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Abstract
Most plant biomass allocation studies have focused on allocation to shoots versus roots,

and little is known about drivers of allocation for aboveground plant organs. We explored

the drivers of within-and between-species variation of aboveground biomass allocation

across a strong environmental resource gradient, i.e., a long-term chronosequence of 30

forested islands in northern Sweden across which soil fertility and plant productivity declines

while light availability increases. For each of the three coexisting dominant understory dwarf

shrub species on each island, we estimated the fraction of the total aboveground biomass

produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and

stems for each of two growing seasons, to determine how biomass allocation responded

to the chronosequence at both the within-species and whole community levels. Against

expectations, within-species allocation to fruits was least on less fertile islands, and alloca-

tion to leaves at the whole community level was greatest on intermediate islands. Consis-

tent with expectations, different coexisting species showed contrasting allocation patterns,

with the species that was best adapted for more fertile conditions allocating the most to

vegetative organs, and with its allocation pattern showing the strongest response to the gra-

dient. Our study suggests that co-existing dominant plant species can display highly con-

trasting biomass allocations to different aboveground organs within and across species

in response to limiting environmental resources within the same plant community. Such

knowledge is important for understanding how community assembly, trait spectra, and eco-

logical processes driven by the plant community vary across environmental gradients and

among contrasting ecosystems.

Introduction
Plants allocate resources to different organs and this allocation can vary greatly among both
plant species and environmental conditions [1, 2]. Currently, the majority of work on allocation
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patterns among organs has focused on allocation to shoots versus roots (e.g., [3, 4, 5]). However,
for aboveground, plants allocate resources to organs that provide different functions, including
leaves, stems and reproductive structures [6, 7, 8, 9]. As such, plants vary in their investment in
leaf versus stem mass because there is a trade-off between the allocation to leaves for maximiz-
ing light capture and thus photosynthetic gain and allocation to stems for hydraulic conduc-
tance, supporting plant weight and resisting disturbances [9, 10]. Further, allocation patterns
between vegetative and reproductive organs may vary because of trade-offs between the need
for carbon gain and the need to produce propagules to maintain future populations [7, 11].
Therefore, analysing different fractions of aboveground biomass (i.e. the proportion of total bio-
mass produced allocated to stem (SMF), leaves (LMF) or reproductive organs (RA)) offers an
objective way of linking plant biomass investment to different functions [1, 8] under contrasting
environmental conditions.

Over the past decades, most studies of biomass allocation patterns in plants have focused
on between-species differences [8, 9, 11]. However, there is growing evidence suggesting that
within-species variability of plant traits can represent a significant proportion of total commu-
nity-level trait variability[12,13,14] and may therefore play an important role in community
assembly processes[15,16] and ecosystem functioning [17, 18]. Further, some recent studies
have suggested that within-species trait variability constitutes a significant component of plant
community responses to local changes in environmental conditions and across environmental
gradients [19, 20, 21, 22]. Despite this growing recognition of the role of within-species trait
variation as an ecological driver, little is known about within species variability of relative
aboveground allocation to different plant organs, in terms of either what drives it or its ecologi-
cal consequences at the community level. Consequently, assessing variations in biomass alloca-
tion patterns within- and between-species can help understand environmental influences on
plant community and ecosystem processes.

In this study, we investigated the allocation pattern of aboveground biomass produced dur-
ing the growing season for the dominant understory plant species on a group of 30 well studied
forested lake islands in northern Sweden [23, 24]. These islands differ greatly in size, with larger
islands being struck by lightning more often and therefore burning more frequently[23, 25].
Collectively, these islands represent a 5350-year post-fire chronosequence [24]. With increas-
ing time since fire and as islands become smaller, ecosystem retrogression occurs which is
characterized by declining soil fertility, standing plant biomass and net primary productivity
(NPP), but an increase in light transmission through the forest canopy [24]. As retrogression
proceeds along this chronosequence there is also a shift in species dominance in the understory
vegetation from Vaccinium myrtillus to Vaccinium vitis-idaea, and ultimately to Empertum
hermaphroditum, though with all three species occurring on all islands. This study focuses on
these three species and their relative responses to the gradient in terms of biomass allocation.
For each of the 30 islands, we measured various biomass allocation variables of the three above
mentioned species in order to test three main hypotheses as follows:

We first hypothesize that for each individual species and at the whole community level, rela-
tive biomass allocation to sexual reproductive structures (i.e., fruit) will be greatest on small
islands, while relative allocation to leaves and stems will be greatest on large islands. This is
because small islands have higher light availability and are less fertile, meaning that plants will
need to allocate less carbon to vegetative structure needed for light competition (including
both leaves and stems to support those leaves), thereby enabling greater allocation to sexual
reproductive structures. Second, when species are compared, we hypothesize that relative bio-
mass allocation to sexual reproductive structures (i.e., fruit) will be least for the species best
adapted to fertile environments (i.e., V.myrtillus on large islands) and greatest for those
adapted to infertile environments (i.e., E. hermaphroditum on small islands). This is because
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we expect that plant species that are best adapted to (and dominate in) fertile environments
will need to allocate a greater proportion of biomass production to vegetative organs in order
to compete for light, at the expense of sexual reproduction [26]. Finally, we hypothesize that
proportional allocation to fruits, leaves and stems will be more responsive to island size for spe-
cies that are adapted for higher fertility (i.e., V.myrtillus) because they are less resource conser-
vative and therefore have a higher degree of plasticity. This is consistent with suggestions that
plants that are adapted for more favorable conditions are more responsive to variation in soil
fertility [27]. In testing these three hypotheses in combination, this study seeks to unravel the
adaptive significance of allocation pattern at the within- and between-species, and community
level as well as provides insights on how these allocation patterns may be related to relative
dominance of species in contrasting environments.

Materials and Methods

Ethics Statement
We used 30 forested islands located in the two neighbouring lakes, Hornavan and Uddjaur, in
the northern boreal zone of Sweden (65° 550 N; 17° 430 E to 66° 090 N; 17° 550 E). These islands
are not within national reserves and not government protected. The study area is in public
lands for which permission is not required from any authority for performing field studies of
this type, and our studies did not involve protected or endangered species. We confirm that all
national and international rules were complied with during the field work. The research did
not involve measurements on humans or animals. The plant material collected for this study
was only sampled at a very limited scale and therefore had negligible effects on broader ecosys-
tem functioning. We have no commercial interests or conflicts of interest in performing this
work.

Study system
This study system is a post-fire chronosequence, formed after the retreat of land ice about 9000
years ago [23, 25]. The mean annual precipitation over the past 30 years is 750 mm, and the
mean temperature is +13°C in July and -14°C in January. The only major extrinsic factor that
varies among islands is the history of lightning-ignited wildfire, with larger islands having
burned more frequently than smaller islands because of their larger area to intercept lightning
[23, 25]. As such, the islands range in time since the most recent fire from 60 years to 5350
years. Despite this difference in historic disturbance regime, there is no current variation
among islands in the disturbance regime that they experience [25, 28]. Previous studies on
these islands have shown that as they become smaller and time since fire increases, they enter a
state of ‘ecosystem retrogression’ [29] in which there is a reduction in soil fertility (notably a
reduced availability of plant-available nitrogen (N) and phosphorus (P)), plant biomass, and
ecosystem productivity and an increase in soil N to P ratios [23, 25, 30]. Details on above-
ground and belowground properties on these islands are given in S1 Table and macroclimatic
measurements over 2011–2013 in S1 Fig.

The overstory vegetation is dominated by Pinus sylvestris, Betula pubescens, and Picea abies,
which have their greatest relative biomass on large, medium, and small islands, respectively;
these three species constitute>99.8% of all tree individuals. The ground layer vascular vegeta-
tion (which is the focus of this study) is dominated by the dwarf shrubs Vaccinium myrtillus,
V. vitis-idaea, and Empetrum hermaphroditum, which dominate the large, medium and small
islands respectively (S1 Table), and which collectively comprise about 98% of this vegetation
[24].
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Sample collection and biomass measurements
In the present study, we focused on three dominant vascular species that occur in the under-
story vegetation, i.e., V.myrtillus (a deciduous dwarf shrub), V. vitis-idaea and E. hermaphrodi-
tum (both evergreen dwarf shrubs), because these species each occur on all 30 islands and
together constitute nearly all of the understory plant biomass. Further, these understory species
are collectively responsible for over half of total net primary productivity in the system [25]
and play an important role in the functioning of the boreal forest [31].

For all vegetation measurements and sample collection, we used a 10 m radius plot area on
each island established directly adjacent to a set of pre-existing experimental plots used for pre-
vious studies on the islands (e.g. [24, 28, 32]). All plots were located at similar distances from
the shore regardless of island size to prevent edge and microclimatic effects confounding the
results [23, 25] and all measurement were performed twice, in the growing season of both 2012
and 2013.

We measured standing aboveground biomass of each of the three dominant understory spe-
cies (i.e., V.myrtillus, V. vitis-idaea, and E. hermaphroditum) within each plot during each year
at the end of the growing season (i.e., over 12–26 August 2012 and 12–22 August 2013), using
the point intercept method, as described by [33] and [24]. Briefly, this method involved count-
ing the total frequency that the vegetation of each species was intercepted by a total of 200
downwardly projected points. The total number of intercepts for each species was then con-
verted to standing biomass per unit area through previously derived calibration equations [24].

In each plot on each island we sampled 20 individual vegetative shoots (i.e., comprising all
leaf and stem material) of the three species in 12–26 August 2012 and 12–22 August 2013.
Samples were all at least 4 m apart and sourced from different clones. For each of the three spe-
cies, the shoots were cut at ground level and the portion of the shoot material produced in that
growing season (i.e., all new growth occurring between May and July) was separated from
shoot material produced during preceding growing seasons. Shoot material produced during
the growing season was further separated into leaves and stems. Similarly, we collected all ripe
fruits (berries) produced in the same growing season from twenty separate shoots of each of V.
myrtillus and E. hermaphroditum over 12–26 August in 2012 and 12–22 August 2013 and V.
vitis-idaea over September 8–12 2012 and September 8–12 2013; this later collection for V.
vitis-idaea is because this species produces fruits later in the season than do the other two spe-
cies. We focused on fruits and not flowers for estimating reproductive allocation because the
biomass of flowers is very small relative to that of berries and the use of flowers would therefore
greatly underestimate allocation to reproductive material. We then determined the oven-dry
weight (60°C, 72 hrs) of all collected vegetative shoot and berry material. Together, these plot
level measurements provide data for each species on the proportion of total aboveground mate-
rial that has been produced during the year of sampling, and the proportion of the year of sam-
pling production allocated to leaf, stem and berry material.

For each plant species on each island in each year, we estimated the reproductive allocation
(RA) as the ratio of fruit biomass to the total aboveground biomass (i.e., fruits, stems and
leaves) produced in the year of sampling. This measure was used as a measure of the relative
amount of aboveground production allocated to sexual reproduction per year [7, 34]. We
explored biomass allocation to each of the two vegetative organs (leaves and stem) by estimat-
ing the leaf and stem mass fraction (LMF and SMF), which is the fraction of the total above-
ground biomass (including fruits) produced in the year of sampling that is allocated to leaves
and stems, respectively [1]. For each species on each island we also estimated the annual shoot
(i.e., leaf + stem) biomass turnover (hereafter referred to as shoot turnover) as the proportion
of total live vegetative shoot biomass produced in the year of sampling.
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For each island and each year, we estimated the abundance-weighted community average
values of each of the biomass response variables to understand community-level changes in the
measured biomass allocation response variables across the island size gradient. These calcula-
tions were performed with the method described by [35], separately for each response variable
(RA, LMF, SMF and shoot turnover), i.e.,

Community weighted biomass allocation ¼
Xn

i ¼ 1

Pi � RVið Þ

where: Pi is the proportion of total biomass represented by species i, and RVi is the estimated
value for the response variable of species i.

Environmental data
We used several environmental variables as predictors of the allocation response variables
across the 30 islands. Data on the percentage of ambient photosynthetic photon flux density
passing through the forest canopy (hereafter ‘light transmission’) was obtained from [24],
using measurements obtained from Licor quantum sensors (LI-COR, USA). Briefly, for each
island, 50 point measurements were made in a grid of 20 m × 20 m under the tree canopy in
the vicinity of the plot used in the present study and about 20 cm above the dwarf shrub layer
vegetation. Fifty measurements were simultaneously made in the open (away from the island)
and paired with the under canopy measurements to give percentage transmission values. Mea-
surements were performed only on three overcast days. These measures of percentage light
transmission were used as a measure of aboveground resource availability for the understory
vegetation of each island [36]. Data on soil nutrients (total N and P, and soil mineral N
(extractable NH4

+ + NO3
-) and P (PO4

-)) for each island were obtained from [28] and [32]; for
each island these measurements were based on composite soil samples collected to 5-cm
humus depth throughout the 10 m radius plots on that island. We used data on soil mineral N
and P, and the total N to P ratio, as measures of belowground resource availability [37]. For
each of the two years of measurement on each island, we used the total number of intercepts of
all understory species derived from our point intercept measures (see above) as a measure of
total vegetation density which is interpreted as a relative measure of the level of competition
exerted by the whole understory plant community [14, 38]. For each year we also used net pri-
mary productivity (NPP) of the total understory vegetation on each plot as a predictor, and
determined this from our data by using the approach described by [24]. This involved, for each
of the three shrub species, multiplying its total aboveground biomass (obtained by converting
our point intercept data to biomass using allometric equations; [24]) by the proportion of that
biomass which was produced in the year of measurement (using the data from the 20 individ-
ual vegetative shoots collected for each species). For each of the two years of measurement on
each plot, this value was summed for the three species to provide a measure of NPP for each
island.

Statistical analyses
First, we analysed each of the allocation response variables (RA, LMF, SMF) and shoot turn-
over) by using a repeated measures split plot ANOVA testing for the effect of island size class
(as the main plot factor), species (as the subplot factor), year and their interactive effects, and
with islands as the units of replication. When interactions between species or island size
and year were significant, we then analysed the data separately for each year using split plot
ANOVA testing for island size as the main plot factor and species as the subplot factor. When
a significant island size × species interaction was present, one-way ANOVAs were used to
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assess the effect of island size separately for each species. All significant differences among size
classes were further explored by post hoc comparisons using Tukey’s test at P = 0.05.

For each of the community-weighted response variables, we performed repeated measures
ANOVAs testing for the effect of island size class, year and their interactive effect, using islands
as the unit of replication. We then analysed this data separately for each year using one-way
ANOVA to test the effect of island size class, which were followed by post hoc Tukey’s tests at
P = 0.05 whenever size class effects were detected.

For each year across all islands, we used the Pearson’s correlation coefficients to examine
the relationships of response variables (including both allocation variables and shoot turnover)
with measured environmental variables for the same islands; this was done both for each spe-
cies singly and for the community-level measures. The environmental variables included per-
cent light transmission through the forest canopy, total understory shrub density and NPP, soil
mineral N and P, and the soil N to P ratio. Multiple regression analysis was used to determine
if multiple combinations of environmental variables could best predict different species and
community-level biomass allocation response variables, with the most parsimonious model
being selected through Akaike information criteria (AIC).

All responses variables were square root transformed to meet the assumption of normality
and homogeneity of variance. All statistical analyses were performed using R statistical soft-
ware [39].

Results

Species and community level biomass allocation
The repeated split plot ANOVA showed that all three allocation variables (RA, SMF, LMF),
and shoot turnover varied among species and year but not island size class, and were all
affected by interactive effect of species by year and species by island size class (Table 1). For
data of 2012, ANOVA showed significant effects of species, island size class and their interac-
tive effects on the allocation to reproduction (RA), leaves (LMF) and stems (SMF), and spe-
cies and its interaction with island size on shoot turnover (S2 Table). Across species in
2012, V.myrtillus had the lowest values of RA and LMF, and the greatest values of SMF
and shoot turnover (Figs 1a, 1b, 1c and 2). Overall RA was greatest on the large islands
(mean ± SE = 0.36 ± 0.03, 0.32 ± 0.02 and 0.41 ± 0.02 for small, medium and large islands
respectively) while LMF was greatest on the intermediate islands (0.45 ± 0.02, 0.48 ± 0.02 and
0.42 ± 0.02 for small, medium and large islands) as was SMF (0.19 ± 0.02, 0.20 ± 0.02 and
0.17 ± 0.02 for small, medium and large islands). In 2012, interactive effects between species
and island size class emerged because RA was least for V.myrtillus on small islands and for
V. vitis-idaea on intermediate islands, LMF was least for V.myrtillus on big islands and for V.
vitis idaea on small islands, and SMF was highest for V.myrtillus on small islands and for the
other two species on intermediate islands (Fig 1a–1c).

For shoot turnover, interactive effects between species and island size class occurred because
only V. vitis idaea was responsive to island size though being least on the intermediate islands
(Fig 2). For 2013, ANOVAs showed a strong species effect for all response variables, but an
effect of island size and its interaction with species only for shoot turnover (S2 Table, Figs 1d–
1f and 2b). Variation among species in 2013 reflected those in 2012. Further, in 2013 shoot
turnover was overall greatest on small islands and was most responsive to island size for V.
vitis-idaea (Fig 2).

At the community level, the repeated measures ANOVA showed that community weighted
averages (CWAs) of the all three allocation variables (RA, SMF, LMF), and shoot turnover dif-
fered among years, with LMF affected by island size class and SMF affected by the interactive
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effect of year with size class (Table 2). For 2012, ANOVA showed a significant effect of island
size on LMF (Fig 1b, S3 Table), whereas for 2013, island size had significant effects on both
LMF and SMF (Fig 1e and 1f; S3 Table). Overall, LMF was greatest on intermediate islands for
both years and SMF was greatest on large islands in 2013 (Fig 1).

Relationship with environmental variables
When univariate correlation analyses were performed for 2012, several significant relationships
occurred between V.myrtillus response variables and the environmental variables. Values of
RA and SMF were significantly positively related to soil mineral P, while RA and SMF were
negatively and positively related to soil N:P respectively (S4 Table). Net primary productivity
(NPP) was positively correlated with RA, but negatively correlated with LMF, SMF and shoot
turnover (S4 Table). For V. vitis idaea, RA, LMF and shoot turnover were significantly posi-
tively correlated with light availability while SMF was negatively correlated with it; shoot turn-
over was also positively correlated with NPP (S4 Table). However, for E. hermaphroditum the
only significant relationships were for soil mineral P which was negatively correlated with LMF
and positively correlated with shoot turnover (S4 Table). The community weighted average
(CWA) value of RA and shoot turnover was positively correlated with NPP whereas LMF was
negatively correlated with it (S4 Table, Fig 3).

For 2013, the response variables of V.myrtillus were unrelated to the environmental vari-
ables except that NPP was positively correlated with LMF but negatively correlated with SMF
(S5 Table). For V. vitis idaea, light availability was negatively related to SMF and positively
related to shoot turnover (S5 Table). For E. hermaphroditum, soil mineral N was negatively
related to RA but positively correlated with SMF (S5 Table,). For the CWAmeasures, RA was
positively related to light availability, while LMF and SMF were negatively correlated with it
(Fig 3). Further, the CWA of SMF was negatively correlated with soil N:P (S5 Table).

Our multiple regression analyses of the data revealed that, including more than one predic-
tor variable in the regression was necessary for best model fit in only a minority of instances in
2012 (Table 3). As such, for V.myrtillus in 2012, model fits were best for RA and LMF when
understorey shrub density and NPP were included as predictors, for SMF with soil mineral P
and soil N:P as predictors, and for shoot turnover with N:P and NPP as predictors (Table 3).
Further, model fit was best for shoot turnover of V. vitis-idaea when light availability, soil N:P

Table 1. Summary of a three-way Analysis of Variance (F and P values) testing the effect of species, year, island size class and their interactive
effects on different biomass allocation response variables; RA, LMF and SMF are the proportion of total shoot biomass produced in the growing
season allocated to fruits, leaves and stems, respectively, and shoot turnover is the proportion of total shoot biomass produced in the growing
season. Figures in bold indicate statistical significant at P < 0.05.

RA LMF SMF Shoot turnover

Variables F p F p F p F p

Species 46.07 <0.000 64.88 <0.000 835.26 <0.000 46.07 <0.000

Year 12.12 0.001 18.54 <0.000 94.67 <0.000 12.12 0.001

Island size class (ISC) 1.76 0.191 0.94 0.394 2.61 0.092 1.76 0.191

ISC x Year 1.71 0.184 2.05 0.149 2.26 0.108 1.71 0.184

Species x Year 12.43 <0.000 13.04 <0.000 68.17 <0.000 12.43 <0.000

ISC x Species 5.92 0.000 5.21 0.001 5.81 <0.000 5.92 <0.000

ISC x species x Year 0.71 0.584 0.41 0.803 1.30 0.273 0.71 0.584

Degree of freedom for Island size class = 2, 27; Year = 1, 135, Species = 2, 135; Island size class x Species = 4, 135; Year x Island size class x

Species = 4, 135

doi:10.1371/journal.pone.0157136.t001
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and NPP were included in the model (Table 3). However, for 2013, model fit was never
improved by including more than one predictor in the regression model (S5 Table).

Discussion
Our study shows directional shifts in shoot biomass allocation among organs of dominant
dwarf shrub species across a strong environmental gradient, both at the within-species and
whole community levels. Further, coexisting shrub species with contrasting ecological strate-
gies differed greatly both in terms of allocation pattern and how this pattern responded to the
same environmental gradient. We now discuss our findings and their implications at the spe-
cies, community and ecosystem levels.

Our first hypothesis that biomass allocation to reproductive structures (i.e., fruits) would be
greatest on small islands at both the within-species and whole community-levels was not sup-
ported. For instance, for 2012, RA was least on small islands for V.myrtillus and on medium
islands for V. vitis-idaea, and did not change with island size class for E. hermaphroditum. Our

Fig 1. Biomass allocations of the 3 shrubs species, V.myrtillus (Vm), V. vitis idaea (Vv) and E. hermaphroditum (Eh) to different plant organs
and their community weightedmean values (CWA) across the island size S, M and L are small, medium and large islands respectively; N = 10
islands of each.Within each group of three bars in each panel, bars topped by the same lower case letter are not significantly different from each other,
and groups of three bars topped by the same capital letter are not significantly different among groups (P = 0.05; Tukey’s test).

doi:10.1371/journal.pone.0157136.g001
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results from the correlation and multiple regression analysis suggest that at least in 2012, RA
for V.myrtillus was most closely and positively linked to soil nutrient status, NPP and under-
story density. Soil fertility increases with island size, meaning that NPP and vegetation density
(and hence plant competition) is high on the large islands on which V.myrtillus dominates
[14, 28]. The higher RA of this species on large islands suggests that greater investment in sex-
ual reproductive structures may contribute to it maintaining its dominance in the most com-
petitive environment [14, 24]. In contrast, the RA of V. vitis-idaea was most closely related to
light availability, which was least on the medium islands in which this species dominates.
Instead, this species allocates most of its biomass to leaves and stems in the lowest light envi-
ronment, presumably in order to maximize light capture. These contrasting results suggest that

Fig 2. Annual shoot biomass turnover of the 3 shrubs species, V.myrtillus (Vm), V. vitis idaea (Vv) and E. hermaphroditum
(Eh) in (a) 2012 and (b) 2013, and their community weightedmean values (CWA) across the island size classes S, M and L
are small, medium and large islands respectively; N = 10 islands of each.Within each group of three bars in each panel, bars
topped by the same lower case letter are not significantly different from each other, and groups of three bars topped by the same
capital letter are not significantly differences among groups (P = 0.05; Tukey’s test).

doi:10.1371/journal.pone.0157136.g002

Table 2. Summary of a two-way Analysis of Variance (F and P values) testing the effect of island size class, year, and their interactive effects on dif-
ferent community-weighted biomass allocation response variables. RA, LMF and SMF are the proportion of total shoot biomass produced in the grow-
ing season allocated to fruits, leaves and stems, respectively, and shoot turnover is the proportion of total shoot biomass produced in the growing season.
Figures in bold indicate statistical significant at P < 0.05.

RA LMF SMF Shoot turnover

Variables F p F p F p

Island size class (ISC) 2.18 0.132 5.445 0.010 2.47 0.104 1.58 0.225

Year 10.27 0.003 49.31 <0.000 38.58 <0.000 4.76 0.038

ISC x Year 2.22 0.128 0.89 0.422 5.58 0.001 1.10 0.349

Degree of freedom for Island size class = 2, 27; Year = 1, 27: Island size class x Year = 2, 27

doi:10.1371/journal.pone.0157136.t002
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Fig 3. The relationships between community-weighted averages of dwarf shrub biomass allocation response
variables (reproductive allocation, leaf mass fraction, and stemmass fraction) and net primary productivity
for 2012 and light availability for 2013 across the 30 islands.

doi:10.1371/journal.pone.0157136.g003
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shoot allocation patterns respond in contrasting ways for different species to the same environ-
mental factors, in line with optimal biomass allocation theory that each species should priori-
tize resource allocation to organs that maximises its own survival and fitness [3, 8].

At the community level, we found that for both growing seasons LMF was greatest on
medium islands. This result was reflective of the response of V. vitis-idaea, which is most abun-
dant on medium islands [14, 23, 24] and which allocated a greater proportion of its biomass to
leaves on these islands. This finding highlights the important contribution of within-species
variability to observed community-level responses across environmental gradients [14, 19].
Further, the strong negative relationships observed of LMF with both NPP and light availability
at the community level (Fig 3) suggest that changes in availability of resources may exert a
direct influence on community-level patterns of allocation [14, 30]. Taken together, our results
suggest that both species turnover and within-species variability in biomass allocation contrib-
ute significantly to community-level responses to variation of extrinsic environmental factors
[13], [19].

Across species, we found RA was least in V.myrtillus (dominant on fertile large islands) and
with no difference between V. vitis-idaea and E. hermaphroditum (dominant on medium
and the least fertile small islands respectively), providing only partial support for our second

Table 3. Results frommultiple stepwise regression testing relationships between species biomass allocation responses and environmental vari-
ables for 2012. For each response variable the most parsimonious model is presented based on Akaike Information Criteria (AIC). Values of t are shown for
each selected response variable, along with adjusted R2 and P values for the regression models. For each of the response variables, the presented models
contain only those variables for which t-values are shown.

Environmental variables (t-values)

Response
variables

Light USD Mineral
N

Mineral
P

Soil N:
P

NPP Df AIC Adjusted
R2

P

V. myrtillus RA - 2.27* - - - 2.30* 25 -148.62 0.44 < 0.000

LMF - -2.16* - - - -3.39** 27 -170.43 0.32 0.002

SMF - - - -2.11* 2.61* - 26 -179.03 0.36 0.002

Turnover - - - - 2.08* 4.23*** 26 -181.52 0.39 0.001

V. vitis-idaea RA 2.59* - - - - - 28 -142.99 0.16 0.015

LMF 2.14* - - - - - 28 -158.76 0.11 0.042

SMF - 4.26*** - - - - - 28 -227.78 0.37 < 0.000

Turnover 2.53* - - - 2.81** 4.02*** 25 -170.19 0.53 < 0.000

E. hermaphroditum LMF - - - -2.48* - - 28 -159.04 0.15 0.019

Turnover 2.33 * - - - - - 26 -183.53 0.27 0.011

Community weighted
average

RA - - - - - 2.54* 27 -168.53 0.22 0.012

LMF - - - - - - 4.36*** 27 -177.75 0.37 0.001

Turnover - - - - - 4.86*** 27 -193.01 0.43 0.000

Significance level for selected variables:

*** P<0.001,

** P<0.01,
* P<0.05,
# P<0.10.

Significant P-values (<0.05) associated with the regressions are in bold. Response variables for which no variables were significant are not included in this

table.RA, LMF and SMF = proportion of total shoot biomass produced in the growing season allocated to fruits, leaves and stems respectively.

Turnover = Proportion of total shoot biomass produced in the growing season. Light = Light transmission through the overstory canopy across the 30

islands (%). Mineral N = Mineral N (mg.g-1). Mineral P = Mineral P (mg.g-1). Soil N:P = ratio of soil N to P. USD = Understorey shrub density (intercepts

per 200 points). NPP = Net primary productivity of shrubs (g.m-2 yr-1).

doi:10.1371/journal.pone.0157136.t003
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hypothesis (i.e. that biomass allocation to sexual reproductive structures would be least for spe-
cies that are more adapted for fertile environments). Vaccinium myrtillus consistently allocated
the greatest biomass to stems, whereas V. vitis-idaea allocated more biomass to leaves, indicat-
ing contrasting strategies for how two dominant and competing coexisting species invest in
order to access light in relatively fertile low-light environments. As such, the strategy for V.
vitis-idaea (which is evergreen) is to invest heavily in long-lived leaves, whereas V.myrtillus
(which is deciduous) annually produces highly efficient photosynthetic leaves [30] while
investing more in taller, longer lived stems to support the leaves. This finding that V.myrtillus
allocated greater biomass to stems than did the other species may enable it to reduce self-shad-
ing, which could help it compete better for light against other species in low light environments
[7, 9]. Our results support recent suggestions that co-existing plant species can display highly
contrasting biomass distributions to shoot organs to achieve optimum resource acquisition
within a single plant community [40].

Finally, we found support for our third hypothesis that proportional biomass allocation to
reproduction, leaves and stems would be more responsive to the island size gradient (and thus
variation in soil fertility) for species that dominate on larger islands. As such, biomass alloca-
tion patterns of V.myrtillus and V. vitis-idaea were more responsive to island size than were
those of E. hermaphroditum. For the two Vaccinium species, the plasticity of traits such as RA,
LMF and SMF could contribute to maintaining or increasing fitness of these species under con-
trasting environments including those for which they are poorly adapted [41], and may consti-
tute an integral part of the mechanism of resource acquisition in productive environments
[42]. Further, the fact that V.myrtillus and V. vitis-idaea are abundant in relatively productive
environments could be because high trait plasticity enables these species to optimize their allo-
cation in response to high levels of competition from coexisting species [2, 43, 44]. In total, our
findings support the idea that within-plant allocation for resource-acquisitive species is more
responsive to variation in resource availability than is the case for resource-conservative ones
because they are superior in exploiting resources across a wider range of resource availability
including in conditions for which they are least well adapted [2, 42].

Conclusion
Our study provides important insights into the mechanisms underlying plant biomass adaptive
allocation patterns, and this has implications for better understanding of community assembly
and ecosystem productivity. First, contrary to some widely accepted assumptions that between-
species trait variability is the major contributor to whole-community responses to environmental
factors, we show that within-species variability in biomass allocation responses is an essential
component of community response, and is consistent with recent calls to incorporate within-spe-
cies trait variability into studies of community assembly [12, 13, 20]. Second, we show greater
within-species responsiveness of allocation to environmental variables for species adapted to
more productive and competitive environments, thus providing evidence for the hypothesis that
the within-species plant trait responses to extrinsic factors is related to plant resource acquisition
strategy [27, 43]. Third, our study shows that coexisting species in a single community can vary
greatly in their biomass allocation patterns to aboveground organs as a means to achieve opti-
mum resource acquisition [1, 40]. These contrasting strategies especially between dominant spe-
cies can make an important contribution to the whole community level response to changes in
resource availability. Finally, our study suggests that knowledge about how within- and between-
species variability contribute to community level patterns could lead to an improved understand-
ing on how community assembly, trait spectra, and ultimately ecosystem processes driven by the
plant community, vary across environmental gradients and among contrasting ecosystems.
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