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Background: Stratification of the severity of infection is currently based on the Sequential Organ Failure
Assessment (SOFA) score, which is difficult to calculate outside the ICU. Biomarkers could help to stratify
the severity of infection in surgical patients.
Methods: Levels of ten biomarkers indicating endothelial dysfunction, 22 indicating emergency granulo-
poiesis, and six denoting neutrophil degranulation were compared in three groups of patients in the first
12 h after diagnosis at three Spanish hospitals.
Results: There were 100 patients with infection, 95 with sepsis and 57 with septic shock. Seven biomark-
ers indicating endothelial dysfunction (mid-regional proadrenomedullin (MR-ProADM), syndecan 1,
thrombomodulin, angiopoietin 2, endothelial cell-specific molecule 1, vascular cell adhesion molecule 1
and E-selectin) had stronger associations with sepsis than infection alone. MR-ProADM had the highest
odds ratio (OR) in multivariable analysis (OR 11⋅53, 95 per cent c.i. 4⋅15 to 32⋅08; P =0⋅006) and the best
area under the curve (AUC) for detecting sepsis (0⋅86, 95 per cent c.i. 0⋅80 to 0⋅91; P < 0⋅001). In a com-
parison of sepsis with septic shock, two biomarkers of neutrophil degranulation, proteinase 3 (OR 8⋅09,
1⋅34 to 48⋅91; P =0⋅028) and lipocalin 2 (OR 6⋅62, 2⋅47 to 17⋅77; P =0⋅002), had the strongest association
with septic shock, but lipocalin 2 exhibited the highest AUC (0⋅81, 0⋅73 to 0⋅90; P <0⋅001).
Conclusion: MR-ProADM and lipocalin 2 could be alternatives to the SOFA score in the detection of
sepsis and septic shock respectively in surgical patients with infection.
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Introduction

Sepsis and septic shock are major causes of morbidity and
mortality in surgical patients1. In a patient with infection,
prompt detection of sepsis is key to the initiation of early

treatment with appropriate antimicrobials, elimination
of the infectious source, administration of fluids and
appropriate transfer to the ICU. In patients with sepsis,
prompt detection of septic shock could imply a need to
modify antibiotic treatment, seek alternative sources of
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Table 1 Clinical characteristics of the patients

Infection
(n=100)

Sepsis
(n=95)

Septic shock
(n=57)

P† (infection
versus
sepsis)

P† (infection
versus
septic
shock)

P† (sepsis
versus
septic
shock)

Age (years)* 57⋅0 (39⋅25–70⋅50) 73⋅0 (59–80) 74⋅0 (68–78⋅5) <0⋅001‡ <0⋅001‡ 1⋅000
Male sex 60 (60⋅0) 62 (65) 31 (54) 0⋅448 0⋅493 0⋅183
Co-morbidity

Chronic cardiovascular
disease

13 (13⋅0) 28 (29) 21 (37) 0⋅005 <0⋅001 0⋅347

Chronic respiratory disease 2 (2) 13 (14) 6 (11) 0⋅003 0⋅022 0⋅569
High BP 30 (30⋅0) 47 (49) 34 (60) 0⋅009 <0⋅001 0⋅223
Chronic renal failure 2 (2⋅0) 9 (9) 7 (12) 0⋅024 0⋅004 0⋅388
Chronic hepatic failure 4 (4⋅0) 2 (2) 1 (2) 0⋅422 0⋅423 0⋅880
Diabetes mellitus 14 (14⋅0) 20 (21) 17 (30) 0⋅194 0⋅017 0⋅222
Cancer 13 (13⋅0) 18 (19) 13 (23) 0⋅256 0⋅112 0⋅568
Immunosuppression 5 (5⋅0) 13 (14) 6 (11) 0⋅037 0⋅205 0⋅553

Surgery type
Urgent 70 (70⋅0) 74 (78) 41 (72) 0⋅210 0⋅798 0⋅407
Abdominal 65 (65⋅0) 54 (57) 24 (42) 0⋅243 0⋅005 0⋅078
Cardiothoracic 0 (0) 14 (15) 14 (25) <0⋅001 <0⋅001 0⋅130
Vascular 1 (1⋅0) 3 (3) 1 (2) 0⋅288 0⋅685 0⋅601
Urological/renal 0 (0) 0 (0) 1 (2) § 0⋅184 0⋅195
Other 13 (13⋅0) 4 (4) 4 (7) 0⋅030 0⋅246 0⋅453

Time course and outcome
Length of hospital stay

(days)*
5 (2–12) 15 (8–29⋅5) 31 (18⋅50–48⋅75) <0⋅001‡ <0⋅001‡ <0⋅001‡

Length of ICU stay (days)* 0⋅5 (0–2) 3 (1–6⋅75) 7 (3–13) <0⋅001‡ <0⋅001‡ 0⋅001‡
Hospital mortality 0 (0) 7 (7) 22 (39) 0⋅006 <0⋅001 <0⋅001

Source of infection
Respiratory tract 4 (4⋅0) 15 (16) 14 (25) 0⋅006 <0⋅001 0⋅183
Abdomen 67 (67⋅0) 48 (51) 19 (33) 0⋅019 <0⋅001 0⋅039
Urinary tract 0 (0) 4 (4) 6 (11) 0⋅038 0⋅001 0⋅128
Surgical site 12 (12⋅0) 16 (17) 13 (23) 0⋅335 0⋅075 0⋅365
Bacteraemia 0 (0) 6⋅30 (6) 12 (21) 0⋅011 <0⋅001 0⋅006
Other 13 (13⋅0) 16 (17) 4 (7) 0⋅451 0⋅246 0⋅083

Microbiology
Positive culture 29 (29⋅0) 54 (57) 43 (75) <0⋅001 <0⋅001 0⋅021
Gram-positive 13 (13⋅0) 29 (31) 21 (37) 0⋅003 <0⋅001 0⋅422
Gram-negative 23 (23⋅0) 31 (33) 34 (60) 0⋅133 <0⋅001 0⋅001
Fungal 4 (4⋅0) 8 (8) 8 (14) 0⋅199 0⋅023 0⋅275

Measurements at diagnosis*
SOFA score 0 (0–1) 6 (3–8) 9 (7–11) <0⋅001‡ <0⋅001‡ <0⋅001‡
Total bilirubin (mg/dl) 0⋅70 (0⋅4–1⋅03) 0⋅70 (0⋅43–1⋅78) 1⋅00 (0⋅56–1⋅89) 1⋅000‡ 0⋅013‡ 0⋅072‡
Glucose level (mg/dl) 118 (105–140) 158 (117⋅5–184) 163 (128–232⋅50) <0⋅001‡ <0⋅001‡ 1⋅000‡
Sodium level (mmol/l) 139⋅00 (136–141⋅25) 138⋅00 (135–141⋅25) 129⋅00 (134–142) 0⋅008‡ <0⋅001‡ 0⋅001‡
Potassium level (mmol/l) 3⋅90 (3–4⋅10) 4⋅00 (3⋅50–4⋅20) 3⋅85 (3–4⋅12) § § §
Platelet count (cells/mm3) 221 500 (186 250–299 250) 184 000 (105 250–276 000) 123 000 (88 500–258 000) 0⋅023‡ 0⋅001‡ 0⋅794‡
INR 1⋅15 (1⋅03–1⋅26) 1⋅27 (1⋅16–1⋅35) 1⋅44 (1⋅27–1⋅81) 0⋅002‡ <0⋅001‡ < 0⋅001‡
Albumin (mg/dl) 3480 (2737⋅5–4135) 2445 (2132⋅50–3130) 2340 (1837⋅5–2752⋅5) <0⋅001‡ <0⋅001‡ 1⋅000‡
Lactate (mmol/l) 1⋅50 (1⋅06–1⋅85) 1⋅50 (1⋅23–2) 3⋅55 (2⋅46–5⋅19) 1⋅000‡ <0⋅001‡ < 0⋅001‡
White blood cell count

(cells/mm3)
13 070 (9187⋅5–16 347⋅5) 14 050 (9410–18 290) 14 550 (7525–19 880) § § §

Lymphocytes (cells/mm3) 1383⋅50 (911⋅50–1806⋅36) 940 (600⋅10–1453⋅86) 592 (410⋅08–1103⋅39) 0⋅021‡ <0⋅001‡ 0⋅004‡
Monocytes (cells/mm3) 795⋅52 (466⋅07–1099) 632 (345–962) 411⋅25 (245–791⋅56) 0⋅049‡ 0⋅002‡ 0⋅196‡
Neutrophils (cells/mm3) 10 144 (6327⋅70–13 864⋅48) 12 100 (7857–15 195) 12 240 (5647⋅50–18 177⋅50) 0⋅091‡ 0⋅199‡ 1⋅000‡
Eosinophils (cells/mm3) 43 (12⋅50–117⋅41) 19 (0–57⋅52) 10⋅92 (0–47⋅53) § § §
Basophils (cells/mm3) 33⋅60 (18–59⋅73) 26⋅90 (11⋅76–54⋅80) 20 (10⋅54–49⋅92) 0⋅827‡ 0⋅042‡ 0⋅196‡

Values in parentheses are percentages unless indicated otherwise; *values are median (i.q.r.). SOFA, Sequential Organ Failure Score; INR, international
normalized ratio. †χ2 test, except ‡Kruskal–Wallis test; §absence of P value for χ2 or Kruskal–Wallis test, as appropriate.
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Fig. 1 Levels of endothelial dysfunction and neutrophil degranulation biomarkers in healthy control, infection, sepsis and septic shock
groups
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potentially infectious organisms not already identified, and
adjust ICU support. Since publication of the Third Inter-
national Consensus Definitions for Sepsis and Septic Shock
(SEPSIS-3) in 20162, severity stratification in patients with
infection has been based on the Sequential Organ Fail-
ure Assessment (SOFA) score3. The problem with this

score is that it is difficult to calculate in non-ICU settings,
such as surgical departments or the emergency room. The
alternative proposed by the SEPSIS-3 consensus for these
settings, the quickSOFA (composed of three simple items:
respiratory frequency, BP and the Glasgow Coma Scale
score), is very specific but less useful for detecting sepsis4.
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Fig. 2 Levels of emergency granulopoiesis and acute-phase response biomarkers in healthy control, infection, sepsis and septic shock
groups
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Table 2 Multivariable analysis for risk of sepsis versus infection

Biomarker* Indicator for Odds ratio P
Benjamini–
Hochberg P

Mid-regional proadrenomedullin (nmol/l) ED 11⋅53 (4⋅15, 32⋅08) <0⋅001 0⋅006

Syndecan 1 (pg/ml) ED 9⋅48 (2⋅86, 31⋅38) <0⋅001 0⋅006

Thrombomodulin (pg/ml) ED 4⋅14 (1⋅28, 13⋅39) 0⋅018 0⋅040

Angiopoietin 2 (pg/ml) ED 3⋅70 (1⋅80, 7⋅59) <0⋅001 0⋅006

Endothelial cell-specific molecule 1 (pg/ml) ED 3⋅58 (1⋅45, 8⋅83) 0⋅006 0⋅022

Vascular cell adhesion molecule 1 (pg/ml) ED 2⋅72 (1⋅10, 6⋅76) 0⋅031 0⋅047

E-selectin (pg/ml) ED 2⋅32 (1⋅12, 4⋅81) 0⋅023 0⋅041

Lipocalin 2 (pg/ml) ND 2⋅27 (1⋅16, 4⋅44) 0⋅016 0⋅040

MMP8 (pg/ml) ND 1⋅90 (1⋅23, 2⋅96) 0⋅004 0⋅016

Procalcitonin (ng/ml) AR 1⋅83 (1⋅41, 2⋅37) <0⋅001 0⋅006

Chitinase 1 (CHIT1) (copies/ng) EG 1⋅81 (1⋅24, 2⋅64) 0⋅002 0⋅009

Stomatin (STOM) (copies/ng) EG 1⋅68 (1⋅09, 2⋅60) 0⋅020 0⋅040

MMP9 (MMP9) (copies/ng) EG 1⋅67 (1⋅14, 2⋅44) 0⋅008 0⋅026

Interleukin-1 receptor type 2 (IL1R2) (copies/ng) EG 1⋅64 (1⋅12, 2⋅42) 0⋅011 0⋅006

MMP8 (MMP8) (copies/ng) EG 1⋅64 (1⋅23, 2⋅19) 0⋅001 0⋅033

Lipocalin 2 (LCN2) (copies/ng) EG 1⋅62 (1⋅23, 2⋅15) 0⋅001 0⋅006

Transcobalamin 1 (TCN1) (copies/ng) EG 1⋅56 (1⋅07, 2⋅27) 0⋅021 0⋅040

Lactoferrin (LTF) (copies/ng) EG 1⋅55 (1⋅16, 2⋅06) 0⋅002 0⋅009

Bactericidal/permeability-increasing protein (BPI) (copies/ng) EG 1⋅52 (1⋅07, 2⋅17) 0⋅020 0⋅040

CD24 (CD24) (copies/ng) EG 1⋅51 (1⋅05, 2⋅17) 0⋅026 0⋅043

C-reactive protein (mg/l) AR 1⋅51 (1⋅05, 2⋅18) 0⋅028 0⋅044

MMP25 (MMP25) (copies/ng) EG 1⋅46 (1⋅05, 2⋅05) 0⋅026 0⋅043

CD177 (CD177) (copies/ng) EG 1⋅31 (1⋅05, 1⋅65) 0⋅020 0⋅040

Olfactomedin 4 (OLFM4) (copies/ng) EG 1⋅28 (1⋅05, 1⋅55) 0⋅012 0⋅033

Values in parentheses are 95 per cent confidence intervals. *Biomarker values correspond to napierian logarithms. Variables adjusted for gene expression
biomarkers were age, cardiovascular disease, immunosuppression, high BP, chronic respiratory disease, chronic renal disease, abdominal surgery, other
surgery, respiratory source of infection and abdominal source of infection; variables adjusted for protein biomarkers were age, immunosuppression, high
BP, chronic respiratory disease, chronic renal disease, urgent surgery, abdominal surgery, other surgery, respiratory source of infection and abdominal
source of infection (Table S4, supporting information). ED, endothelial dysfunction; ND, neutrophil degranulation; MMP, matrix metalloproteinase; AR,
acute-phase response; EG, emergency granulopoiesis; CD, cluster of differentiation.

Biomarkers could contribute to stratification of the
severity of infection. Sepsis is characterized by acute
endothelial dysfunction, which increases vascular per-
meability, promotes activation of the coagulation cascade
and tissue oedema, and compromises the perfusion of
vital organs5. Biomarkers of endothelial responses can
be used to categorize patients into homogeneous sub-
groups with different severity6. In turn, sepsis activates
emergency granulopoiesis, inducing release of immature
neutrophil precursor cells in the peripheral blood, an event
related directly to severity7–10. Emergency granulopoiesis
can be detected by profiling the mRNA in blood of the
genes that are expressed sequentially in the neutrophil
precursors11,12. Other molecules denoting severity during
an infection are proteins released to the plasma during
neutrophil degranulation13,14. These include matrix met-
alloproteinase (MMP) 8, neutrophil gelatinase-associated
lipocalin and lactotransferrin, which have been shown to

be closely related to the development of sepsis15, and levels
of plasma MMPs 3, 7, 8 and 9 are increased in severe sepsis
on admission to the ICU16.

In this study, 38 biomarkers of endothelial dysfunc-
tion, emergency granulopoiesis or neutrophil degranula-
tion were evaluated to stratify severity in surgical patients
with infection. The hypothesis was that these biomark-
ers might differentiate between three groups of patients:
those with infection, those with sepsis, and those with sep-
tic shock.

Methods

Surgical patients with infection, sepsis or septic shock were
recruited prospectively from the surgery departments and
surgical ICUs of the three participating hospitals (Hospi-
tal Clínico Universitario de Valladolid, Hospital Univer-
sitario Río Hortega de Valladolid and Hospital Clínico
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Table 3 Multivariable analysis for risk of septic shock versus sepsis

Biomarker* Indicator for Odds ratio P
Benjamini–
Hochberg P

Proteinase 3 (pg/ml) ND 8⋅09 (1⋅34, 48⋅91) 0⋅023 0⋅028

Lipocalin 2 (pg/ml) ND 6⋅62 (2⋅47, 17⋅77) <0⋅001 0⋅002

Syndecan 1 (pg/ml) ED 6⋅10 (1⋅77, 21⋅06) 0⋅004 0⋅006

Mid-regional proadrenomedullin (nmol/l) ED 4⋅58 (1⋅99, 10⋅58) <0⋅001 0⋅002

Thrombomodulin (pg/ml) ED 4⋅52 (1⋅42, 14⋅34) 0⋅011 0⋅014

Interleukin-18 receptor type 1 (IL18R1) (copies/ng) ND 4⋅22 (2⋅26, 7⋅85) <0⋅001 0⋅002

Stomatin (STOM) (copies/ng) EG 3⋅74 (1⋅87, 7⋅45) <0⋅001 0⋅002

Interleukin-1 receptor type 2 (IL1R2) (copies/ng) EG 3⋅72 (2⋅10, 6⋅58) <0⋅001 0⋅002

Angiopoietin 2 (pg/ml) ED 3⋅02 (1⋅29, 7⋅10) 0⋅011 0⋅014

MMP8 (pg/ml) ND 2⋅97 (1⋅55, 5⋅67) 0⋅001 0⋅002

MMP9 (MMP9) (copies/ng) EG 2⋅67 (1⋅55, 4⋅59) <0⋅001 0⋅002

Lipocalin 2 (LCN2) (copies/ng) EG 2⋅45 (1⋅71, 3⋅50) <0⋅001 0⋅002

MMP8 (MMP8) (copies/ng) EG 2⋅43 (1⋅74, 3⋅38) <0⋅001 0⋅002

Transcobalamin 1 (TCN1) (copies/ng) EG 2⋅36 (1⋅62, 3⋅44) <0⋅001 0⋅002

Lactoferrin (pg/ml) ND 2⋅30 (1⋅38, 3⋅84) 0⋅001 0⋅002

Myeloperoxidase (pg/ml) ND 2⋅26 (1⋅20, 4⋅25) 0⋅011 0⋅014

Lactoferrin (LTF) (copies/ng) EG 2⋅24 (1⋅59, 3⋅15) <0⋅001 0⋅002

Bactericidal/permeability-increasing protein (BPI) (copies/ng) EG 2⋅23 (1⋅49, 3⋅36) <0⋅001 0⋅002

CD24 (CD24) (copies/ng) EG 2⋅15 (1⋅47, 3⋅16) <0⋅001 0⋅002

Chitinase 1 (CHIT1) (copies/ng) EG 2⋅01 (1⋅42, 2⋅83) <0⋅001 0⋅002

CD177 (CD177) (copies/ng) EG 1⋅97 (1⋅30, 2⋅99) 0⋅001 0⋅002

Olfactomedin 4 (OLFM4) (copies/ng) EG 1⋅85 (1⋅42, 2⋅40) <0⋅001 0⋅002

Carcinoembryonic antigen-related cell adhesion molecule 8 (CEACAM8) (copies/ng) EG 1⋅78 (1⋅31, 2⋅41) <0⋅001 0⋅002

Procalcitonin (ng/ml) AR 1⋅73 (1⋅31, 2⋅29) <0⋅001 0⋅002

Myeloperoxidase (MPO) (copies/ng) EG 1⋅36 (1⋅02, 1⋅81) 0⋅038 0⋅044

Values in parentheses are 95 per cent confidence intervals. *Biomarker values correspond to napierian logarithms. Variables adjusted for gene expression
biomarkers were age, abdominal surgery, abdominal source of infection, bacteraemia, other sources of infection, presence of Gram-negative organisms and
presence of polymicrobial infection; variables adjusted for protein biomarkers were surgical-site source of infection, bacteraemia, presence of Gram-negative
organisms, and presence of polymicrobial infection (Table S4, supporting information). ND, neutrophil degranulation; ED, endothelial dysfunction; EG,
emergency granulopoiesis; MMP, matrix metalloproteinase; CD, cluster of differentiation; AR, acute-phase response.

Universitario de Salamanca), between January 2017 and
January 2019. Infection was defined according to the US
Centers for Disease Control and Prevention National
Surveillance Definitions for Specific Types of Infections17.
Sepsis and septic shock were defined using the SEPSIS-3
consensus definitions2,18. A specific standard survey was
employed in the three participating hospitals to collect
clinical data along with results of haematological, bio-
chemical, radiological and microbiological investigations.
Healthy controls with similar age and sex characteristics to
the patients were recruited from the Centro de Hemoter-
apia y Hemodonación de Castilla y León (CHEMCYL,
Valladolid, Spain).

Ethical approval

The study was approved by the respective Committees
for Ethics in Clinical Research of the three participating

hospitals. Methods were carried out in accordance with
current Spanish law for Biomedical Research, fulfilling the
standards indicated by the Declaration of Helsinki. Written
informed consent was obtained from patients’ relatives or
their legal representative before enrolment.

Microbiology

Standard cultures in biological samples, guided by the
presumptive source of the infection, were performed to
assess the presence of the causal pathogen. Potentially
contaminant microorganisms were not considered.

Biomarker profiling

Thirty-eight biomarkers (10 denoting endothelial dysfunc-
tion, 22 indicating emergency granulopoiesis and 6 denot-
ing neutrophil degranulation) were profiled in the three
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Fig. 3 Area-under-the-curve analysis evaluating the accuracy of two biomarkers in differentiating sepsis from infection or from septic
shock
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a Accuracy of mid-regional proadrenomedullin (MR-ProADM) in differentiating sepsis from infection. Area under the curve (AUC): 0⋅86, 95 per cent
c.i. 0⋅80 to 0⋅91 (P < 0⋅001); optimal operating point (OOP): 1⋅165 nmol/l; sensitivity: 84⋅6 per cent; specificity: 76⋅0 per cent. b Accuracy of lipocalin 2 in
differentiating septic shock from sepsis. AUC: 0⋅81, 95 per cent c.i. 0⋅73 to 0⋅90 (P < 0⋅001); OOP: 246 346 pg/ml; sensitivity: 80⋅0 per cent; specificity:
70⋅5 per cent.

patient groups (infection, sepsis or septic shock) in the first
12 h after diagnosis (Tables S1 and S2, supporting infor-
mation). The methods used to profile these biomarkers
are detailed in Appendix S1 (supporting information). Blood
from healthy individuals was collected as part of their blood
donation.

Statistical analysis

Statistical analysis was performed with IBM SPSS® version
20 (IBM, Armonk, New York, USA). Box plots were repre-
sented using Minitab® 19.2 (Minitab, Coventry, UK). For
demographic and clinical characteristics of the patients, dif-
ferences between groups were assessed using the χ2 test for
categorical variables. Differences between groups for con-
tinuous variables were assessed with the Kruskal–Wallis
test, with post hoc tests adjusting for multiple comparisons.
In the comparison of infection and sepsis, multivariable
logistic regression analysis was employed to evaluate the
association between biomarker levels and the presence
of sepsis. In the comparison of sepsis and septic shock,
the same type of analysis was employed to evaluate the
association between biomarker levels and the presence
of septic shock. Only biomarkers yielding P ≤ 0⋅050 in

univariable analysis were tested in multivariable analy-
ses. Potential confounding clinical factors that yielded
P ≤ 0⋅100 in univariable analysis were introduced as adjust-
ing variables in multivariable analyses, followed by multi-
ple testing correction by the false discovery rate using the
Benjamini–Hochberg procedure. The optimal operating
point in the area under the curve (AUC) analysis was iden-
tified as described previously19.

Results

There was a total of 100 patients with infection, 95 with
sepsis and 57 with septic shock. Patients with infection
were significantly younger than those in the other groups
(Table 1), and the healthy controls. Proportions of men
to women were similar in all patient groups and control
subjects. Patients with sepsis and septic shock had more
antecedent cardiovascular, respiratory or renal disease. The
proportion of patients needing urgent surgery was similar
in the three groups. Abdominal surgery was the most
frequent type, and the abdomen was the predominant
source of infection in all three patient groups.

Respiratory infection was more common in patients with
sepsis or septic shock than in patients with infection alone.
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The prevalence of bacteraemia was highest in patients with
septic shock, where Gram-negative bacteria dominated
(Table 1).

Patients with septic shock showed the highest degree
of organ failure as assessed by the SOFA score. Duration
of hospital stay was directly associated with severity. No
patient in the infection group died in hospital, compared
with seven of 95 (7 per cent) patients with sepsis and 22 of
57 (39 per cent) with septic shock (Table 1).

Coagulopathy (as assessed by the international nor-
malized ratio) and decreased lymphocyte and monocyte
counts were related to increasing severity. Biomarker levels
showed a generalized trend to increase with disease severity
(Figs 1 and 2; Table S3, supporting information).

Confounding factors from Table 1 that yielded P ≤ 0⋅100
in univariable analysis, to be introduced as adjusting vari-
ables in multivariable analyses, are shown in Table S4 (sup-
porting information).

Multivariable analysis of biomarker levels to evaluate the
risk of sepsis versus infection identified seven biomarkers of
endothelial dysfunction, two of neutrophil degranulation
and 13 of emergency granulopoiesis as independent risk
factors for sepsis (Table 2).

Multivariable analysis to evaluate the risk of septic shock
versus sepsis revealed four biomarkers of endothelial dys-
function, six of neutrophil degranulation and 14 of emer-
gency granulopoiesis as independent risk factors for septic
shock (Table 3).

The AUC analysis to assess biomarker sensitivity and
specificity indicated that mid-regional proadrenomedullin
(MR-ProADM) was the best biomarker for differentiating
sepsis from infection, whereas lipocalin 2 in plasma was the
best biomarker for distinguishing septic shock from sepsis
(Fig. 3).

Discussion

This study found that a panel of seven biomarkers
related to endothelial dysfunction (MR-ProADM, syn-
decan (SDC) 1, thrombomodulin (THBD), angiopoietin
(ANGPT) 2, endothelial cell-specific molecule 1, vascular
cell adhesion molecule 1 and E-selectin) were associated
with the presence of sepsis in patients with infection. This
suggests that induction of endothelial injury is an early
event as organ dysfunction develops.

SDC1 and MR-proADM were the biomarkers showing
the highest odds ratios for sepsis. SDC1 is a glycosamino-
glycan shed from the endothelial glycocalyx during sepsis,
and levels in plasma correlate with the SOFA score20,21.
In the present study, MR-proADM was the biomarker of
endothelial dysfunction showing not only the strongest

association but also the best balance between sensitivity and
specificity for sepsis, with an AUC of 0⋅86. Adrenomedullin
is secreted from various organs and tissues, includ-
ing vascular endothelial cells. It regulates vascular
tone and endothelial permeability22. MR-proADM, the
mid-regional fragment of proadrenomedullin, is more sta-
ble and directly reflects levels of the rapidly degraded active
adrenomedullin peptide23. There is growing evidence of
the value of MR-ProADM as an early marker of severity in
patients with infection24 and as a predictor of organ failure
in patients with community-acquired pneumonia25.

In the comparison of sepsis and septic shock, the number
of biomarkers of endothelial dysfunction independently
associated with septic shock dropped to four (SDC1,
MR-ProADM, THBD and ANGPT2). In contrast, six
biomarkers denoting neutrophil degranulation were asso-
ciated with septic shock: proteinase 3 (a serine protease),
lipocalin 2 (a neutrophil gelatinase-associated protein),
interleukin-18 receptor type 1 (an inductor of neutrophil
degranulation)26, matrix metalloproteinase (MMP) 8 (a
neutrophil collagenase), lactoferrin (a major iron-binding
protein) and myeloperoxidase (a heme protein). Only
two of these biomarkers seemed relevant to differentiate
sepsis from plain infection (lipocalin 2 and MMP8), sug-
gesting that neutrophil degranulation may be important
in the pathogenesis of septic shock. Proteins released
from neutrophil granules could be mediating antibacterial
effects8,27–30, and may participate in tissue remodelling31,
attenuation of inflammation32 and preventing the delete-
rious effects of neutrophil extracellular traps33. However,
increased intravascular levels of degranulated proteins
could induce enhanced proteolysis34, endothelial injury
and organ failure35–39.

Proteinase 3 and lipocalin 2 had strongest associations
with the presence of septic shock. Neutrophil degran-
ulation can lead to increased endothelial permeability
via a mechanism that, in part, involves the actions of
proteinase 340, and a multimarker model containing pro-
teinase 3 was able to predict the risk of septic acute kidney
injury in patients with septic shock41. In the present
study, lipocalin 2 was the marker showing the best bal-
ance between sensitivity and specificity in detecting septic
shock. Lipocalin 2 has been used for risk stratification, early
diagnosis and prognostication of sepsis in the emergency
department42,43. This protein is associated with mortality
and multiple organ dysfunction syndrome in severe sepsis
and septic shock44. Lipocalin 2 has been promoted as a
relatively robust predictor of 28-day mortality in severe
sepsis45.

The present study has shown that emergency granulo-
poiesis is a preserved signature of both sepsis and septic
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shock, although to a greater degree in septic shock. The
observed parallel between emergency granulopoiesis sig-
natures and severity is in agreement with a previous study9

demonstrating that, in sepsis, the increased presence of cir-
culating immature granulocytes is linked to clinical deteri-
oration.

Regarding acute-phase biomarkers, procalcitonin
showed modest associations with the risk of sepsis and
septic shock, while C-reactive protein showed a mild asso-
ciation, exclusively with the risk of sepsis. These results
indicate that neither procalcitonin nor C-reactive protein is
suitable for severity stratification in patients with infection.

Profiling protein levels in plasma of MR-ProADM and
lipocalin 2 could contribute to stratification of the severity
of infection, particularly in settings where calculation of the
SOFA score is not feasible. Evaluation of protein biomark-
ers is technically easier than evaluating those of transcrip-
tomic nature. Emerging point-of-care devices could result
in evaluation of these biomarkers in clinical practice as
results can be obtained in less than 1 h46.

This study has an important limitation in that biomark-
ers were compared only at diagnosis of infection, sep-
sis or septic shock. Further prospective follow-up studies
with serial sampling should validate the potential role of
MR-ProADM and lipocalin 2 in predicting clinical wors-
ening of patients with infection or sepsis.
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