their proliferation. Active RGLs self-renew and also generate intermediate neural 

progenitors (NPs) that subsequently differentiate into neuroblasts and finally give rise to 

DGCs or, to a lesser extent, to astrocytes. These processes, including proliferation, 

differentiation, migration, neurite extension and synaptic integration, are regulated by a 

number of signals from the environmental niche and local neural circuits, which are 

summarized in Table 1.

Environmental factors

An intriguing feature of adult hippocampal neurogenesis is that the process is regulated by 

such factors as the environment and an individual’s emotional or physiological status. In 

other words, adult-born DGCs can in theory be generated on demand in response to 

environmental signals, which could provide a degree of meta-plasticity in the adult 

hippocampal neurogenesis-dependent reorganization of hippocampal circuits. An enriched 
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environment, including a larger cage area, novel objects, and running wheels, has been 

shown to significantly increase the number of adult-born neurons and the volume of the 

granule cell layer and to improve the speed of spatial learning in rodents 3. A follow-up 

study revealed that voluntary running alone selectively increased proliferation of adult NPs/

neuroblasts, whereas environmental enrichment promoted the survival of adult-born DGCs 

through the increased integration of immature neurons 120.

These processes are mediated by several types of signaling, including glutamatergic and 

GABAergic inputs from local neural networks 111114, 121–123. Glutamatergic inputs through 

NMDA receptors are critical for the survival of immature neurons121, and surviving neurons 

are functionally integrated into existing circuits within one month124. A short exposure to an 

enriched environment depolarizes immature neurons through GABAergic inputs that enable 

activation of NMDA receptors, which in turn allows immature neurons to respond to future 

glutamatergic synaptic inputs 125. A recent study revealed that the combination of 

GABAergic inputs from the molecular layer and the granule cell layer in the gamma 

frequency range evoked action potentials in young adult-born DGCs108. Furthermore, the 

study revealed the spatial and temporal integration dynamics of the GABAergic and 

glutamatergic inputs required to elicit action potentials in young adult-born DGCs. Thus, the 

oscillatory activity in the hippocampus could regulate the integration of young DG neurons 

into hippocampal neuronal networks through GABAergic signaling. Importantly, the effects 

of environmental enrichment on the survival and integration of adult-born DGCs are 

restricted to the first three weeks after the birth of the neurons122.

Following the survival checkpoint, the time course of neuronal maturation is also modulated 

by local network activity, which in turn is also modulated by physical activity or exposure to 

an enriched environment126, 127. Optogenetic silencing of the dentate during exposure to a 

novel environment prevents the environmentally induced increase in integration of immature 

DGCs 128. Furthermore, GABAergic inputs from parvalbumin-positive interneurons are 

essential for an enriched environment to enhance the integration and maturation of young 

DG neurons123. The increase in surviving and integrating immature neurons based on 

environmental inputs could be crucial, as the surviving adult-born DGCs could potentially 

be tuned to respond to future occurrences of the same experiences that they experience 

during their maturation periods122, 129 (see also the following section for the functional roles 

of adult-born DGCs). Intriguingly, an enriched environment can also change the connectivity 

of adult-born DGCs114, implying that those neurons may play distinct roles in local neural 

circuits. Exercise itself also alters the connectivity of the DG. Neurogenesis recruits 

additional inputs from entorhinal cortex but increases the frequency of inhibitory input to 

mature DGCs, potentially contributing to the overall sparsity of the DG network 130. 

Conversely, stress and aging reduce adult neurogenesis in the DG through corticosteroid 

signaling 4, 33, 131, 132. Importantly, adverse experiences during childhood can have 

prolonged effects on adult neurogenesis and hippocampus-mediated stress responses34, 

suggesting that experience in early life may epigenetically modulate the process of adult 

hippocampal neurogenesis. In addition, the levels of hormones such as estrogen and thyroid 

hormones regulate the rate of adult neurogenesis 25, 133. Thus, in addition to environmental 

stimuli from the external world, the physiological state of an individual plays a prominent 
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role in the regulation of adult hippocampal neurogenesis in the physiological and 

pathological conditions described below.

Physiological maturation of newborn neurons and their synaptic 

integration

Adult hippocampal neurogenesis begins with the division of NPs in the SGZ of the DG. 

Progenitors that commit to a neuronal cell fate migrate into the granule cell layer, typically 

stopping within the inner third 134. Many of these newborn neurons will not survive to 

maturity. At least two crucial checkpoints exist for survival: the first within the first few days 

after cell birth and the second at around three weeks 135. Ambient GABA provides the first 

input to immature DGCs 107, followed within the first two weeks of life by synaptic 

connections from local inhibitory interneurons 113, 134. GABAergic inputs are depolarizing 

prior to three weeks of age of the newly born neurons113 and are capable of triggering action 

potentials108. As immature DGCs develop, they send axons through the mossy fiber pathway 

to contact CA3 and also send dendrites into the molecular layer to receive perforant path 

input from the entorhinal cortex. Dendritic growth and connectivity are sensitive to changing 

conditions during the maturation period, such as exposure to an enriched 

environment123, 127. Synaptic connections from the perforant path are detectable within 

three to five weeks 113, 134. Axonal projections to CA3 are detectable within two weeks 
136, 137 but appear immature and are targeted to dendritic shafts of CA3 pyramidal neurons 

rather than to the thorny excrescences where mature DGCs send their boutons 136, 137. 

Functional connections to CA3 can be observed by four to six weeks138. Proper integration 

of new DGCs is dependent upon activity in the existing dentate circuitry during the 

maturation period. Aberrant activity, such as epileptic seizures, can cause ectopic integration 

of adult-born DGCs in the hilus as well as improper targeting of DGCs axons back to the 

granule cell layer 94. Aberrant GABAergic activity due to the presence of the apolipoprotein 

E 4 (apoE4) allele, which is associated with high Alzheimer’s disease (AD) risk, has been 

observed to reduce dendritic length and complexity in adult-born DGCs 37. The total time to 

achieve a mature morphological and electrophysiological phenotype is approximately eight 

weeks in rodents.

During a window of time four to six weeks after birth, adult-born DGCs are functionally 

connected to the tri-synaptic circuit but are electrophysiologically distinct from their mature 

counterparts. In slice preparations, immature DGCs are responsive to a broader range of 

inputs139, hyperexcitable to stimulation140, 141, and have a lower threshold for plasticity 
111, 140 than mature DGCs. In vivo, at six weeks of age or less, DGCs show greater rates of 

Ca2+ transients and show less spatial tuning than mature cells142. Immature DGCs may be 

more likely to be recruited into the active ensemble of neural networks during learning, as 

shown by higher rates of immediate early gene (IEG) expression129; however, some reports 

suggest that immature DGCs are no more likely to be recruited than developmentally born 

cells143. Immature neurons receive less inhibition but also lower excitatory drive than mature 

cells144. This distinct physiological state suggests that immature DGCs play a unique role 

within the circuit. Paradoxically, part of that role appears to be to keep neighboring mature 

DGCs quiet. Using voltage-sensitive dyes, Ikrar et al. 145 found that ablation of neurogenesis 
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resulted in a wider spread of depolarization after stimulation. A similar effect of adult-born 

neurons on sparsity has been observed using IEG staining. Knocking down neurogenesis 

results in a higher proportion of DGCs that are IEG+ during a reversal learning task146, 

whereas optogenetic activation of adult-born cells under seven weeks of age reduced the 

fraction of IEG+ mature DGCs after exposure to a novel environment147. When animals are 

exposed sequentially to two similar environments, increased neurogenesis has been 

associated with lower rates of overlap between the DG ensembles activated by each 

exposure 148. These results suggest that adult-born DGCs, despite their individual 

hyperexcitability, support network level sparsity and allow similar events to be represented 

by distinct neuronal ensembles.

Recent efforts have sought to understand the mechanisms of adult-born DGC-induced 

sparsity by investigating the maturation of immature DGC connections. Anatomical 

evidence has identified a transient period around four weeks of age in which immature 

DGCs have a greater number of filopodia-like synapses on CA3 interneurons than mature 

DGCs138. At the same time, synapses onto excitatory CA3 pyramidal cells do not appear 

mature until six to eight weeks, and optogenetic stimulation of four-week-old cells is 

sufficient to induce the IEG FOS in CA3 interneurons but not in pyramidal cells138. This 

finding suggests that one of the earliest impacts of immature DGCs reaching CA3 is 

feedforward inhibition, not excitation. In support of this hypothesis, neurogenesis 

knockdown in DG leads to increased overlap of IEG+ CA3 neurons after exposure to two 

similar contexts 149. The increased overlap arises from an increase in the number of CA3 

neurons responsive to the second exposure, reflecting a loss of sparsity when the network is 

challenged with a novel yet similar stimulus.

How immature DGCs might inhibit mature DGCs within the granule cell layer is less clear. 

Optogenetic stimulation of immature four-week-old DGCs recruited less feedback inhibition 

than stimulating seven-week-old DGCs109, suggesting that the development of connections 

providing feedback inhibition occurs relatively late in the maturation process. Similarly, 

stimulation of the perforant path in combination with a pre-stimulation of DGCs resulted in 

a greater overall reduction in the population spike when seven-week-old rather than four-

week-old cells were stimulated. When a broader range of zero- to seven-week-old old adult-

born DGCs were stimulated in another study, however, the net effect of immature cell 

activation was increased inhibition to mature cells147. Ablating neurogenesis with irradiation 

resulted in a pronounced drop in inhibition, with a significant but smaller reduction in 

excitation147. In both of these studies, data were collected from ex vivo slices, where some 

connections were inevitably severed. The net balance of excitatory and inhibitory forces 

provided by specific ages of DGCs in vivo remains unresolved. In vivo, competition over 

synaptic contacts may also impact the contribution of mature DGCs. Increasing 

neurogenesis by deleting the pro-apoptotic gene Bax leads to a loss of spine density and 

reduced excitatory postsynaptic currents (EPSCs) in mature DGCs. In contrast, neurogenesis 

knockdown enhances EPSCs in mature cells 150. These results suggest that some existing 

synaptic contacts may be redistributed from mature neurons to immature neurons as the 

latter integrate into the DG circuitry.
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The functional role of adult-born neurons in cognition and behavior

The incorporation of adult-born neurons into the hippocampal circuitry is a remarkable 

example of plasticity. The conservation across mammals of such an energetically expensive 

process of generating and culling new neurons suggests that adult-born DGCs must serve 

some important function that developmentally born DGCs alone are insufficient to provide. 

Although the precise nature of that function is still being debated (Table 2), a common 

theme is the appropriate separation of overlapping or conflicting information.

Pattern separation vs. interference

The most pervasive proposed function of adult neurogenesis in the current literature is to aid 

in pattern separation. This term arises from computational models of hippocampus function, 

in which the DG transforms overlapping patterns of input from cortex into outputs to CA3 

that are more distinct151–153. For example, if two patterns of activity arriving in the DG 

overlapped by 50% but the activity of CA3 pyramidal cells following exposure to those two 

patterns only overlapped by 20%, it would be concluded that pattern separation occurred. 

The reduction in overlap is thought to be achieved in part by the sparse coding of the DG, in 

which rates of activity are notoriously low based on electrophysiological and 

immunohistochemical evidence154–157. Overlapping patterns from cortical inputs can be 

dispersed over a large number of sparsely active DGCs, which in turn have few but strong 

synapses onto CA3 pyramidal cells 158.

At the behavioral level, the presumed manifestation of pattern separation is an improvement 

in distinguishing highly similar events or environments. A role for adult-born neurons in 

such ‘behavioral pattern separation’ has been demonstrated by knocking down neurogenesis 

and assessing the ability to distinguish similar fear conditioning contexts 142, 159, 160, nearby 

locations on a radial arm maze161, and object-location pairings162. Adult-born neurons most 

consistently impact performance on these tasks when new or conflicting information is 

presented, i.e., conditions that would be predicted to send overlapping patterns of sensory 

input to DG and tax pattern separation heavily. Indeed, knocking down neurogenesis impairs 

reversal learning on the Morris water maze163, active avoidance tasks 146, 164, and 

touchscreen-based location discrimination165. Manipulations to increase neurogenesis can 

have the opposite effect, improving the ability to distinguish nearby locations on a 

touchscreen task166 or similar fear conditioning contexts167. A recent meta analysis supports 

the general conclusion that adult neurogenesis is important for behavioral pattern separation 

tasks as described above 168. However, behavioral findings exploring other facets of 

hippocampus-dependent processes have not been entirely consistent. Adult-born neurons do 

not typically seem to be necessary for the initial acquisition of most hippocampus-dependent 

memories, such as associating contexts with an aversive shock169 or navigating to a hidden 

platform in the Morris water maze 163, 170. However, there are a few reports of neurogenesis 

knockdown impairing the initial acquisition of the Morris water maze171 or contextual fear 

conditioning172, 173, and increasing neurogenesis via running does not universally lead to 

improvement174. Some of these differences may be byproducts of the knockdown or 

enhancement strategy. Multiple methods have been employed to impair neurogenesis, 

including genetic ablation of proliferating progenitor cells 146, 169, 173, anti-mitotic 
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agents163, and focal x-irradiation 161, 164, 175. Of these, x-irradiation achieves the greatest 

knockdown, but it is also permanent. Ablating proliferating progenitors in nestin-tk 

transgenic mice achieves lower levels of knockdown but neurogenesis recovers within a few 

weeks, allowing specific ages of newborn cells to be assessed169.

Despite some inconsistencies, a general consensus is emerging that adult-born neurons do 

play a role in learning and memory. The missing link is whether this behavioral-level 

improvement actually reflects differences in pattern separation at the level of underlying 

coding mechanisms. It is also important to note that theories implicating the DG in pattern 

separation predated the widespread acceptance of adult neurogenesis in the hippocampus by 

a decade or more. Incorporating adult-born neurons into computational models is an area of 

active study176, and it has been difficult to reconcile how the addition of hyperexcitable cells 

to the dentate would improve overall pattern separation. The lack of a clear link between 

‘behavioral pattern separation’ and neuronal activity has also sparked a sometimes-heated 

debate over whether this terminology is appropriate. It has been suggested that the essential 

feature common to behaviors impacted by neurogenesis is the presence of a high level of 

potential interference 177–179, which can occur due to the overlap between features of the 

environment or can be due to the presence of prior learning (reversal tasks) or the passage of 

time that erodes the fine details of a memory. Although a few studies have observed both 

changes in the ability to distinguish similar contexts at the behavioral level and a 

corresponding change in the overlap of active neuronal ensembles in either DG 148 or CA3 
149, this assessment of cell activity has been limited to a single subfield. A more 

comprehensive assessment of activation throughout entorhinal cortex, DG, and CA3 during 

multiple behavioral pattern separation tasks might serve to defuse some of these arguments.

Forgetting and memory clearance

Recently, it has been proposed that adult neurogenesis may play a role not just in learning 

new conflicting information but also in forgetting. In contrast to the vast majority of studies 

that first manipulate neurogenesis levels and then test memory function, Akers et al180 first 

trained mice to perform hippocampus-dependent tasks and then kept them sedentary or 

provided running wheels for six weeks. When tested at the end of the running period, 

running mice with enhanced neurogenesis showed poorer memory for a context or spatial 

location learned prior to their running experience than sedentary controls. Blocking the 

running-induced neurogenesis using a transgenic system prevented the running-induced 

memory deficit. In contrast, reducing neurogenesis in infant mice, which normally show 

infantile amnesia, mitigated signs of forgetting four weeks later. These results suggest that 

high rates of neurogenesis during the early postnatal period contribute to the infantile 

amnesia effects, and boosting neurogenesis during adulthood may open a new period of 

enhanced forgetting. Why would adult neurogenesis be conserved across most mammals if it 

promotes forgetting? One possibility is that there is a tradeoff between minimizing 

interference and maintaining stability of memories. If memory storage capacity is limited, 

perhaps some old memories must be destabilized and cleared away so that new memories 

can be incorporated into their own distinct circuit. Epp et al181 reported that, although 

increasing neurogenesis via running produced a less robust memory for the platform location 

in a Morris water maze test, running did produce an increase in the rate of reversal learning. 
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On another task where mice had to learn to associate particular odors with particular 

contexts, running similarly reduced the ability to correctly identify odor-context pairs. 

However, when challenged to reverse this information and associate the odors with the 

opposite context, running animals performed better than sedentary controls. No advantage 

was observed in a low-conflict condition, where entirely novel odor-context pairs had to be 

learned. This study adds further evidence that adult neurogenesis offers an advantage in 

situations where the potential for interference with previous memories is high. The specific 

theory that adult neurogenesis promotes forgetting is relatively controversial, as the field is 

not in agreement about whether forgetting is a categorically separate process from plasticity. 

Indeed, the experiments described above could also be interpreted as examples of an extreme 

form of plasticity. With the passage of time, no two experiences will ever truly be identical, 

and even subtle changes in the environment between two testing experiences could be 

interpreted as a clue to the animal that conditions may have changed.

Adult neurogenesis in aging and pathological conditions

Soon after the discovery of adult hippocampal neurogenesis, it was found that the adult 

neurogenesis process is highly sensitive to environmental factors and pathological conditions 

in rodents and non-human primates, and possibly in humans. Accumulating evidence 

suggests that physical and psychological stresses can impair the process of adult 

neurogenesis in model animals, which might further augment the symptoms of disorders. 

Therefore, it is possible that dysregulation of adult hippocampal neurogenesis in humans is 

also linked to several brain disorders, such as age-dependent cognitive decline, AD, major 

depressive disorders (MDD) and medial-temporal lobe epilepsy (mTLE), although clear 

links between the impairment of adult hippocampal neurogenesis and these diseases need to 

be shown in future studies. Although our knowledge regarding the interaction of these 

disorders with adult hippocampal neurogenesis and related functions in the human brain is 

very limited, animal models provide some indications of links between them. In this section, 

we summarize the effect of neurological disorders on adult neurogenesis in humans, the 

possibility of dysregulation of adult neurogenesis as a cause of those disorders, and future 

directions to develop adult hippocampal neurogenesis-based treatment.

Aging

One prominent negative biological factor in adult hippocampal neurogenesis is aging. 

Although aging itself is not a pathological process, it is a process that interacts with health 

and disease states, and it is one of the most significant risk factors for cognitive decline and 

neurodegenerative disorders. Understanding the process of brain aging is crucial to 

understand successful cognitive brain aging. In parallel with aging, the rate of adult 

hippocampal neurogenesis, the number of RGLs, and the number of intermediate 

progenitors decrease in the DG of rodents, carnivores, non-human primates, and 

humans4, 9, 182–185. A recent immunohistochemical analysis of adult hippocampal 

neurogenesis with unbiased stereology across the age of 0.2 to 59 years revealed that 

proliferating cells in the SGZ rapidly decline in early childhood 186, consistent with an 

earlier study7. Thus, the decline of adult hippocampal neurogenesis during aging could 

reduce forms of structural and functional plasticity that depend on adult-born neurons. 
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Interestingly, the level of adult neurogenesis in the hippocampus has been linked to cognitive 

abilities both in rodents and non-human primates183. Hippocampus-dependent cognitive 

abilities also decline with age in humans187, 188, but it is not clear whether the levels of adult 

hippocampal neurogenesis correlate with cognitive abilities in human subjects. Technical 

advances in non-invasive in vivo imaging of neurogenesis using magnetic resonance imaging 

(MRI) or positron emission tomography (PET) may allow investigators to obtain quantitative 

data relating adult hippocampal neurogenesis to cognitive metrics in humans 189, 190.

In addition, the amount of gliogenesis increases whereas that of neurogenesis decreases 

during aging9, 191. These alterations could be due to both intrinsic changes in adult neural 

stem cells and environmental changes. Interestingly, activated RGLs differentiate into 

astrocytes after several rounds of cell division, which raises the possibility of a “disposable” 

stem cell model182. This observation implies that the reduction of adult hippocampal 

neurogenesis during aging is a unidirectional process due to the depletion of the adult neural 

cell pool. However, the capacity for proliferation and survival can be reversed by voluntary 

running or environmental enrichment in aged mice104, 191–193, suggesting that 

environmental cues can induce some capacity for adult hippocampal neurogenesis in aged 

brains, and the ability to generate new DGCs in the aged brain is suppressed by aging of the 

environmental niche. In fact, recent reports uncovered that the levels of Bmp4 and Bmp6 are 

increased during aging in the hippocampus in both mice and humans 194, 195, and the 

attenuation of BMP signaling increased the proliferation of neural progenitors in the aged 

hippocampus. These findings suggest that the increase in BMP secretion as a result of aging 

of the environmental niche could be part of the reason behind reduced neurogenesis, 

implying that the reduction of adult neurogenesis during aging seems to be the consequence 

of systemic changes in the brain. Importantly, increasing adult-born DGCs in aged mice by 

overexpressing Klf9 or attenuating BMP signaling improved cognitive abilities and long-

term memory148, 194, 195. These results suggest that cognitive decline with aging can be 

reversed at least in part by increasing hippocampal adult neurogenesis.

In addition to changes in the local environment, changes in the systemic milieu during aging 

have a significant impact on adult hippocampal neurogenesis. Wyss-Coray and colleagues 

have used heterochronic parabiosis to show that the systemic milieu from old animals 

inhibits adult neurogenesis and synaptic plasticity and impairs hippocampus-dependent 

memory42. Using a proteomics approach, they demonstrated that several chemokines such as 

CCL11 increased with aging, and the injection of CCL11 into young animals decreased 

adult neurogenesis and impaired hippocampus-dependent spatial memory. Subsequent 

studies showed that the levels of b2-microglobulin, a component of the major 

histocompatibility complex class 1 (MHC1) molecule, which is involved in synaptic 

plasticity196, 197, were also identified as an aging-dependent negative regulator of adult 

hippocampal neurogenesis43, suggesting that immune signaling could have other 

unconventional functions in the regulation of adult hippocampal neurogenesis. In contrast, 

the systemic milieu from young animals can increase adult neurogenesis and improve 

synaptic plasticity as well as hippocampus-dependent cognitive performance, likely through 

the CREB pathway198. Based on these findings, the same group hypothesized that plasma 

from an early developmental stage might contain beneficial systemic factors for adult 

hippocampal neurogenesis; surprisingly, they demonstrated that tissue inhibitor of 
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metalloproteinase (TIMP2) is enriched in human umbilical cord and young mouse plasma 

and TIMP2 is necessary for the effect of human umbilical cord plasma on synaptic plasticity 

and cognitive improvement41. These observations suggest that the reduction in adult 

hippocampal neurogenesis during aging can be at least in part reversed by cell-extrinsic 

factors. However, it is not entirely clear how these systemic factors in the plasma and blood 

affect adult neurogenesis and hippocampal function, whether these factors directly affect the 

process of adult neurogenesis (ex. changes in synaptic plasticity in the hippocampus may 

indirectly affect adult neurogenesis), and whether the few already-identified factors in the 

systemic milieu are the only factors. In addition, it is not clear yet whether the changes of 

systemic milieu during aging affect cognitive abilities and adult hippocampal neurogenesis 

in other species, including humans. As part of future studies, understanding the underlying 

mechanisms and functional relevance in humans could help develop therapeutic tools.

Alzheimer’s disease (AD)

In addition to aging, accumulating evidence suggests that aging-related neurological 

diseases such as AD and Parkinson’s Disease (PD) may impair adult hippocampal 

neurogenesis, although available data from human research is very limited. Modeling in 

animals by overexpressing proteins linked to familial AD such as mutant amyloid precursor 

proteins (APP) and presenilin partially recapitulates AD pathology, but the animals also have 

unrelated phenotypes due to the overexpression of transgenes, and therefore interpretations 

based on studies using those animal models should be approached cautiously 199. AD is the 

most common dementia, and AD patients show functional impairment in memory and 

cognitive function. The accumulation of tau and APP, which is a hallmark of AD, starts in 

the entorhinal cortex (EC), a gateway to the hippocampus (Fig. 1), and spreads to the cortex 

and the hippocampus200. Accumulation of APP and tau elicits synaptic and neuronal loss, 

which is believed to induce functional impairments at least in part. The effect of AD on 

human adult hippocampal neurogenesis is limited and somewhat controversial. Some studies 

have reported that adult hippocampal neurogenesis and neuronal maturation are inhibited in 

AD patients whereas gliogenesis is increased 201–203. On the other hand, Jin et al. reported 

that adult hippocampal neurogenesis is increased in AD patients204. These discrepancies 

may reflect different stages of AD or the heterogeneous nature of AD pathology. In addition, 

all human AD studies relied on the expression of marker proteins, which could be 

misexpressed under pathological conditions. More comprehensive analyses using different 

technical approaches to quantitatively measure the number of adult neural stem cells, 

intermediate progenitor cells, and newborn cells using double-labeling 

immunohistochemistry, BrdU labeling4 or the detection of 14C in genomic DNA will be 

essential in future human studies9.

Similarly, studies using animal models of AD have shown variable effects of AD pathology 

on adult hippocampal neurogenesis depending on the specific AD-model transgenic mouse 

lines used and their ages. Several mouse models of AD with distinct genetic mutations have 

been found to have impairments in adult hippocampal neurogenesis and neuronal maturation 
205–211. However, in contrast, cell proliferation in the adult DG has been found to be 

increased204, 212. The increased proliferation is observed with relatively earlier timing (three 

to six months of age), and increased proliferation may not reflect increased neurogenesis but 
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rather gliogenesis, suggesting that the effect of AD pathology could indeed differ depending 

on the stage of AD as well as genetic background. Interestingly, GABAergic signaling is 

enhanced in immature DGCs in a human APP transgenic mouse line, which consequently 

impairs morphological and functional maturation of adult-born DGCs203. Since GABAergic 

signaling from the local neural network appears to be crucial for the regulation of adult 

hippocampal neurogenesis in many aspects (Table 1), defective GABAergic signaling could 

be one of the mediators of AD pathology. Importantly, knockout of apoE and knockin of 

human apoE4, one of the major genetic risk factors for AD, impairs GABAeric signaling 

onto immature adult-born DGCs and reduce neurogenesis while increasing gliogenesis37. 

Thus, known genetic risk factors for AD can affect adult hippocampal neurogenesis. Further 

investigation of other genetic risk factors for AD may help us to understand the 

heterogeneous nature of AD pathology through the lens of adult hippocampal neurogenesis.

Parkinson’s disease (PD)

PD is the most common movement disorder. It is strongly linked to the aggregation of a–

synuclein in Lewy bodies and the degeneration of dopaminergic neurons in the substantia 

nigra pars compacta. Dopaminergic signaling regulates adult hippocampal neurogenesis in 

rodent models (Table 1). Postmortem analysis of adult hippocampal neurogenesis in PD is 

very limited, but a few reports have consistently shown that adult neural stem cells were 

reduced in PD individuals and correlated with a–synuclein accumulation 213, 214. Several 

genes related to PD, including a–synuclein, leucin-rich repeat kinase 2 (LRRK2), and 

PINK1, have been studied using transgenic mouse models214–218. An important 

physiological function of a–synuclein is the regulation of presynaptic transmission. A/b–

synuclein-double knockout mice have exhibited increased adult hippocampal 

neurogenesis214, whereas overexpression of a–synuclein decreased neurogenesis and 

impaired morphological maturation of adult-born DGCs214, 216–218. Therefore, adequate 

levels of a–synuclein are crucial for proper regulation of adult hippocampal neurogenesis. 

Similarly, a transgenic mouse line harboring the most frequent G2019S mutation in Lrrk2 

exhibited high expression of Lrrk2 in the hippocampus and showed defects in proliferation/

morphogenesis and survival of adult neural progenitors/adult-born DGCs214. These data 

suggest that genetic mutations in PD patients could affect adult hippocampal neurogenesis, 

which mediates at least some of the pathology of PD.

Mood disorders

In addition to neurological diseases, anxiety and depression have links to adult hippocampal 

neurogenesis. Adult neurogenesis is required for some of the beneficial effects of 

antidepressants through 5HT1A receptors219. In human subjects, hippocampal volume and 

adult hippocampal neural progenitors are reduced in depression 220, 221, and antidepressant 

treatments in MDD patients increase the numbers of adult neural progenitors in the DG and 

the volume of DG222–226. Thus, it is possible that the increase in adult hippocampal 

neurogenesis mediates the effect of antidepressants in human patients, although whether the 

effects of antidepressants are mediated by adult hippocampal neurogenesis seems to depend 

on signaling pathways modulated by antidepressants in rodent models100, 221, 225, 227. 

Importantly, no consensus has been reached on the role of adult hippocampal neurogenesis 

in the effects of antidepressants228, 229.
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Conversely, environmental challenges such as unpredictable chronic mild stress, prenatal 

stress, chronic social defeat, early life stress, and glucocorticoid administration all impair 

adult hippocampal neurogenesis 34, 35, 131, 132, 219, 224, 227, 230, 231. The adult-born cells in 

the ventral DG appear particularly susceptible to such stressors35, 232, 233. Prolonged 

stressors may create a vicious cycle in which stress impairs neurogenesis, low neurogenesis 

fails to mitigate stress, and further adult-born neurons are lost. Augmented stress responses 

might eventually increase anxiety and depression-like behavior131, 234–237.

However, determining precisely how adult hippocampal neurogenesis contributes to 

regulating the emotional state has remained elusive. Most studies, but not all238, have shown 

that the ablation of adult-born neurons does not affect baseline levels of anxiety but rather 

that adult-born neurons modulate the stress response100, 234, 239–241. Adult-born cells in the 

ventral DG may be especially important in this modulation. The ventral hippocampus is 

associated with social memory and anxiety, and the activation of ventral DG neurons by 

optogenetic approaches can reduce anxiety levels 242, 243, possibly by regulating the activity 

of the HPA axis. The ability of adult-born DGCs to increase circuit plasticity in the 

hippocampus, as described above, may provide an additional buffer against stress. 

Interestingly, genetic ablation of adult hippocampal neurogenesis by knocking out Tbr2 in 

the adult brain reduced anxiety-related behavior during the dark cycle, and the recovery of 

corticosterone levels after restraint stress was quicker in Tbr2 KO mice than WT mice238. 

On the other hand, depletion of adult-born neurons using GFAP-tk mice showed opposite 

effects131. In this study, animals with higher neurogenesis also had improved recovery from 

an acute stressor than animals with low neurogenesis131. These discrepancies may derive 

from methodological differences, and adult-born DGCs may contribute to mood regulation 

in a context-dependent manner. Thus, although adult-born DGCs seem to be involved in 

sensing and responding to stress, further studies are required to clarify how the context 

affects the functionality of adult neurogenesis.

The impairment of adult hippocampal neurogenesis may thus have prolonged effects on both 

cognitive and emotional function. Importantly, depression and cognitive impairments are 

also common symptoms in aged adults and patients with AD/PD. Of interest, pattern 

separation, the computational process associated with the DG, is impaired with aging and 

AD as well188, 244, 245. Thus, dysregulation of adult hippocampal neurogenesis may 

contribute to functional deficits of DG-specific information processing in humans. In 

addition, patients undergoing cancer treatments, which can eliminate dividing cells including 

adult neural stem cells, experience depression and cognitive impairment246. Understanding 

the common mechanisms underlying the dysregulation of adult hippocampal neurogenesis in 

pathological conditions could impact a large population of patients suffering from several 

diseases and the side effects of treatments.

Epilepsy

Although most of the pathological conditions discussed thus far reduce the number of adult 

neural stem cells and neurogenesis, seizure activity in mesial temporal lobe epilepsy 

(mTLE) dramatically increases aberrant neurogenesis in rodent models and human subjects 

soon after seizure247–251. Consequently, chronic seizure damages and exhausts adult neural 
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stem cells and eventually decreases adult neurogenesis a few months after the induction of 

seizures95, 252. In addition to cell proliferation, adult-born neurons generated by seizure 

activity exhibit aberrant cell migration, morphogenesis and synaptic integration through 

several signaling pathways and eventually establish recurrent networks247, 253–260. Thus, 

seizure-induced enhanced adult neurogenesis substantially reorganizes the local neural 

network in the DG and may impair cognitive functions. In fact, a recent report has shown 

that reducing adult neurogenesis using nestin-tk mice prior to the induction of seizure 

reduces the frequency of spontaneous recurrent seizures, and reducing aberrant neurogenesis 

by seizure also has some benefits for cognitive abilities261. Further investigation of how and 

to what extent seizure-induced adult-born neurons contribute to the etiology of mTLE will 

be interesting.

Summary and future directions

As summarized in this review, significant progress in our understanding of adult 

hippocampal neurogenesis has been made in rodent models using advanced transgenic mice, 

viral circuit tracing, next generation sequencing, and imaging. However, since most of our 

knowledge comes from research using rodent models, it is still not clear how adult 

hippocampal neurogenesis is regulated and contributes to cognitive abilities in humans and if 

impairment of adult neurogenesis contributes to the pathophysiology of human diseases. 

Human lifetimes are much longer than those of rodents, and it is unclear whether the time 

course of maturation and integration of adult-born DGCs in rodents and their functional 

contribution to local network activity and behavior are comparable in humans. Recent 

progress in non-invasive imaging of adult neurogenesis with MRI and PET may allow us to 

address these questions. One major limitation of studying adult hippocampal neurogenesis in 

humans is the inability to access live samples, which makes it difficult to characterize and 

manipulate adult hippocampal neurogenesis. However, recent advances in 3D culture 

systems derived from human pluripotent cells called organoids may provide a good model 

system to study several aspects of human development and disease 262. The advantage of 

such systems is that they preserve some cytoarchitectural and organizational aspects of sub-

regions of the human brain. Development of such systems specified toward hippocampal and 

DG fates may provide a good model system to study adult neurogenesis in vitro. While 

several studies have already developed organoid systems that resemble different human brain 

regions, including hippocampus 263, these organoids in general seems to recapitulate only 

prenatal stages. Some remaining challenges include differentiating organoid DGs and 

achieving postnatal stages that resemble quiescent and multi-potent neural stem cells.
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Box

Genetic mutation, variation and retrotransposons

It is now becoming clear that the process of neurogenesis puts the neuronal genome in a 

state that is prone to new mutations. Developing neurons sustain genetic mutations 

ranging from chromosomal aneuploidy to copy number variations (CNVs), single-

nucleotide polymorphisms (SNPs), and mobilized retrotransposons (RTs) 83, 264–267. This 

somatic mosaicism shines a light on an additional impact of adult neurogenesis: the 

ability to generate an increase in genomic complexity within the brain of a single 

individual. However, the functional impact of these mutations is still largely unknown.

Early studies of adult-born neurons in the mouse subventricular zone revealed that 

chromosomal mis-segregation occurred during mitosis and, as a result, a subset of 

neurons experienced the complete loss or gain of a chromosome264, 268. Since this 

discovery, there has been intense debate over the degree of aneuploidy in neurons, with 

estimates ranging from 1–33%; the most recent high-powered study placed the degree of 

aneuploidy at 10% 264, 269–271. Despite the debate over the exact frequency, aneuploidy 

likely has a profound impact on neuronal function, as evidenced by the common 

elimination of these cells when mutations arise during early development272. Although 

the specific impact of aneuploidy during adult neurogenesis is unclear, these events result 

in altered expression of the associated genes268.

Human neurons also harbor a mosaic complement of CNVs residing within the kilo- and 

megabase range272–274. NPs have a propensity to generate large-scale structural 

rearrangements due to replication stress in actively transcribing regions275, 276. 

Importantly, the DNA damage that drives these mutations in NPs is often localized to 

hotspots that are focused around genes that are important for neuronal development and 

function275, indicating that there might be an associated recurring functional role of 

repair.

An additional layer of genomic diversity imparted during neurogenesis is the 

amplification of RTs. RTs are expressed and mobilized in NPs both in vitro and in vivo, 

where they colocalize with neurogenic and non-neurogenic areas of the brain277. 

Interestingly, retrotransposition dysregulation has been associated with the diagnosis of a 

subset of neurological disorders. For example, MeCP2, a gene that is mutated in Rett 

syndrome, works to modulate RT mobilization in NPs, and brains of individuals with Rett 

syndrome exhibit higher levels of RTs83. Similarly, genomic levels of RTs are also higher 

in the brains of individuals diagnosed with schizophrenia83, 278, further indicating that 

somatic retrotransposition may be linked to cognitive function.

It is tempting to speculate that somatic mutations during adult neurogenesis impart an 

additional layer of heterogeneity to the broader circuit. We know from decades of study 

that the above-mentioned mutations can have a profound impact on neurological 

phenotypes when present in the germline. Therefore, if a single new neuron harbors 

changes in the copy number of key neuronal genes, or perhaps a more subtle alteration in 

the ability to regulate those genes, it is likely that the function of that individual neuron 

will be modified and may even be differentially tuned in comparison to surrounding 
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neurons that have their own, but different, sets of somatic mutations (Fig. 2). To move 

towards a deeper understanding of the true impact of somatic mutations, the Brain 

Somatic Mosaicism Network was recently formed with the goal of exhaustively 

characterizing such mutations within the human brain266. As we begin to refine strategies 

for identifying somatic variants in neurons, the next few years should prove to be an 

exciting time to study how mutations that arise in adult-born neurons impact neural 

function and potentially generate increased diversity within a single human brain.
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Figure 1. Development of adult-born DGCs and the trisynaptic circuit in the hippocampus
(a) The trisynaptic neural circuit in the hippocampus from the entorhinal cortex through the 

dentate gyrus, CA3 and CA1. (b) Developmental processes of adult hippocampal 

neurogenesis. Adult neural stem cells in the hippocampus (radial glia-like cells, Type 1 

cells) and their differentiation through intermediate progenitors to mature DG neurons.
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Figure 2. Somatic mosaicism during adult neurogenesis drives functional heterogeneity
(a) Adult-born neurons are generated in the subgranular zone of the dentate gyrus; during 

this period of maturation they are prone to DNA damage, replication stress, and 

retrotransposition. Neuron A (green), B (purple), and C (orange) represent three distinct 

adult-born neurons. (b) Each newborn neuron will have a unique complement of 

neurogenesis-driven mutations. Each tick mark represents a unique mutation in the 

respective neuron such as an aneuploidy event, a CNV, or a newly inserted retrotransposon. 

(c) Depending on the complement of mutations, the neuron may be shifted further away 

from the mean function of all dentate granule neurons, thereby increasing diversity within 

the DG.
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Table 1

Signals regulating adult hippocampal neurogenesis

Stages Regulators

Secreted factors and 
downstream effectors 
(Morphogens, growth 
factors, cytokines, etc)

Type 1 (RGLs) Maintenance of RGLs
BMPs 11–14, VEGF15, Shh16–19

Proliferation of RGLs/NPs
IGF220

Type2a, 2b Proliferation of NPs
FGF221, IGF-220, EGF22, 23, ERK5 24, estrogen25

Promoting differentiation
Wnt26–28, IGF-129, 30, VEGF15, BDNF/NT-331, BMPs14, 32

Inhibition of proliferation
Cortisol33–35, Chronic Opioid Use 36, ApoE437

Neuroblasts & immature 
neurons

Promoting neuronal maturation
Wnt/PCP 28, 38, BDNF/NT-339, 40, TIMP241

Inhibition of proliferation
CCL1142, β2M43

Adhesion molecules Type 1, 2a & 2b Maintenance of RGLs
Notch44–46

Inhibition of proliferation
Integrin 47, 48

Promoting differentiation
Eph-Ephrin49,

Neuroblasts & immature 
neurons

Neuronal migration and synaptogenesis
Semaphorin/Plexin 50, 51

Inhibition of proliferation
Tenasin-R52

Transcription factors Type 1 Maintenance of RGLs
REST53, 54, Sox255, Hes546, FoxO56, NFIX13, NFIB57

Activation of RGLs
Ascl158, 59

Type 2a Maintenance of NPs
Sox255, 60, TLX1 61–63, REST 53, 64

Differentiation of NPs
Ascl165

Type 2b Differentiation into intermediate progenitors
Tbr266

Neuronal differentiation
Neurog2 67, 68, NeuroD126, 27

Neuroblasts Neuronal differentiation
NeuroD126, 27

Immature neurons Neuronal maturation
Prox128, 69, 70, CREB71, 72, Klf973

Epigenetic modifiers Type 1, 2a & 2b Proliferation of RGLs/NPs
GADD45b74, TET175, miR-13776, miR-17-9277, Nup15378

Differentiation of RGLs/NPs
MBD179–82, HDAC127, 83, HDAC284, MeCP2 76, 83, 85–87, miR-18480, miR-199 87

Immature neurons Synaptogenesis
MeCP2 88, HDAC2 84, 87

Neuronal migration/dendritic growth
miR1989, miR-13290

Neurotransmitters Type 1 Activation of RGLs
GABA 91–93, Glutamate94, 95

Type2a, 2b & neuroblasts Proliferation of NPs
GABA93, 96–98, Dopamine99, Serotonin 31, 99, 100, Norepinephrine101, Acetylcholine 
102–105

Inhibition of proliferation
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Stages Regulators

Chronic opioid use106

Immature neurons Activation of immature neurons
GABA107–114, Glutamate108, 112, 114–116, Acetylcholine 112, 117, 118, Dopamine 119
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