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Abstract

Objective: Obesity has become a worldwide health problem in the past decades. Human and animal studies have
implicated serotonin in appetite regulation, and behavior genetic studies have shown that body mass index (BMI) has
a strong genetic component. However, the roles of genes related to the serotoninergic (5-hydroxytryptamine,5-HT) system
in obesity/BMI are not well understood, especially in Chinese subjects.

Subjects and Design: With a sample of 478 healthy Chinese volunteers, this study investigated the relation between BMI
and genetic variations of the serotoninergic system as characterized by 136 representative polymorphisms. We used
a system-level approach to identify SNPs associated with BMI, then estimated their overall contribution to BMI by multiple
regression and verified it by permutation.

Results: We identified 12 SNPs that made statistically significant contributions to BMI. After controlling for gender and age,
four of these SNPs accounted for 7.7% additional variance of BMI. Permutation analysis showed that the probability of
obtaining these findings by chance was low (p = 0.015, permuted for 1000 times).

Conclusion: These results showed that genetic variations in the serotoninergic system made a moderate contribution to
individual differences in BMI among a healthy Chinese sample, suggesting that a similar approach can be used to study
obesity.
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Introduction

A decade ago, the World Health Organization warned about

a growing obesity epidemic and listed more than 30 diseases that

are causally related to obesity [1]. Globally, approximately 1.6

billion adults are either overweight (BMI [weight in kilogram

divided by the square of height in meter]$25) or obese (BMI $30)

[2]. In fact, the rates of obesity have tripled in developing countries

in the past 20 years [3]. Moreover, childhood obesity is also

increasing rapidly worldwide [4].

Although many environmental factors (e.g. freely available high-

calorie food, sedentary life style, low socio-economic status and

high-danger neighborhood environment) predispose individuals to

gaining weight [5,6,7,8], genetic factors also contribute to energy

homeostasis or appetite, which can lead to obesity. Family, twin,

and adoption studies indicate that 24%–90% of human BMI

variation is due to genetic factors [9,10,11,12,13,14]. Recent

molecular genetic studies have identified many genes that regulate

appetite or energy balance (e.g, FTO, MC4R, SH2B1, and

serotonin related genes ) and have robust associations with obesity

or BMI [15,16].

Because serotonin can regulate appetite by activating pro-

opiomelanocortin (POMC) neurons, which play a key role in the

regulation of feeding by sending anorectic signals to the

periventricular nucleus (PVN) and other brain areas associated

with energy homeostasis [17], serotonin as well as related genes

are often tested for association with weight gain and obesity.

Indeed, a strong negative correlation between blood 5-HT

concentration and body mass was found both in mice [18] and

in human [19]. Studies of SERT knockout mice have uncovered

SERT as a candidate gene for obesity, with SERT mutant

(SCL6A42/2) mice becoming obese [20]. This polymorphism

has also been associated in some studies with eating disorder

[21,22,23] and obesity [24,25], although other studies showed no

association between the 5-HTTLPR polymorphism and weight

regulation [26,27,28]. In terms of the 5-HT receptor genes, the

serotonin (5-HT) receptor HTR2C was demonstrated to play a role
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in modulating appetite behavior using knock-out mice [29,30],

normal population [31] and patients [32,33,34,35], although some

studies [36,37] failed to replicate that result. HTR1B [38,39],

HTR2A [40,41], HTR3B [42] were also reported to be associated

with body mass or obesity. MAOA was also found to influence body

mass [43] or obesity [44].

Although these serotonin-related genes have been identified as

being relevant to body mass and obesity, the results have not

always been consistent and the size of their effects has been

typically small, far less than previously estimated 24%–90%

heritability. There may be many reasons for these inconsistent

results and small effect sizes. One most likely reason is

polygenicity. Complex quantitative traits are influenced by many

genes, each with a small effect. As early as 1918, Fisher proposed

this polygenic model that combined many genes of small effects to

yield the continuous variation for most quantitative traits [45].

Recently, some studies have successfully applied the polygenic

model by combining effects of the whole genome [46,47,48] or

effects of genes within a pathway [49,50,51]. Since several

serotonin-related genes exert their effect on BMI, it is likely that

their effects are cumulative. The current study used a system-level

approach to examine the role of the serotoninergic system in

BMI/obesity.

Another possible reason for inconsistent results may be the

heterogeneity in samples across studies. Subjects in different

studies differ in their health status, age, sex, and ethnicity, which

might have confounded the relations between genes and BMI. For

example, associations between 5HTR2A and BMI are found in

obese [40] and anorexia nervosa patients [41] but not in healthy

controls. Similarly, 5HTTLPR was associated with BMI in non-

elderly (,65 yr) stroke patients but not in elderly patients (.

or = 65 yr). An association was observed between MAOA and

obesity among white and Hispanic American subjects, but not

among African–American subjects [44]. Thus it is important to

control for these potential confounding factors.

The current study adopted the system-level approach to

examine the role of the serotoninergic system in body mass in

a relatively homogenous sample (in terms of age, health status, and

ethnicity). We enrolled a sample of young healthy Han Chinese

subjects, genotyped polymorphisms within the serotonin system,

and calculated their BMI. Specifically, we selected 136 poly-

morphic loci (including 134 SNPs and 2 VNTR polymorphisms)

to cover a substantial portion (by LD) of the common variations

within known genes of the 5-HT system to estimate the additive

and multiplicative contributions of these genes on BMI.

Materials and Methods

Participants
Four hundred and eighty healthy Chinese college students

(mean age = 20, SD = 1) were recruited from Beijing Normal

University, Beijing, China. They had normal or corrected-to-

normal vision, and had no history of neurological or psychiatric

problems according to self-report. None of them were identified as

having alcohol or nicotine dependence according to the Alcohol

Use Disorders Identification Test [52] and the Fagerström Test for

Nicotine Dependence [53]. Two participants were excluded

because of poor genotyping results. A written consent form was

obtained from each subject after a full explanation of the study

procedure. This study was approved by the IRB of the State Key

Laboratory of Cognitive Neuroscience and Learning at Beijing

Normal University, China.

BMI Measurements
Height and weight of subjects were self-reported. BMI was

calculated as weight (kg) divided by the square of height (m). Self-

reported data on weight and height have been used by previous

large-scale studies on body mass and proved to be highly reliable

in calculating BMI [22,38,46,54,55,56,57]. Furthermore, all

students including all of our participants were given an annual

physical examination at the beginning of the academic year in

September and they were informed of their height and weight.

Self-report data on height and weight were collected in December.

Genetic Analysis
Gene selection. We selected 25 genes and 136 associated

polymorphisms (134 SNPs and 2 VNTR polymorphisms) distrib-

uted across the synthesis, degradation, transporter, and receptor

subsystems of the 5-HT system. 5-HT synthesis involves convert-

ing the tryptophan (via TPH) to 5-hydroxytryptophan (5-HTP),

followed by subsequent hydroxylation (by TPH) to 5-HT. We

included two genes related to 5-HT synthesis: tryptophan

hydroxylase (TPH1 and TPH2, with three SNPs each). For the

degradation subsystem, released 5-HT is directly broken down at

the synapse into inactive metabolites by two enzymes, COMT and

MAO (including MAOA and MAOB). We included catechol-O-

methyl transferase gene (COMT, with 7 SNPs) and monoamine

oxidase genes (MAOA, with 5 SNPs and 1 VNTR, and MAOB with

3 SNPs). The 5-HT transporter includes (1) SLC6A4, an integral

membrane-spanning protein that pumps the neurotransmitter

serotonin from synaptic spaces into presynaptic neurons and (2)

VMAT, a transport protein integrated into the membrane of

intracellular vesicles of presynaptic neurons, which acts to

transport monoamines into the synaptic vesicles. We included

SLC6A4 (7 SNPs plus 5HTTLPR), VMAT1 (SLC18A1, 9 SNPs),

and VMAT2 (SLC18A2, 5 SNPs). For the receptor subsystem, we

included all 17 genes (with the respective number of SNPs in

parentheses): HTR1A (2), HTR1B (2), HTR1D (13), HTR1F (5),

HTR2A (21), HTR2B (6), HTR2C (3), HTR3A (1), HTR3B (2),

HTR3C (3), HTR3D (4), HTR3E (2), HTR4 (10), HTR5A (4),

HTR5B (2), HTR6 (5), and HTR7 (7). Together, the above 25

genes represent all major genes involved in these four 5-HT

subsystems in humans [58]. Details about these genes and the

selected loci can be found in Table S1.

Genotyping techniques. The SNPs were genotyped using

the standard Illumina Golden Gate Genotyping protocol (see

Illumina Golden-Gate Assay Protocol for details, http://www.

southgene.com.cn; Shanghai South Gene Technology Co., Ltd,

Shanghai, China). In addition, three genetic markers (5HTTLPR,

MAOA VNTR, and COMT rs4680) were ascertained by standard

PCR procedures [59,60,61].

Gene data preprocessing. Two subjects with more than

10% null genotyping were excluded. In addition to automatic

calling of genotypes, Illumina genotyping platform supplied

a quantitative quality measure known as the GenCall score. It

measures how close a genotype is to the center of the cluster of

other samples assigned to the same genotypes, compared with the

centers of the clusters of the other genotypes. This measure ranges

from 0 to 1, with a higher score indicating a more reliable result.

The conventional cutoff point is.25 [62]. Of the 63574 genotypes

(133 SNPs by 478 subjects) in the current study, 120 genotypes

(0.2%) were excluded because their GenCall scores were lower

than.25.

Additional data cleaning included the treatment of low-

frequency alleles. For SNPs with either heterozygote or minor

homozygote found in fewer than 10 (about 2%) participants, these

two genotype groups were combined. If the combined group still
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had fewer than 10 participants, the SNP(s) were excluded from

further analysis. SNPs that showed no polymorphisms were also

deleted. In order to examine sample representativeness, Hardy-

Weinberg equilibrium (HWE) index was calculated using the Chi

square test and setting df to 1. Since males have only one X

chromosome, only females were included in HWE calculation for

SNPs located on X chromosome. Five of the SNPs showed

significant HW disequilibrium (p,0.01). The inclusion of both

tSNPs and additional SNPs in regions detected in selection screens

[63,64] resulted in high LD among a number of SNPs. Thirty-one

SNPs included in initial analysis were excluded from multiple

regression analysis because of their high LD with other adjacent

SNPs (R2.0.8, calculated with Plink [65]), yielding a final list of

105 polymorphisms for the main data analyses. It is worth

mentioning that the ‘‘redundant’’ SNPs showed the same or

almost the same results as the linked SNPs, confirming the

association. Table S1 shows the details about all 136 polymorphic

loci (134 SNPs and 2 VNTRs) included in our study: location (rs

number, chromosome, position), gene, serotonin subsystem, allele

polymorphism and frequency, Hardy Weinberg equilibrium,

linkage disequilibrium and deleted SNPs. Finally, genetic re-

latedness of subjects was checked following Anderson et.al. [66]

protocol using Plink. We used all 240 unrelated autosome SNPs

(r2,0.8) available in the larger project of these subjects and set the

threshold of 0.95 (personal communication with Drs. Anderson

and Zondervan). We found no pair of subjects showing high

relatedness (all PI_HAT smaller than or equal to 0.5).

Data Analysis
The goal of the current study was to understand the relation

between individual differences in BMI and genetic variations in

the 5-HT system in healthy subjects. Moving beyond the single-

gene or a small number of haplotypes approaches used in typical

molecular behavior genetics research, this study used the system-

level approach [50] to examine the overall contributions of the

serotoninergic system (characterized by the major genes and their

associated loci) on BMI.

Briefly, the analysis includes three steps: First, ANOVA was

used to screen polymorphism loci that showed nominal signifi-

cance (p,0.05) on BMI; these loci were then entered into

a regression model to estimate their overall contribution to BMI

after controlling for gender and age; and lastly the regression

model was verified by permutation. In this study, we built two

kinds of regression models. In model 1 (main effects), we included

the loci with significant main effects based on the ANOVA results

and used the forward stepwise method to build the model. Gender

and age were entered as control variables. To run multiple

regression analyses, all SNPs were coded in a linear way, i.e. the

major homozygote, heterozygote, and minor homozygote were

coded into 1, 2, and 3, respectively (SNPs on X chromosome were

coded as 1 and 3 for major and minor allele, and 3 for female

heterozygotes). In addition, the MAOA VNTR was coded as 1 for

the 3 repeat and 3 for the 4 repeat in males and 1 for 3 repeat

homozygotes and 3 for others in females. In model 2, all two-way

interactions of these loci in model 1 were added using forward

stepwise method. Permutation was done 1000 times by shuffling

BMI (along with gender and age) across subjects, and the

probability of getting a larger R2 in the shuffled data than in the

real data was defined as p value of the model.

Results

The mean BMI for our sample was 20.5 kg/m2 (SD = 2.4),

ranging from 16.3 to 37.5. According to WHO BMI classification,

there were 93 (71 female) underweight participants (BMI ,18.5),

359 (192 female) normal weight participants (18.5# BMI ,25),

and 26 (8 female) overweight participants (BMI $25). The BMI

distribution in the present study was comparable to other studies

with Chinese college students [67,68]. Males (21.1462.44) had

significantly higher BMI than females (20.0062.67; t(476) = 5.30,

p= 1.8E27), which was consistent with previous findings in

healthy young Chinese [69].

Of the 105 SNPs, 12 showed significant main effects with

uncorrected p,0.05. Specifically, individuals with the following

genotypes showed lower BMI than those with alternative alleles:

homozygous for the major allele of rs13166761 (HTR4),

rs1018079 (SLC18A1(VMAT1)), rs11214769 (HTR3B),

rs977003 (HTR2A), rs2224721 (HTR2A), rs2192371 (HTR2C),

rs4911871 (HTR2C), or rs2270638 (VMAT1); or heterozygous/

minor allele homozygous for rs6651806 (MAOB), rs5905512

(MAOB); or homozygous for the minor allele of rs7904569

(HTR7) or rs6644065 (HTR2C) (see Table 1, and Table S2 for

effects of all loci). These SNPs were used in a regression analysis to

build model 1 (main effects). There was no significant gender-by-

SNP interaction except rs5905512 (see Table 1), and this SNP did

not contribute to regression model 1, so we included gender, but

not gender-by-gene interactions, as a covariate in the following

analysis.

Table 2 shows the results of the multiple regression analysis. On

the first step, two control variables (gender and age) were entered.

Together they accounted for 5.6% variance of BMI. On the

second step, forward stepwise regression resulted in four of the 12

SNPs to be included in the regression equation, showing that they

made unique contributions to explaining variance in BMI.

Together these SNPs accounted for 7.7% additional variance,

yielding a total R2 of.13, F(6,455) = 11.61, p= 4.08E212.

Permutation results are shown in Figure 1. Based on 1000

permutations, the probability of attaining the R2 or adjusted R2

found in our model was 0.015 and 0.011, respectively.

We then added potential interactive effects to investigate

whether additional variance in BMI can be accounted for by

gene–gene interactions. In this analysis, we first entered the control

variables (gender and age) and the four SNPs in model 1 and

finally their two-way interactions using the stepwise procedure. For

the four SNPs that entered model 1, there were 6 potential

interactions. None of the interaction terms made significant and

unique contributions to the model.

Discussion

Based on the system-level analysis of 5-HT neurotransmitter

genes, we identified 12 SNPs of the 5-HT-related genes showing

nominal effects on BMI. Four of these SNPs made significant

unique contributions to BMI even after controlling for gender and

age. This result has two significant implications. First, the current

study revealed a significant role for genes in the 5-HT system on

BMI among Chinese, confirming that body mass is likely to be

influenced to some extent by the serotoninergic system. Second,

our results supported the idea that BMI may be determined by

many loci. Only by summing up their overall effects can we

understand the genetic basis of a complex trait such as body mass.

This approach can estimate the overall contribution of genes

within a pathway and can help to explain the missing heritability

[46].

We found that 12 SNPs of seven genes (MAOB, SLC18A1(V-

MAT1), HTR2A, HTR2C, HTR3B, HTR4, and HTR7) were

significantly associated with BMI. As summarized in the in-

troduction, previous studies have already found evidence, although
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not always consistent, of association between the HTR2A and

HTR2C genes and BMI. However, other genes we identified have

not been tested previously in BMI-related studies to the best of our

knowledge.

VMAT1 is expressed primarily in neuroendocrine cells such as

the adrenal medulla and pineal gland [70,71,72]. As early as in

1999, Hayashi et al. [73] found that VMAT1 was responsible for

the storage of 5-hydroxytryptamine in rat pinealocytes. Mamma-

lian pinealocytes contain more 5-HT than any other cells. Upon

stimulation by norepinephrine (NE), the internal 5-HT is released

and then stimulates serotonin N-acetyltransferase activity via the

5-HT2 receptor, resulting in increased melatonin output [73].

Melatonin has been found to be involved in energy metabolism

and body weight control in both animals [74,75] and humans [76].

Decreased activity of the melanocortin system produces a marked

orexigenic effect, while increased activity increases a-melanocyte-

stimulating hormone (a-MSH) release leading to satiation and

a termination of feeding. On the other hand, the missence

variation Thr136Ile in the VMAT1/SLC18A1 gene was found to

be associated with anxiety-related personality traits [77] and

anxiety has been shown to be associated with obesity [78,79] or

BMI [80]. Previous studies have found that VMAT plays an

important role in the life cycle of ghrelin and obestatin in the A-

like cells of the stomach [81,82], and ghrelin and obestatin have

effects on food intake and energy balance. Therefore, we speculate

that the VMAT1 gene may have an effect on BMI through

melatonin output, ghrelin, obestatin or anxiety mood. This gene

accounted for the largest proportion of the variance of BMI in our

study (Table 2).

The 5-HT3 receptor has been suggested to be involved in

anxiety, depression, pain, alcohol dependence, and eating

disorders [42,83]. The HTR3B gene encodes the B-subunit of

the type 3 serotonin receptor (5-HT3), a ligand-gated ion channel

that is known to be involved in gut motility and peristalsis. Thus

the HTR3B gene may regulate BMI because gut motility is

associated with numerous gastrointestinally derived peptides with

significant effects on food intake and energy balance [84]. Many

studies have also reported that the 5-HT3B polymorphism is

associated with the incidence of major depression [85], efficiency

of the antidepressant treatment [86], and the incidence and

severity of nausea after paroxetine treatment of psychiatric

patients [87]. Although the specific biological mechanisms are

not well understood, our results indicate that HTR3B gene

polymorphism may influence body mass via gut motility or mood.

Our analysis also showed that HTR2C and HTR2A are possible

factors influencing BMI in Chinese subjects, as have been reported

by previous studies. Different from the most often studied C759T

polymorphism associated with weight gain [31,32,33,34,35,88],

three SNP we found related to BMI are all located in the intron

region of HTR2C. First, there is strong evidence for an interaction

between leptin and the 5-HTergic system [88]. Second, McCarthy

et al. showed a strong effect of HTR2C polymorphism 2759G.A

on circulating leptin levels after adjusting for body fat. Other

studies also suggested that serotonin influences food intake because

of variations in the HTR2C receptor [89,90]. Similarly, previous

researchers have also found an association between a polymor-

Table 1. Means and standard deviations of BMI for each polymorphism, and main effects and post hoc comparisons of SNPs that
showed significant main effects and were used in subsequent multiple regression analysis.

SNP Subsystem Gene Maj MeanSD n Het MeanSD n Min MeanSD n F p mh mm hma

Gene by
gender
interaction
F(p)

rs6651806 Degradation MAOB AA 20.63 2.45 381 AC 19.95 2.16 97 CC 6.32 0.01 b 0.40 (0.53)

rs5905512 MAOB AA 20.76 2.62 284 AG 20.10 2.01 194 GG 9.02 ,0.01 b 0.02 (0.89)

rs1018079 Transport SLC18A1 AA 20.29 2.26 303 AG 20.72 2.32 156 GG 22.10 4.35 18 5.92 ,0.01 0.07 ,0.01 0.02 0.34 (0.71)

rs2270638 SLC18A1 AA 20.33 2.47 344 AG 20.92 2.20 133 GG 5.77 0.02 b 0.27 (0.60)

rs977003 Receptor HTR2A AA 20.29 2.30 299 AC 20.92 2.62 151 CC 20.40 2.19 28 3.45 0.03 0.01 0.82 0.29 0.14 (0.87)

rs2224721 HTR2A CC 20.12 2.12 216 AC 20.79 2.61 209 AA 20.87 2.51 53 4.85 0.01 ,0.01 0.04 0.82 0.13 (0.88)

rs2192371 HTR2C AA 20.61 2.42 242 AG 19.79 1.80 124 GG 21.03 2.78 112 8.62 ,0.01,0.01 0.12 ,0.01 0.95 (0.33)

rs6644065 HTR2C AA 20.45 2.26 373 AG 20.05 2.81 68 GG 21.74 2.77 37 6.30 ,0.01 0.21 ,0.01,0.01 6.06 (0.01)

rs4911871 HTR2C AA 20.39 2.23 350 AG 20.17 2.74 76 GG 21.68 2.76 51 7.44 ,0.01 0.47 ,0.01,0.01 1.09 (0.30)

rs11214769 HTR3B AA 20.31 2.22 335 AG 20.88 2.85 124 GG 21.21 2.20 19 3.46 0.03 0.02 0.11 0.58 1.65 (0.19)

rs13166761 HTR4 GG 20.38 2.23 244 AG 20.79 2.64 202 AA 19.48 1.81 32 4.74 0.01 0.07 0.05 ,0.01 0.54 (0.59)

rs7904569 HTR7 AA 20.50 2.38 206 AG 20.69 2.53 215 GG 19.72 1.85 57 3.64 0.03 0.43 0.03 0.01 1.34 (0.26)

Note: Empty cells mean no such genotypes were found in our sample. Maj: Major allele; Het: Heterozygote; Min: Minor allele.
aResults (p values) of post hoc comparisons. mh=Maj versus Het, mm=Maj versus Min, hm=Het versus Min.
bPost hoc comparison was not run because there were only 2 groups for this locus.
doi:10.1371/journal.pone.0058717.t001

Table 2. Regression models.

Regressor Gene Beta T P

Gender 20.24 25.39 0.00

Age 0.02 0.47 0.64

rs1018079 SLC18A1(VMAT1) 0.16 3.63 0.00

rs11214769 HTR3B 0.14 3.08 0.00

rs2224721 HTR2A 0.12 2.76 0.01

rs4911871 HTR2C 0.12 2.81 0.01

Note: ‘Gene’ is the corresponding gene for each SNP; ‘beta’ is the standardized
regression coefficient, ‘T’ and ‘P’ are t-test results.
doi:10.1371/journal.pone.0058717.t002

Serotonine Genes and BMI

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e58717



phism 21438G4A (rs6311) in the regulatory region of the HTR2A

gene and alteration in food intake [91,92,93,94], but the

significant SNP rs2224721 we found is intronic. Recent studies

suggest that polymorphic variation in the HTR2A gene may be

associated with abdominal obesity and the metabolic syndrome,

and that HTR2A may be linked to the stability of the stress-related

system (i.e., the serotonin-hypothalamic-pituitary-adrenal system)

[95,96].

Several limitations of the current study need to be mentioned.

First, height and weight of the subjects were self-reported.

Although other large-scale studies also used self-reported data

[22,38,46,54,55,56,57] and previous research showed high

correlations (r= .92) between BMI calculated from self-reports

and that from actual measurements [56], it would still be better to

measure weight and height during the experiment. Second, this

study focused only on healthy Han Chinese college students, so

these results may or may not be generalized to other populations

(e.g., clinical samples, other ethnic groups). Third, the sample size

of the current study is modest. As power calculations based on the

effect sizes of established variants have suggested that increasing

the sample size would likely lead to the discovery of additional

variants [97], follow-up research needs to expand the sample size

and validate the results. Fourth, we examined only the serotonin

system and accounted for only 7% of the variance of BMI, there is

much more ‘‘missing heritability’’ of BMI (estimated 24–90%) to

be accounted for. Other genetic systems [15,16] and behavioral

factors (e.g, such as physical activity, sedentary life-style, and

dietary patterns) as well as their interactions need to be examined.

Furthermore, gene-environment interaction studies are needed to

understand epigenetic factors in BMI.

In conclusion, we used a system-level approach to identify

several genetic SNPs associated with variations in BMI. This

analysis provides further evidence for the association between

genetic variants in the serotonin pathway and BMI. Because

current lifestyle interventions are largely ineffective in addressing

the challenges of growing obesity [98,99], new insights into the

biology of obesity are critically needed to guide the development

and application of future therapies and interventions.
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