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Abstract

Renal cell carcinoma (RCC) comprises a diverse group of malignancies arising from the nephron. 

The most prevalent type, clear cell renal cell carcinoma (ccRCC), is characterized by genetic 

mutations in factors governing the hypoxia signaling pathway, resulting in metabolic 

dysregulation, heightened angiogenesis, intratumoral heterogeneity, and deleterious tumor 

microenvironmental (TME) crosstalk. Identification of specific genetic variances has led to 

therapeutic innovation and improved survival for patients with ccRCC. Current barriers to 

effective long-term therapeutic success highlight the need for continued drug development using 

improved modeling systems. ccRCC preclinical models can be grouped into three broad 

categories: cell line, mouse, and 3D models. Yet, the breadth of important unanswered questions in 

ccRCC research far exceeds the accessibility of model systems capable of carrying them out. 

Accordingly, we review the strengths, weaknesses, and therapeutic implications of each model 

system that are relied upon today.
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Introduction

Biological models enable researchers to mimic discrete tumor attributes and have paved the 

way for therapeutic innovations in cancer. The hallmarks of cancer, outlined by Hanahan & 

Weinberg, describe a dynamic set of characteristics meant to simplify the complexities of 

tumor progression and set the stage for more in-depth understanding of narrow research 

questions1. Tumor-specific characteristics, including mutational burden, tissue of derivation, 

intratumoral heterogeneity, and microenvironmental interactions, are just a few variables that 

make a catch-all platform for basic cancer research and therapeutic exploration 

impractical2,3.
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Renal Cell Carcinoma (RCC), cancer arising from nephric epithelial cells, constitutes a 

group of diseases characterized on the basis of anatomical origin, histological features, 

molecular hallmarks, and therapeutic outcomes4,5. The majority of RCC falls into three 

major histologically defined subsets including: clear cell RCC (ccRCC), papillary RCC 

(pRCC), and chromophobe RCC (chRCC); however, several other rare subtypes are also 

recognized6–8. Cell lines, 3D organoid systems, and both xenograft and genetically 

engineered mouse models (GEMMs), have all been exploited in RCC research (Figure 1). 

Here, we outline current and developing model systems, and describe the implications and 

opportunities for each.

Defining the Genetic and Histological Landscape of ccRCC

ccRCC is the most common of the RCC subsets, accounting for ~80% of adult clinical 

cases9. Due to the high incidence of ccRCC, we focus our attention to model systems 

attempting to mimic the ccRCC phenotype, noting that some highly cited RCC cell lines are 

of pRCC origin10. ccRCC is characterized by loss or mutation of the von Hippel Lindau 

(VHL) gene, which is responsible for encoding the oxygen sensing mediator protein VHL 

(pVHL)11,12. pVHL is a crucial component of the E3 ubiquitin ligase complex, necessary for 

exposing the family of hypoxia-inducible transcription factors (HIFs) for proteasomal 

degradation in the presence of oxygen8,12,13. Without pVHL, HIF-1α and HIF-2α 
accumulation promotes gene expression programs that ultimately dysregulate glycolysis, 

angiogenesis, and lipolysis regardless of oxygen status11,14–16. Greater than 90% of human 

ccRCC types occur following VHL loss of heterozygosity (LOH) in a 2-hit 

phenomenon14,17. Thus, models of ccRCC are typically defined by the biallelic loss of VHL 
(Figure 2). Recently, multi-regional sampling and whole genome sequencing (WGS) enabled 

researchers to track landmark mutagenic events in ccRCC18. Results indicated that deletion 

of chromosome 3p typically occurs decades before diagnosis, usually during childhood or 

adolescence; this event is the projected ‘first-hit’ to VHL and the initial driver of sporadic 

ccRCC types18. A subsequent ‘second-hit’ occurs as the result of a somatic intragenic 

mutation or gene silencing event, in the remaining VHL allele19,20.

Intracellular HIF stabilization promotes over-expression of HIF-related pro-angiogenic and 

glycolytic target genes that lead to nutrient and oxygen imbalances in the tumor 

microenvironment (TME)21,22. A classic example is the accumulation of the angiogenic 

growth factor, VEGF-A, which promotes activation of its cognate receptor, VEGFR, on 

endothelial cells to induce a pro-angiogenic switch21. VEGF-A and VEGFR have been 

successfully exploited as therapeutic targets for angiogenesis in the treatment of ccRCC23. 

Hypoxia-driven dysregulation of glycolytic modulators, including glucose uptake 

transporter-1 (GLUT1) and pyruvate kinase-M2 (PKM2), have also been explored as 

therapeutic targets in ccRCC24,25.

In 2013, The Cancer Genome Atlas (TCGA) put forward a comprehensive analysis of over 

400 RCC specimens, alongside matching normal kidney tissue, to reveal a recurrent pattern 

of metabolic reprogramming that correlated with disease severity26. Integrative unbiased 

pathway analysis disclosed that aggressive tumors resembled a metabolic shift similar to the 

Warburg phenotype, as determined by downregulation of TCA cycle intermediates and 
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upregulation of glycolysis and the pentose phosphate pathway26. In addition, decreased 

PTEN and AMPK protein activity and increased Acetyl-CoA carboxylase correlated with 

aggressive tumor phenotypes26.

ccRCC biology can be subdivided based on recurrent mutations in the chromatin modifying 

co-driver genes (PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2) believed to 

contribute to intratumoral heterogeneity in ccRCC and serve as a potential etiology of drug 

resistance9,14,20,27. At the genomic level, intratumoral heterogeneity (ITH) is defined as the 

outgrowth of genetically different clonal subpopulations within the same tumor28. 

Phylogenetic analyses of multiple unique regions within the same ccRCC tumor determined 

that only VHL mutations were similar and abundant across all regions and additional 

mutations in co-driver genes varied across these tumor regions29. A comprehensive study 

using TRAcking cancer evolution Rx (TRACERx) and multi-regional WGS in ccRCC 

exposed clonal and sub-clonal drivers that contribute to the evolution of intratumoral 

heterogeneity and genomic instability30. Seven evolutionary subtypes were classified 

according to their metastatic phenotype30,31. Primary tumors characterized as BAP1 driven, 

VHL wild type, or having multiple clonal drivers were shown to exhibit low ITH and rapid 

progression to lungs, liver, adrenal glands, and lymph nodes30. Tumors classified as PBRM1 
plus SETD2, PBRM1 plus PI3K, and PBRM1 plus somatic copy number alteration (SCNA) 

displayed high ITH and attenuated metastatic progression to the bones and lungs30. Primary 

tumors classified as VHL monodriver did not exhibit metastasis30. Together, TRACERx 

Renal and TCGA studies highlight factors that have the potential to predict a myriad of 

disease phenotypes and associated level of aggression20,31.

Biomarker Development and Treatment in Advanced ccRCC

To date, no genetic biomarker has been implemented as a reliable predictor of ccRCC 

prognostic or therapeutic outcome. Prediction of ccRCC tumor recurrence, using the 

multigene assays, ClearCode34 and the 16-gene recurrence score (RS) assay, have 

demonstrated success in aiding clinicians in judging risk of recurrence beyond existing 

pathological parameters32,33. ClearCode34 is a 34 gene expression signature originally 

designed to define molecular variation but has demonstrated the capacity to predict tumor 

recurrence in primary RCC tumors33,34. Based on expression of the 34 gene signature, 

ClearCode34 classifies tumors as either indolent (ccA) or aggressive (ccB)34. The predictive 

value of ClearCode34 has also been validated clinically in connecting primary tumor 

biology with distant, metastatic sites in ccRCC35. A 16-gene recurrence score (RS) assay 

has also been used in predicting tumor recurrence and projecting patient benefit to adjuvant 

therapies32,36. The 16-gene assay includes ccRCC related genes involved in vascular, 

immune, cell-cycle division, and growth pathways32,36. ClearCode34 and the 16-gene RS 

assay are both valuable tools for research purposes and could be considered for personalized 

therapeutic selection based on molecular tumor characteristics32,34.

ccRCC is typically non-responsive to traditional cytotoxic chemotherapeutic drugs37. Prior 

to the introduction of small molecule targeted therapies and immune checkpoint inhibitors, 

cytokine therapy (IFN-α and IL-2) was the standard of care for patients with metastatic RCC 

(mRCC); however, response rates remained low38. A mainstay of therapy, since their 
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introduction in 2005, are the anti-angiogenic small molecule tyrosine kinase inhibitors (TKI) 

primarily targeting the VEGF signaling pathway39,40. The following TKI small molecule 

inhibitor drugs are approved for clinical use: axitinib, cabozantinib, lenvatinib, pazopanib, 

sorafenib, and sunitinib40. Additionally, mTOR signaling is tightly linked to HIF activation 

and increased metabolic demands, which makes mTOR inhibition a viable therapeutic target 

for some RCC patients41. Everolimus and temsirolimus are both approved for use in 

advanced RCC42, and more recently, everolimus has been applied in combination with 

VEGF inhibition43.

Checkpoint inhibitors targeting CTLA-4, PD-1 and PD-L1 work by unleashing the adaptive 

immune system’s potential to target and kill cancer cells44,45. Ipilimumab blocks CTLA-4 

while nivolumab and pembrolizumab block the negative regulator PD-1 on T cells. 

Avelumab targets the negative regulation of T cells by blocking PD-L1 on cancer and other 

immune cells46,47. Checkpoint blockade therapies initially showed improvement in patient 

survival with use of nivolumab in the second line treatment setting48. Shortly after, 

checkpoint inhibition moved to the first-line standard of care in metastatic ccRCC with a 

combination of antibodies targeting CTLA-4 and PD-146, and more recently, finding that 

combination of checkpoint inhibition and VEGF TKI increased objective response rates and 

overall survival47,49,50.

Newer generation immunotherapies represent a promising approach to patient care in 

ccRCC, with the potential to provide a long duration of response49. However, many patients 

harbor non-responsive tumors and are faced with a poor prognosis. Additionally, for patients 

who initially respond, many will progress while on treatment as tumor cells develop 

resistance49,51. Ongoing efforts seek to identify and confirm clinically relevant predictive 

biomarkers in ccRCC to aid clinicians in immunotherapy selection52,53. As such, model 

systems capable of recapitulating the TME are crucial to enhance our understanding of drug 

interactions.

Cell Line Models of Renal Cell Carcinoma

Immortalized tumor cell lines are the most frequently utilized biological system in cancer 

research, contributing to our current molecular and genetic understanding of RCC biology54. 

Cost-effectiveness, ease of maintenance and manipulation, and infinite replicative capacity 

made accessible by immortalized cell lines allow for the three “R’s” in humane research: 

replacement, reduction, and refinement55. In the 1980s, the National Cancer Institute’s 60 

cell line (NCI-60) comprehensive anticancer drug screening study included the following 

RCC cell lines: 786-O, A-498, ACHN, CAKI-1, RXF 393, SN12C, TK-10, and UO-3156. 

The NCI-60 study led to intense characterization and publicly available RCC specific 

genetic and molecular cell line data56. Consequently, the eight RCC cell lines included were 

established as first-line research models.

786-O is among the earliest ccRCC cell lines established and remains the most frequently 

cited today57. The COSMIC Cell Lines Project (CCLP) and Broad Novartis Cell Line 

Encyclopedia (CCLE) report a p.G104fs VHL frameshift deletion in 786-Os, and 

consistently, 786-O cells display increased HIF-2α and VEGF protein expression, making 
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this cell line a workhorse for ccRCC research58. The negative regulatory role of the pVHL-

HIF axis was first demonstrated in 786-O cells. When transduced with wild type (WT)-

pVHL, in vivo tumor growth was inhibited59,60. 786-Os were also used to show that HIF 

overexpression alone promotes tumor growth, thus validating that HIF activation occurs 

downstream from the pVHL interaction61. More recently, 786-O cells were employed to 

decipher the role of hypoxia induced resistance to the VEGF inhibitor, sorafenib, via the 

HIF-2α-Cox2 pathway, thereby illustrating a potential drug resistance mechanism62. 

Histologically, 786-O cells do not exhibit clear cytoplasm in mouse xenograft models; 

rather, tumors are poorly differentiated with spindle shaped sarcomatoid features, a quality 

indicative of genetic and morphological regression63,64. Stem cell-like side populations 

(SPs) have been observed in 786-O cells, making this line a potential model for cancer stem 

cell (CSC) studies in aggressive forms of ccRCC57. SPs are understood to be a population of 

cancer stem cells (CSCs) that, when enriched, confer resistance to chemotherapy drugs and 

promote tumorigenicity65.

The second most highly cited RCC line, A-498, is classified as ccRCC based on VHL 
mutation status. The CCLP and CCLE report p.G144fs*14 and p.V142fs VHL mutations, 

respectively58,66,67. A498 cells exhibit clear cytoplasmic histological signatures when 

xenografted into nude mice11,57. 786-O and A-498 cell lines were utilized in a landmark 

study implicating mTOR activation as a driver of tumorigenesis in ccRCC68. This finding 

fueled further investigations into mTOR activity as a prognostic indicator and therapeutic 

target41,42,69. A-498 and 786-O cells were also used to illustrate the functional redundancy 

and dominance of HIF protein subunits in transcribing the angiogenic factor, VEGF70. When 

HIF-1α and HIF-2α are both present and functional, VEGF is preferentially expressed by 

HIF-1α; however, when HIF-1α is deleted or nonfunctional, HIF-2α is upregulated and 

VEGF levels remain unchanged70.

ACHN, the third most highly cited line, was established from a metastatic pleural effusion 

and exhibits poorly differentiated sarcomatoid histological features57. ACHN cells harbor a 

pRCC specific mutation in c-MET and do not have classical VHL mutations57,71. Though 

not representative of the ccRCC genetic phenotype, ACHN cells were exploited to 

demonstrate VHL deficient sensitization to mTOR inhibition by shRNA knockdown72. 

Increased uptake of the glucose tracer fluorodeoxyglucose (FDG) was decreased in VHL 
knockdown tumors treated with the mTOR inhibitor, CCI-779, compared to the vehicle 

treated control tumors by positron emission tomography (PET)72. This study provided 

support for clinical use of mTOR dependent inhibition in the treatment of ccRCC. These 

features make ACHN cells an attractive model for studying aggressive tumor types but 

impractical for studies aimed at gaining a broad understanding of ccRCC diseases.

While the top three cited cells lines in RCC literature are reviewed above, many other useful 

cell line models exist and should be considered and applied depending on the biologic 

question. We have summarized the major classifications and characteristics of established 

cell lines used in RCC research today (Table 1)10,66,67,71,73–75. In summary, thoughtful 

consideration regarding experimental aims and well-established genomic and molecular 

signatures should be employed in the process of choosing an appropriate cell line for each 

RCC project.
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Overview of Preclinical Mouse Models

Mice are utilized extensively as a model system for the study of cancer biology. The mouse 

genome is experimentally accessible, allowing manipulation of relevant onco- and tumor 

suppressor genes that promote cancer hallmark characteristics in vivo76. Until recently, RCC 

murine models have been limited to cell-line-derived (CDX), or patient-derived xenografts 

(PDX). New developments in genetically engineered mouse models (GEMMs) have allowed 

for kidney-specific conditional knockout of Vhl with at least one other ccRCC associated co-

driver gene. VHL bi-allelic inactivation is thought to occur during early stages of ccRCC 

development in humans with additional co-drivers leading to enhanced tumor progression at 

a later stage31,77. Most ccRCC GEMMs rely on complete gene deletion during early 

embryogenesis, thereby failing to model sequential mutagenic events through clonal 

selection30. Ultimately, the complexity involved with studying RCC cell mechanisms and 

therapeutic responses in mice is far too immense for one mouse model to encapsulate. Cell-

line derived xenograft (CDX), Patient-derived xenograft (PDX), and Genetically engineered 

mouse models (GEMM) each provide unique opportunities to interrogate various questions 

in ccRCC.

Xenograft Models

CDX and PDX RCC models can be established by orthotopic placement in the subcapsular 

region of the kidney or by heterotopic transplantation: e.g. subcutaneous (s.c.), 

intraperitoneal (i.p.), or intramuscular (i.m.)78. To prevent rejection of the tumor cells from 

successful engraftment into the host animal, xenograft models using human cell lines or 

tissues rely on non-obese diabetic (NOD) severe combined immunodeficient (scid) mice, or 

equivalent severely immunocompromised models79,80. Xenograft models have been shown 

to maintain patient tumor histology, gene expression, DNA copy number alterations, 

mutagenic profiles, and general drug responsiveness81,82.

Successful xenograft transplantation of established RCC cell lines or primary patient-derived 

tissues has led to the development and current mechanistic understanding of the anti-

angiogenic drugs heavily utilized to treat metastatic RCC (mRCC)83. Xenograft models have 

been shown to recapitulate important aspects of the TME, specifically the dense vascular 

bundling that is characteristic of ccRCC84. Rojas and colleagues were able to detect 

responses to sunitinib treatment and deduce tumor responsiveness one week prior to changes 

in tumor volume using ultrasound-derived microvascular density imaging84. In another 

study, CDX models using 786-O, A498 and CAKI-1 cell lines demonstrated changes in 

tumor blood flow rates correlating with anti-angiogenic resistance of sorafenib treatment85. 

In this model, arterial spin labeling (ASL) magnetic resonance (MR) imaging was used to 

measure changes in blood flow signal intensity and spatial patterning during blood vessel 

formation85. In 786-O xenografts, blood vessel growth in anti-angiogenic resistant tumors 

primarily occurred at the periphery of the tumor, whereas endothelial formation in A498 

xenografts occurred closer to the tumor’s center85. ASL-MR imaging was also useful in 

identifying tumors with initial low blood flow intensity, as observed in CAKI-1 xenografts, a 

characteristic that could aid in treatment selection and prediction85. Overall, changes in 

blood flow intensity provided valuable diagnostic and mechanistic information at earlier 
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timepoints than previously assessed, thereby highlighting the potential for measuring 

functional tumor activity, in addition to gross anatomical quantification86.

PDX models are created by direct transplantation and subsequent passaging of surgically 

resected RCC tissues into immunocompromised mice82,87,88. PDX models provide a closer 

to human model of tumor growth, but incur important selective pressures which likely skew 

the distribution of tumor phenotypes89. PDX modeling has demonstrated a propensity to 

select for the growth of aggressive forms of cancers, a phenomenon that allowed for the 

discovery of BAP1 as a tumor suppressor gene in ccRCC90. Patient tumors harboring BAP1 
mutations have since been shown to associate with worse cancer specific survival and exhibit 

aggressive tumor features9,90,91.

Immune competent mice can be used to study ccRCC in syngeneic CDX models92. Murine 

renal adenocarcinoma (Renca) is a cell line that arose spontaneously from Balb/c lineage 

and exhibits progressive growth and metastasis to lymph nodes, liver, and lungs in 

transplantable subcapsular orthotopic models93. Though Renca cells do not fully mimic the 

genetic profile observed in human ccRCC, Vhl deletion in Renca cells leads to HIF-1α 
stabilization and epithelial-mesenchymal transition (EMT), both of which classically define 

human ccRCC94. The human kidney tumor-specific antigen, carbonic anhydrase-IX (CA-

IX), has also been stably expressed on Renca cells, and has provided an ideal platform for 

metastatic targeting and tracking studies in ccRCC95. Similar to human RCC tumors, Renca 

xenograft models demonstrate high immune-infiltrating cell populations of both lymphoid 

and myeloid lineage96. In an orthotopic CDX model, Renca tumors were used to identify 

non-canonical expression of the T-regulatory-specific transcription factor, Foxp3, in tumor 

associated macrophages (TAMs) of the TME96,97. In addition, initial studies aimed at 

understanding functional mechanisms in which chemokine networks can promote tumor 

progression have identified chemokine receptor 4 (CCR4) as a potential target in RCC96.

Ultimately, xenograft models retain histology and genetic signatures of the original cell line 

or tissue type, thereby implementing an appropriate system for elucidating tumor 

mechanisms of response and resistance to candidate drugs98. However, the requirement of 

immune suppression in non-syngeneic models limits accurate representation of the TME and 

ITH in xenograft models.

Genetically Engineered Mouse Models (GEMMs)

Reproducing common mutational events in genetically engineered mouse models (GEMMs) 

under kidney epithelial specific Cre drivers of deletion has proven challenging in ccRCC for 

several reasons (Figure 3). Contrary to human disease, Vhl heterozygosity has not been 

shown to predispose mice to ccRCC tumor development99–101. This dilemma is fueled by 

inter-species locational variances of commonly mutated ccRCC genes102. In humans, an 

initial ‘first-hit’ VHL mutagenic event is thought to occur when chromosome arm 3p is lost 

in near entirety; a subsequent ‘second-hit’ occurs when the remaining VHL allele is 

mutated, resulting in loss of function of VHL31. The ccRCC associated chromatin modifying 

genes PBRM1, BAP1, and SETD2 are all present on chromosome arm 3p in the human 

genome; thus, ‘first-hit’ and ‘second-hit’ mutagenic events described for VHL also apply to 
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these secondary ccRCC related genes103. In the mouse genome, however, Vhl is located on 

chromosome 6, Setd2 on chromosome 9, and Pbrm1 and Bap1 reside on chromosome 14 

(Figure 2)104. Additionally, models that alter genes atypically associated with classic human 

ccRCC have been shown to give rise to robust tumors resembling the disease in mice.105. 

Thus, differences observed in mouse versus human RCC tumor development highlight the 

need for consideration regarding basic species-specific kidney function.

Despite present challenges, GEMMs are poised to impact our current therapeutic and basic 

biologic understanding of tumor development in a number of ways106,107. Considering the 

inevitability of drug resistance conferred by mono-therapeutic anti-cancer agents in ccRCC, 

immunocompetent GEMMs also offer an appropriate platform to address combination 

therapy. Importantly, GEM models mimicking ccRCC can develop de novo sporadic tumors, 

thereby providing an in vivo platform for thorough investigations of the complex interactions 

between tumor cells and the TME during tumorigenesis and progression. In this discussion, 

we highlight five of the most relevant GEM models currently available in ccRCC research 

(Figure 4).

Vhl−/− Pbrm1−/−

Two independent groups have published their attempts to recapitulate human ccRCC in mice 

by deletion of both Vhl and Pbrm1, the 1st and 2nd most commonly altered genes observed 

in ccRCC, respectively. PBRM1, a tumor suppressor subunit of the SWI/SNF chromatin 

remodeling complex, located on chromosome 3p, is mutated in 45% of human ccRCC 

cases108. Nargund and colleagues utilized the Ksp-Cre system to conditionally delete Vhl 
and Pbrm1 in renal epithelial cells109,110. With this system, mice developed preneoplastic 

polycystic kidney disease (PKD) by 6 months of age and showed a 50% tumor incidence by 

10 months, assessed by histological examination109. Tumors exhibited classic ccRCC 

characteristics, including clear cytoplasm, hyperactive mTORC1 signaling, downregulation 

of critical oxidative phosphorylation genes, and HIF-1α accumulation (Figure 2).

Gu and colleagues developed a combined Vhl and Pbrm1 conditional knockout model using 

paired box gene 8 (Pax8) as the Cre driver of gene deletion111–113. This approach gave rise 

to bilateral, homogenous tumors by 9 months of age in 85% of mice111. The author’s 

described the Vhl, Pbrm1 deleted tumors as low-grade, based on aggression and histologic 

analysis; a result consistent with loss of PBRM1 in human ccRCC111.

The nephron is made up of a complex capsular and tubular system rich in capillary beds and 

collecting ducts, specially designed to filter blood114. Based on immunohistochemical (IHC) 

staining and gene expression analysis of specialized nephric regions, the proximal 

convoluted tubule (PCT), consisting of at least 13 distinct epithelial cell types, has been 

recognized as the most likely site of origin of human ccRCC mutations115–119. However, Gu 

and colleagues found that Vhl and Pbrm1 deletion in a murine system using a Pax8 Cre 

promoted tumorigenesis, where the Cre driver expression was limited to the parietal cells of 

Bowman’s capsule111. In addition, the PCT-specific Cre drivers, Sglt2 and Villin, failed to 

promote ccRCC tumor growth111,120,121. IHC staining led the authors to propose that the 

parietal epithelial cells of Bowman’s capsule may be the location of tumor origin in their 

model. Therefore, future studies should seek to validate ccRCC cell specific nephric lineage 
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and determine locational differences based on co-driver gene mutations. Importantly, both 

investigations targeting Vhl and Pbrm1 for deletion confirm the tumor suppressive role of 

Pbrm1 in vivo and will be valuable tools moving forward in ccRCC tumor therapeutic 

investigations.

Vhl−/− Bap1+/−

The histone deubiquitinase, BRCA1-associated protein-1 (BAP1), is a tumor suppressor that 

functions in DNA repair and chromatin remodeling in the nucleus103. BAP1 deletion or 

mutation occurs in 10–15% of ccRCC tumors90. BAP1 mutations were identified through 

next generation sequencing as strongly associated with high grade tumors and increased risk 

of tumor recurrence following surgical resection90,108. Combined targeting of Bap1 and Vhl, 
using the nephron progenitor transcription regulator, Six2, as a Cre driver, resulted in ccRCC 

development; however, pups only survived up to one month111,122,123. When the same group 

utilized the nephric specific transcription factor, Pax8, as the Cre driver of complete Vhl 
deletion and heterozygous manipulation of Bap1, features reminiscent of ccRCC were 

observed111. Vhl and Bap1 deficiency gave rise to high grade tumors with clear cell 

histology and positive carbonic anhydrase 9 (CAIX) staining111. Future studies should aim 

to validate tumor responsiveness to drug therapies in this model.

Vhl−/− Cdkn2a−/− and c-Myc activation

MYC activation has been recognized as a common genetic anomaly in both pRCC and 

ccRCC. One study revealed a 3-fold increase in c-MYC expression when compared to 

matched healthy kidney tissue124. CDKN2A (INK4A/ARF), a tumor suppressor gene, 

encodes a protein that functions to promote cellular senescence. Consequently, CDKN2A 
loss-of-function promotes tumor growth and metastasis in many cancers125. Bailey and 

colleagues exploited a previously described doxycycline inducible c-Myc transgenic 

mouse126 to explore Myc activation alone, and with Ksp-Cre promotor driven Vhl and 

Cdkn2a deletion in renal tubular cells, thus generating three useful models127. Based on 

histological features and RNA-seq, c-Myc overexpression alone gave rise to renal tumors 

most representative of type 2 pRCC, assessed by pathologic staining. c-Myc overexpression 

plus Vhl deletion resulted in tumors demonstrating some ccRCC pathological features, such 

as cytoplasmic clearing, necrosis, and intratumor hemorrhaging127. Deletion of Cdkn2a, in 

addition to Vhl deletion and c-Myc overexpression, gave rise to an aggressive ccRCC 

phenotype, exhibiting liver metastasis in 30% of mice127. Though the authors demonstrated 

successful recapitulation of metastatic tumor sites resembling ccRCC, the genetic drivers in 

this model only occurs in 6% of human RCC cases127. This model is representative of a 

small aggressive ccRCC subset and is unique in its ability to metastasize.

Vhl−/−, Trp53−/−, and Rb1−/−

Single nucleotide alterations affecting the function of tumor suppressor genes, RB and TP53, 

during the G1-S cell cycle transition, are relatively infrequent in ccRCC128. However, copy 

number gains or losses in RB and TP53 are common, and TCGA patient data demonstrates 

independent evolution in these regulators from those occurring in VHL, PBRM1, BAP1, and 

SETD2128. Hence, the conditional triple-mutant GEMM model, inactivating Vhl, Trp53, and 

Rb1, was predicted to confer the evolution of genetically distinct tumors overtime128. This 
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model utilized kidney specific cadherin (Ksp-cadherin), expressed on tubular epithelial cells 

of the kidney and genitourinary (GU) tract, as a Cre driver of deletion110. Sporadic tumors, 

formed in the mouse kidney, displayed classic ccRCC pathological features, including 

necrosis, tumor hemorrhaging, and nuclear accumulation of HIF-1α and HIF-2α128. 

Notably, a pathological phenotype reminiscent of ccRCC did not result from a Trp53, Rb1 
double knockout model, thus confirming the role of Vhl loss as necessary for tumor 

progression128. Greater than 80% of the triple-mutant mice developed tumors within 25–61 

weeks, with each mouse averaging five tumors128. Male mice developed more tumors than 

female mice in this model, mirroring the gender bias observed in human ccRCC128. Similar 

to human ccRCC responses to current therapies, Harlander et al. described heterogeneity in 

therapeutic responses to a panel of relevant drugs in the triple-mutant model128. Notably, 

VEGFR and mTOR treatment demonstrated a moderate decrease in tumor growth with 

development of drug resistance in some tumors128. These results implicate this model as a 

viable platform for investigating drug resistant mechanisms in an immunocompetent in vivo 
model128. Although the specific mutagenic profile driving tumor progression in this triple 

knockout is rarely seen in human ccRCC, this system does promote evolution of genetically 

distinct tumors with variable drug responses and classic pathological ccRCC features.

GEMM Limitations and Conclusions

GEMM models described here are unable to fully represent the genetic and pathological 

phenotypes identified in human disease. In addition, Setd2 GEM models have yet to be 

developed, despite the urgent need for qualitative understanding of SETD2 mutations in an 

in vivo setting. Most current RCC GEMMs rely on simultaneous deletion of target genes 

during early embryogenesis, rather than promoting sequential loss of function. Thus, future 

GEMMs in ccRCC should attempt to alter or delete genes of interest sequentially in an 

attempt to mimic clonal selection. This approach has already been utilized to dissect 

pancreatic ductal adenocarcinoma (PDAC) using CRISPR/Cas9 technology106.

For many genes residing on human 3p, notably SETD2, the ‘first-hit’ mutation results in a 

haploinsufficiency phenotype that is not yet technically feasible to recapitulate in a murine 

setting. Indeed, heterozygosity phenotypes for SETD2 have been implicated in tumorigenic 

processes as an early driver of genomic and microtubule instability129. Additionally, 

complete gene deletion, as opposed to mutation, limits investigations aimed at examining 

adverse interactions conferred by truncated or nonfunctional proteins, which may contribute 

to tumor progression in human ccRCC.

Comprehensive evaluation of the TME and ITH, in the above described GEMMs, have yet to 

be fully evaluated; however, researchers are actively exploiting the presence of a competent 

immune system to evaluate these features and associate the results with human disease. 

Specifically, future work should aim to determine if the tumor mutation status correlates 

with immune and non-immune cancer-associated cellular components in mice. Additionally, 

multi-regional sampling, whole exome sequencing, and single cell RNA sequencing, may 

uncover translatable tumor vulnerabilities that have not yet been identified in human tumors.
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Ultimately, the complexity involved with studying ccRCC cell mechanisms and therapeutics 

in vivo suggests the need for current and continued development of xenograft and 

genetically modified mouse models, as each provide unique opportunities to interrogate 

various questions about the biology and treatment of RCC.

Patient-Derived Organoid (PDO) Model

Recently developed organoid technology promotes an in vitro structural organization that is 

comparable to an in vivo tumor architecture, while also maintaining the vascular-stromal-

inflammatory milieu that makes up the TME130. Several studies have successfully created 

tumor organoid models using primary patient specimens from colorectal131, pancreatic132, 

bladder133, breast134, and lung cancers135. Grassi and colleagues became the first group to 

successfully establish and characterize organoid cultures from both normal and matched 

ccRCC adult-patient-derived-pluripotent stem cells of the kidney136. Differential 

organization was observed between ccRCC organoids, compared to their normal kidney 

counterparts, by immunofluorescence (IF)136. In addition, nephron region-specificity of the 

PCT and DCT, Bowman’s capsule, loop of Henle, thick ascending limb, and collecting duct 

tissues were all confirmed by cell type specific IF in both tumor and normal organoid 

cultures136. Successful transplant of RCC PDOs into immunocompromised mice, by 

orthotopic injection, demonstrated a 75% engraftment rate136. Furthermore, transplantation 

showed an increased capacity to invade kidney parenchyma and disorganized tissue 

structure, as compared to normal tissue PDO, thereby achieving tumor-propagating 

properties136. The authors contribution of organoids derived from normal adult kidney tissue 

is crucial, not only as a matched control for ccRCC, but also for the provision of a 

physiological relevant platform for basic kidney research136. Normal kidney tissue derived 

organoids also provide a foundation for future targeted gene editing in 3D culture utilizing 

CRISPR-Cas9 technology, an approach that has been established in organoids originating 

from intestinal and pancreatic tissue137,138. Initial selection of undifferentiated renal adult 

stem cells and rejection of hematopoietic derived cells limit this model’s ability to fully 

encompass the native TME in ccRCC.

Other groups, such as Neal and colleagues, developed an air liquid interface (ALI) method 

to cultivate patient derived organoids (PDOs) from surgically resected ccRCC biopsied 

human specimens. In a collagen-based matrix, the authors effectively retained primary tumor 

epithelium alongside immune and transformed non-immune TME components139. In 

addition, immune checkpoint blockade therapy with PD1 and PD-L1 propagated expansion 

of TILs and production of granzyme b cytotoxic CD8 T cells, thereby killing tumor cells and 

recapitulating immune checkpoint functionality in a 3D system139. Continued development 

of 3D organoid culture will likely provide opportunities to assess the efficacy of other 

immune- and metabolic-based therapies.

Challenges to Overcome in RCC PDOs

Technical challenges involved in RCC organoid development are not trivial, and 

standardization of optimized techniques to support experimental reproducibility have yet to 

be established. For unknown reasons, studies have observed a growth advantage of non-
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cancerous epithelial cells residing in the TME when exposed to supplemented cell culture 

conditions140. Modifications, including initial starvation of growth factors, followed by 

robust nutrient supplementation, have been shown to reduce contaminated normal epithelial 

cells in some tumor types139. This phenomenon is indicative of cell responses to in vitro 
culture conditions that may be different from those occurring in an in vivo tumor 

environment. In-depth analyses of the nutrients available in the native TME of human RCC 

tumors may be key to improving organoid development.

ITH is a challenging feature to capture in PDO models that rely on a small fraction of the 

resected tumor tissue. Given that ITH is a hallmark of ccRCC, methods aimed at sampling 

multiple regions of the tumor will likely provide a more representative view of any given 

tumor. Features common to RCC tumors, including necrosis, intratumoral hemorrhaging, 

inflammation, and hypoxia, make simultaneous retrieval and maintenance of viable tumor 

epithelial and TME cell populations challenging to obtain7,141. Despite current limitations, 

however, continued research development of PDOs will provide a reliable framework for 

investigations of RCC biology, therapeutic development, and evaluation of native TME/

tumor crosstalk and organization.

Concluding remarks

Each model system in RCC research offers a unique set of advantages and disadvantages 

that must be considered by investigators. Well established RCC cell lines have propelled our 

molecular and genetic understanding of renal cancers, both in cell line models and murine 

CDX models, thus providing a system for high-throughput drug screening. Results obtained 

from historical research utilizing cell lines, CDX, and PDX models identified angiogenic 

and mTOR signaling as candidate therapeutic targets that ultimately translated into 

significant improvements in patient care and prognosis. The relative ease of manipulation 

allowed by cell line and xenograft models are important for enhancing our understanding of 

established and newly identified RCC subtypes. Despite advancements permitted by cell line 

and xenograft models, unpredictable tumor recurrence and therapeutic resistance in mRCC 

remain challenging obstacles in the field. Therefore, sophisticated models are particularly 

critical as the TME emerges as a major factor in cancer control mechanisms. Complex 

crosstalk occurring within the TME, has prompted a shift toward immunotherapy-based 

treatment as the standard of care. Consequently, there is a need for improved 

immunocompetent in vivo models and PDO in vitro 3D systems to allow for accurate 

recapitulation of the TME.

GEMMs have demonstrated successful development of de novo sporadic ccRCC tumors, 

providing an in vivo platform for thorough investigations of tumorigenesis and progression. 

Continued development of GEMM models will result in an increased capacity to mimic the 

clonal evolution believed to occur in human ccRCC tumors and allow the underlying 

mechanisms that contribute to tumorigenesis and progression to be fully appreciated by 

researchers. ccRCC organoid systems are poised to uncover tumor specific vulnerabilities in 

the context of an intricate stromal-vascular-inflammatory interaction. As rapid scientific 

advancement continues to push the technical boundaries of cancer research toward the 
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development of precision medicine and immune therapy-based treatment, so, too, should 

disease-specific model systems evolve.
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Figure 1. 
Advantages and disadvantages of model system platforms in RCC.

Advantages and ideal applications, and disadvantages of traditional cell line, organoid, 

xenograft, and GEM models in RCC. As physiological relevance increases, ease of 

manipulation decreases.
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Figure 2. 
Location of ccRCC Associated Genes Human and Mouse Genome

VHL and additional driver genes (SETD2, PBRM1, and BAP1) are located on chromosome 

3p in the human genome. WGS identified two key events in the evolutionary progression of 

ccRCC: loss of one 3p arm during childhood or adolescents, followed an additional mutation 

in the remaining VHL allele18. Corresponding genes in the mouse are located on 

chromosomes 6,9, and 14.
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Figure 3. 
Cre drivers in kidney epithelial cell deletion.

Cre drivers in kidney epithelial cell gene specific deletion and tissues affected are outlined.
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Figure 4. 
Genetically engineered RCC mouse models.

Strengths and limitations of relevant RCC GEM models, and the pathology recapitulated by 

each are outlined.
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Table 1.

Top cited RCC cell lines.

Histologic and genetic characteristics, including ccA and ccB sub-classification, and 3p deletion status as 

defined by Sinha et al., are outlined10. VHL and other known significantly mutated genes, determined by 

TCGA, are defined by CCLE and CCLP databases58,66,67,142.

Cell line Classification

Sub 
classification10

Histological features
3p status10 VHL 

status66,67
CCLE 

mutations66, 67

(Sinha et al., 
2017)

(Sinha et 
al., 2017)

(Barretina et 
al., 2012)

(Barretina et al., 
2012)

786-O ccRCC ccB

Poor differentiation with 
sarcomatoid features10

Deleted Null
PTEN, TP53,

(Sinha et al., 2017) TSC2, MLL3

A-498 ccRCC ccB

Compact nests of tumor cells 
with clear cytoplasm10

Deleted Null MLL3, SETD2

(Sinha et al., 2017)

ACHN pRCC Unknown

Poor differentiation with 
sarcomatoid features10

Deleted Wildtype PBRM1, NF2

(Sinha et al., 2017)

CAKI-1 ccRCC ccB
Poor differentiation71

Not Deleted Wildtype
MET, MLL3,

(Korhonen et al., 1994) SETD2

RCC-4 ccRCC Unknown Unknown Deleted Null NA

A-704 ccRCC ccA

Not tumorigenic in 
immunocompromised mice73

Deleted Null
MLL3, TP53,

(Giard et al., 1973) PBRM1, SETD2

SN12C Unknown Unknown

Clear cell combined with 
granular morphology74

Not Deleted Wildtype
TP53, BAP1,

(Sanchez et al., 1994) NF2

CAKI-2 ccRCC ccB
Well differentiated clear cell71

Deleted Wildtype PBRM1
(Korhonen et al., 1994)

769-P ccRCC ccA Unknown Deleted Null BAP1, TSC2

TK-10 Unknown Unknown Unknown Deleted Wildtype PIK3CA, TP53

UMRC-2 ccRCC ccA Unknown Deleted Null NA

OS-RC-2 ccRCC ccB Unknown Deleted Null
PTEN, TP53,

PBRM1

CAL-54 pRCC Unknown

Well differentiated with 
papillary structures75

Deleted Wildtype FH, MLL3

(Gioanni et al., 1996)
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