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Tissue-specific Network Analysis of 
Genetic Variants Associated with 
Coronary Artery Disease
Xiao Miao   1, Xinlin Chen2, Zhijun Xie3,4 & Honghuang Lin   4

Coronary artery disease (CAD) is a leading cause of death worldwide. Recent genome-wide association 
studies have identified more than one hundred susceptibility loci associated with CAD. However, the 
underlying mechanism of these genetic loci to CAD susceptibility is still largely unknown. We performed 
a tissue-specific network analysis of CAD using the summary statistics from one of the largest genome-
wide association studies. Variant-level associations were summarized into gene-level associations, 
and a CAD-related interaction network was built using experimentally validated gene interactions and 
gene coexpression in coronary artery. The network contained 102 genes, of which 53 were significantly 
associated with CAD. Pathway enrichment analysis revealed that many genes in the network were 
involved in the regulation of peripheral arteries. In summary, we performed a tissue-specific network 
analysis and found abnormalities in the peripheral arteries might be an important pathway underlying 
the pathogenesis of CAD. Future functional characterization might further validate our findings and 
identify potential therapeutic targets for CAD.

Coronary artery disease (CAD) is a leading cause of death worldwide1–3. CAD is heritable, and a familial history 
of CAD is associated with a significantly increased CAD risk4. Recent genome-wide association studies (GWAS) 
have identified more than one hundred genetic loci associated with CAD5–11. However, most of these loci are 
located outside of protein coding regions, and their implication on CAD is still largely unknown. Moreover, many 
studies have been focused on the association of single variants with CAD. Given that the majority of complex 
diseases including CAD are caused by the interplay of many genetic and environmental factors12,13, it is important 
to jointly investigate the combinatory effects of multiple genetic variants on biological pathways and interaction 
networks14–16.

The gene function is highly dependent on the tissue where the gene is expressed17, which is controlled by 
very distinct regulatory programs18. Genes with tissue-specific expression have shown important physiological 
processes for complex organisms19. However, functional studies of human genes have been traditionally carried 
out on specific cell lines, and the characterization of tissue-specific interactions is predominantly based on a 
small sample size. Recent advances in next generation sequencing provide an unprecedented opportunity to pro-
file gene expression in a much larger scale of human samples20,21. An excellent example is the Genotype-Tissue 
Expression (GTEx) project, which has characterized the association of genetic variants with gene expression in 
nearly 50 different types of human tissues that were collected from approximately 1000 individuals22.

The objective of our current study is to understand the function of CAD-related genetic loci through the 
gene interaction network. The associations of individual variants with CAD were summarized into gene-level 
associations, which were then combined with experimentally validated gene interactions as well as gene coex-
pression in coronary artery. A tissue-specific interaction network then built to examine the interactions between 
CAD-related genes and their potential functions in terms of biological pathways.
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Results
Gene-level Association with CAD.  The association of genetic variants with CAD was previously inves-
tigated7. The study included 9,455,778 common variants, among which 2,213 variants passed the genome-wide 
significance (P < 5 × 10−8). Variant-level associations were then summarized into gene-level associations using 
fastBAT23. Variants within 50 kb of the gene region were collapsed and jointly modelled. Figure 1 is the Manhattan 
plot showing the association of each of the 26,228 genes with CAD. The Q-Q plot of the associations is shown in 
Supplementary Figure 1. A total of 143 genes were significantly associated with CAD after Bonferroni correction 
of multiple testing (P < 0.05/26,228 = 1.91 × 10−6). Table 1 shows the top 25 genes associated with CAD, and the 
full list of CAD-related genes is shown in Supplementary Table 1. The most significant gene was CDKN2B-AS1 
(P = 9.45 × 10−69), which is the antisense of CDKN2B that is located at the 9p21 locus. The locus has long been 
recognized to be associated with various cardiovascular diseases24–28. We also performed a sensitivity analysis 
by expanding the flanking sequence to 100 kb to include more regulatory variants. As shown in Supplementary 
Figure 2, the association was highly correlated (R2 = 0.88).

Figure 1.  Manhattan plot of gene-level association with CAD. Each dot represents one gene. The x-axis 
represents chromosome positions, whereas the y-axis represents the log10(P). The red dash indicates 
P < 0.05/26228 = 1.91 × 10−6. Only autosomal variants were included in the analysis.

Chromosome Gene
#Variants within 
the gene

Gene association 
with CAD (P value)

Best variant 
with the gene

Best variant association 
with CAD (P value)

9p21.3 CDKN2B-AS1 283 9.45E-69 rs2891168 2.29E-98

9p21.3 CDKN2B 96 2.04E-38 rs7028268 4.98E-48

9p21.3 CDKN2A 119 3.42E-32 rs3217992 1.03E-42

9p21.3 CDKN2A-AS1 104 2.26E-26 rs3217992 1.03E-42

6q25.3 LPA 180 8.34E-25 rs55730499 5.39E-39

19p13.2 SMARCA4 219 5.88E-21 rs56289821 4.44E-15

15q25.1 ADAMTS7 216 9.37E-20 rs4468572 4.44E-16

19p13.2 LDLR 256 1.71E-16 rs56289821 4.44E-15

1p13.3 SORT1 114 2.18E-16 rs7528419 1.97E-23

15q25.1 MORF4L1 134 6.37E-16 rs4468572 4.44E-16

19p13.2 MIR6886 182 2.13E-15 rs56289821 4.44E-15

1p13.3 MYBPHL 113 3.96E-15 rs7528419 1.97E-23

10q11.21 C10orf142 135 1.31E-14 rs1746050 6.28E-13

6p24.1 PHACTR1 656 1.59E-14 rs9349379 1.81E-42

1p13.3 PSRC1 128 1.88E-14 rs7528419 1.97E-23

6q23.2 LINC01312 113 9.18E-14 rs12202017 1.98E-11

2q33.2 WDR12 51 2.08E-13 rs115396314 5.11E-18

6q26 PLG 184 2.28E-13 rs2315065 2.88E-34

1q41 MIA3 99 7.04E-13 rs67180937 1.01E-12

1q41 TAF1A-AS1 111 9.66E-13 rs35700460 1.38E-12

1p13.3 CELSR2 159 9.70E-13 rs7528419 1.97E-23

2q33.2 CARF 67 1.28E-12 rs115654617 3.12E-18

10q11.21 LINC00841 222 1.57E-12 rs1870634 5.55E-15

1q41 TAF1A 132 1.96E-12 rs35700460 1.38E-12

1p32.2 PLPP3 211 2.40E-12 rs9970807 5.00E-14

Table 1.  Top 25 genes associated with CAD.
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Tissue-specific Interaction Network Related to CAD.  We then built a CAD-related interaction net-
work by integrating GWAS and gene coexpression in coronary artery. As shown in Fig. 2, the network is com-
prised of 102 nodes and 182 edges. Each node represents one gene, and each edge represents the interaction 
between two genes. These genes were interconnected together, so not all of the 143 CAD-related gene were 
included. Among the 102 genes in the network, 53 were CAD-related genes (P < 1.91 × 10−6).

We then examined the potential functional implication of the network using WebGestalt29. As shown in 
Table 2, six disease pathways were significantly enriched with genes in the network (FDR <0.1). The most sig-
nificant pathway is abnormalities of the peripheral arteries (P = 1.63 × 10−6, FDR = 3.52 × 10−3), which includes 
eight CAD-related genes. In addition, many CAD-related genes were involved in xanthomatosis (P = 2.06 × 10−5, 
FDR = 2.96 × 10−2) and cerebral ischemia (P = 4.94 × 10−5, FDR = 5.33 × 10−2).

A recent study30 of CAD prioritized 184 candidate genes as the most likely causal genes for CAD based on 
functional evidence. These genes were involved in 286 modules. Interestingly, 26 of those candidate genes were 
also included in our network (enrichment P < 2.2e-16). We also examined if genes in the network are potential 
drug targets. DrugBank31 was queried, and 13 genes in the CAD-related network were reported as therapeutic 
targets for at least one known or developing drug, suggesting the potential of network analysis to identify drug 
targets.

Figure 2.  CAD-related network derived from protein-protein interaction. Each node represents one gene, wheras 
each edge represents the interaction between two genes. The nodes were colored to represent their association 
with CAD: red color represents genes that were associated with CAD, white color represents genes were not 
associated with CAD. The node size is proportional to the number of edges that the node is connectted to.

Disease pathway
#Genes in 
the pathway

Ratio of 
enrichment P value FDR Overlapping Genes

Abnormalities of the peripheral arteries 97 8.98 1.63E-06 3.52E-03 COL4A1; COL4A2; APOB; APOE; APP; LPL; TP53; BAZ1B

Xanthomatosis 19 22.93 2.06E-05 2.96E-02 APOB; APOC2; APOE; LPL

Cerebral ischemia 46 11.84 4.94E-05 5.33E-02 COL4A1; COL4A2; APP; TP53; BAZ1B

Coronary artery disease 51 10.68 8.20E-05 6.80E-02 APOB; APOE; LPL; TP53; BAZ1B

Abnormality of the coronary arteries 53 10.28 9.89E-05 6.80E-02 APOB; APOE; LPL; TP53; BAZ1B

Neoplasm of the adrenal cortex 11 29.71 0.00011 6.80E-02 CDKN2B; MDM2; TP53

Table 2.  Most significant disease pathways enriched with CAD-related genes (FDR < 0.1).
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Identification of Key Drivers in the Network.  We also examined the structure of the CAD-related net-
work, and tested if they were any key drivers of the network. Each gene in the network was evaluated by the asso-
ciation of its neighbors with CAD, and the distribution was then compared with random distribution. A single 
gene, UBC, turned out to be one of the most important genes in the network. The gene was nominally associated 
with CAD (P = 1.25 × 10−3) but did not reach the genome-wide significance cutoff (P < 1.91 × 10−6). However, it 
interacted with 22 other genes, including 10 CAD-related genes, suggesting that it might be an important regula-
tor of the CAD-related pathways.

We also calculated the weighted centroid of the network, which took into consideration of both the weight 
of neighboring genes as well as the strength of interactions (represented by the absolute value of the correlation 
coefficient between two genes). As shown in Supplementary Table 2, UBC, together with CAND1 and SMARCA4, 
were among the top centroid genes.

Discussion
One challenge in the post-GWAS era is to understand molecular mechanisms underlying the association of 
GWAS loci with diseases. Given that many genes are only expressed in certain tissues, it is important to study 
gene functions in a tissue-specific manner. Here we built a CAD-related interaction network in coronary artery, 
and found that many of genes in the network were involved in abnormalities of the peripheral arteries. Our study 
suggests that the disturbing of peripheral artery functions might be an important pathway leading to CAD.

UBC was found to be a key driver of the network. The gene encodes ubiquitin C, a highly conserved gene32 that 
acts as a potential target of N-Formylmethionine33. In combination with proteasome, the ubiquitin-proteasome 
system (UPS) is responsible for the degradation of up to 80–90% of proteins in mammalian cells34, which is 
essential to the removal of non-functional or damaged polypeptides35. The ubiquitination also regulates mul-
tiple cardiac signal transduction pathways36–38 as well as the promotion of pathologic hypertrophic growth of 
cardiomyocytes39,40.

It is interesting to see that APOB and APOE were both involved in multiple pathways enriched with 
CAD-related genes. APOB encodes apolipoprotein B, a lipoprotein that is known to be involved in the develop-
ment of CAD41,42. The inclusion of apolipoprotein B level into risk models would significantly improve the pre-
diction performance of future risk of coronary heart disease43. Genetic variations in APOB were also associated 
with Mendelian diseases such as familial hypobetalipoproteinemia44. APOE encodes a ligand that binds to both 
low density lipoprotein receptor and APOE-specific receptor. It is involved in the regulation of cholesterol and the 
metabolism of lipoproteins, and the polymorphisms of APOE are associated with atherosclerosis45 and coronary 
heart disease46,47.

Tissue-specific expression has been recognized as an important pattern for many diseases. Traditional expres-
sion quantitative trait loci (eQTLs) studies were mostly focused on gene expression in the blood due to conven-
ience and accessibility. However, these studies have limited power to detect tissue-specific expression profiles. 
Recent efforts are being devoted to identify eQTLs across a variety of tissue types22,48,49, which would empower an 
in-depth study of gene function among different types of tissues50,51.

GWAS provided an unbiased approach to screen a huge amount of genetic variants with complex diseases. 
In order to correct for multiple testing and reduce false positives, a stringent significance cutoff is applied (typ-
ically P < 5 × 10−8), which on the other hand, could result in the loss of many true associations. By integrat-
ing gene interactions, we were able to reprioritize gene signals, and identify some additional associations that 
might be otherwise missed because of moderate significance. One example is TGFB1, which encodes a trans-
forming growth factor, which plays an important role in the regulation vascular smooth muscle52. The gene was 
significantly associated with CAD after summarizing genetic variants within the gene region (P = 6.26 × 10−9). 
However, the most significant SNP within the gene region was rs15052 (P < 2.21 × 10−7), which did not reach 
the genome-wide significance cutoff (P < 5 × 10−8). A recent study10 that combined UK Biobank together 
with CARDIoGRAMplusC4D 1000 Genomes-based GWAS and the Myocardial Infarction Genetics and 
CARDIoGRAM Exome found that rs8108632 within the TGFB1 region was significantly associated with CAD 
(P = 4.04 × 10−8). Our results suggest that a combination of joint testing of multiple variants together with gene 
interactions could offer additional power to identify novel susceptibility loci for complex diseases.

Given that many top variants identified by GWAS are just tagging variants, it is challenging to pinpoint the 
casual variants/genes. For example, the most significant variant associated with body mass index is rs9930506, 
which is located within the intron of FTO. However, it was found that the causative gene at the locus is actually 
IRX3, which is located ~480 kb away from the top SNP rs993050653. Appropriately 6.22% of cis-eQTLs in coro-
nary artery are even more than 500 kb away from the corresponding genes22, suggesting that causal genetic vari-
ants could be far away from the genes. On the other hand, the inclusion of long-range regulation could also result 
in an increase of irrelevant genes. Therefore it is useful to include additional annotations such as those derived 
from the ENCODE Project54 and the Roadmap Epigenomics Project55.

Our study has several limitations. The interaction network was built from previously reported protein inter-
actions. However, it was estimated that only a small proportion of interactions have been characterized56–58. 
Therefore, many important interactions might still be missing and thus were not included in the current analysis. 
In addition, tissue-specific interactions were estimated from the correlation of gene expression, which had lim-
ited power to identify interactions between genes with low expression. It is also worth to note that the key driver 
analysis is a hypothesis generating approach solely based on the strength of associations of individual genes and 
the network structure. It is by no means to indicate causality between genes. Further experimental validation is 
needed to understand the mechanism of associations and the biological processes involved in the etiology of CAD.

In conclusion, we performed a tissue-specific network analysis of genetic variants associated with CAD. Our 
study underscored the role of abnormalities in the peripheral arteries in the pathogenesis of CAD. Future func-
tional characterization of CAD-related gene might identify potential therapeutic targets for CAD.
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Methods
Association of Genetic Variants with CAD.  The summary statistics of genetic variants associated with 
CAD was obtained from the CARDIoGRAMplusC4D 1000 Genomes-based genome-wide association study 
(http://www.cardiogramplusc4d.org/data-downloads/), which included 48 studies with a total of 60,801 CAD 
cases and 123,504 controls7. The raw genotypes were imputed to 1000 Genomes phase 1 v3 that included more 
than 38 million variants, but only common variants (minor allele frequency ≥1%) were included in the current 
analysis.

Derivation of Gene-level Association with CAD.  Variant-level associations were summarized into 
gene-level associations using fastBAT23. For each gene, we took into account of all the variants within 50 kb of 
the gene region, and joint tested their association with CAD. Given that tens of thousands of genes were tested, a 
nominal significance cutoff (P < 0.05) could result in a number of false positives. Therefore Bonferroni correction 
was used, which is a conservative adjustment that assumes all tests are independent. Genes with p-value less than 
0.05/N were considered as significant, where N was number of tested genes.

Construction of a Tissue-specific Interaction Network.  Gene interactions were obtained from the 
iRefIndex database59. Self-interactions or interactions involved in non-human genes were removed from down-
stream analyses. Gene coexpression was based on 173 coronary artery samples from the GTEx project22. Pearson 
correlation was calculated for each interaction gene pair, and pairs with normalized correlation higher than 0.25 
were considered as coexpression in the tissue.

Construction of Gene Interaction Network Related to CAD.  A dense module searching strategy60 was 
implemented to identify modules enriched with CAD-related genes. Each gene was assigned a score equivalent to 
the absolute value of the z-score of the association with CAD. Seed genes were defined as those significantly asso-
ciated with CAD after Bonferroni correction. The module searching started with a single seed gene. Neighboring 
genes were then added sequentially to the module if the addition would increase the overall module score61, 
which was defined as =

∑Zm
g

k
i , where k was the number of genes in the module, and gi was the score of gene i. 

The process iterated until no more genes could be added. Modules derived from different seed genes were highly 
overlapped and thus were merged to create a combined interaction network.

Identification of Key Drivers in the Network.  Key drivers were defined as genes that interact with more 
CAD-related genes than what would be expected from a randomly selected gene set with an equal number of 
genes. These genes are pivotal to the structure of the network and might be potential targets for further functional 
characterization. The score of each gene was defined as the z-score of the association with CAD. The Kolmogorov–
Smirnov test was then used to assess the deviation of scores of neighboring genes from the random expectation. 
To correct for multiple testing, Bonferroni adjustment was used and genes with P < 0.05/N were defined as key 
drivers, where N was the total number of genes in the network. In addition, we also calculated the weighted cen-
troid of the network, which was defined as = + ∑ | | ∗C g w gi i k i k k, , where Ci was the weighted centroid of gene i, 
and wi,k was the correlation coefficient between gene i and gene k, and gk is the score of gene k.
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