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A peptide encoded by circular form of LINC-PINT
suppresses oncogenic transcriptional elongation in
glioblastoma
Maolei Zhang1,2, Kun Zhao1,2, Xiaoping Xu1,2, Yibing Yang1,2, Sheng Yan1,2,3, Ping Wei4, Hui Liu5, Jianbo Xu6,

Feizhe Xiao7, Huangkai Zhou1,2,8, Xuesong Yang1,2, Nunu Huang1,2, Jinglei Liu1,2, Kejun He1,2, Keping Xie9,

Gong Zhang10, Suyun Huang 11,12 & Nu Zhang 1,2

Circular RNAs (circRNAs) are a large class of transcripts in the mammalian genome.

Although the translation of circRNAs was reported, additional coding circRNAs and the

functions of their translated products remain elusive. Here, we demonstrate that an endo-

genous circRNA generated from a long noncoding RNA encodes regulatory peptides.

Through ribosome nascent-chain complex-bound RNA sequencing (RNC-seq), we discover

several peptides potentially encoded by circRNAs. We identify an 87-amino-acid peptide

encoded by the circular form of the long intergenic non-protein-coding RNA p53-induced

transcript (LINC-PINT) that suppresses glioblastoma cell proliferation in vitro and in vivo. This

peptide directly interacts with polymerase associated factor complex (PAF1c) and inhibits the

transcriptional elongation of multiple oncogenes. The expression of this peptide and its

corresponding circRNA are decreased in glioblastoma compared with the levels in normal

tissues. Our results establish the existence of peptides encoded by circRNAs and demon-

strate their potential functions in glioblastoma tumorigenesis.
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As determined by deep RNA sequencing and bioinfor-
matics, circRNAs are widely expressed RNA transcripts
found in different species1–6. CircRNAs are inherently

resistant to exonuclease activity (resulting in higher stability than
linear RNAs) and often show tissue- or developmental stage-
specific expression2,7,8, implying that they possess important
biological functions. To date, circRNAs have been shown to act as
microRNA sponges9–11, to respond to and regulate neuronal
synaptic function12, and to manipulate gene transcription in the
nucleus13. A typical circRNA is generated through a back-splicing
mechanism that covalently connects the 3′-end of a coding or
non-coding exon to the 5′-end14–16. Until now, circRNAs have
generally been considered non-coding RNAs (ncRNAs)3,9,12.
However, recent evidence has demonstrated that functional
peptides are encoded by short open reading frames (sORFs) in
ncRNAs17–22. Additionally, certain synthetic circRNAs are
translatable23,24, raising the question of whether natural cir-
cRNAs containing sORFs in mammalian cells are translated into
proteins or peptides. Up-to-date reports showed that endogenous
circRNAs, such as circZNF609, circMbl, circ-FBXW7, and circ-
SHPRH, are translated in vivo, suggesting that additional coding
circRNAs and their translated products have yet to be dis-
covered25–29. Currently, three broad strategies have been
employed to identify sORFs in ncRNAs19. These strategies
include cross-species comparisons to identify conserved sequen-
ces, the examination of codon content or features to differentiate
potential coding sORFs, and translational approaches to identify
coding sORFs19. Even with these strategies, the identification of
sORFs in circRNAs is difficult. First, although cross-species
conserved sORFs have been identified in circRNAs, there are few
computational tools, such as circRNADb, that are available to
predict coding circRNAs30. Second, as most circRNAs are gen-
erated from protein-coding exons, the sORFs in circRNAs may
overlap with ORFs in related mRNA sequences1,4. In such cases,
it is difficult to distinguish the origin of a translated product.
Third, the best tool for exploring sORFs, ribosome profiling, has
not been broadly applied to circRNAs due to technical difficulties
such as library construction3,31.

In this study, we show that human circRNAs generated from
long ncRNAs that contain sORFs encode functional peptides.
Through RNC-seq and bioinformatic analysis, we identify several
previously uncharacterized peptides that are potentially encoded
by circRNAs. Analysis of candidate peptides originating from
previously designated ncRNAs confirms an 87-amino acid (aa)
peptide, which we term PINT87aa, encoded by the circular form
but not linear LINC-PINT, according to multiple translation-
related lines of evidence. Functionally, PINT87aa, but not its
corresponding circRNA, partially controls the cell proliferation
and tumorigenesis of cancer cells. Upregulation of the expression
of PINT87aa which is decreased in glioblastoma compared with
their expression in normal tissues, induces tumor-suppressive
effects in vitro and in vivo. Our study demonstrates that the
biological and clinical implications of peptides translated from
circRNAs are likely underestimated, and we provide some evi-
dence that alternative splicing may produce functional peptides
from previously designated non-coding genes.

Results
High-throughput sequencing of potential coding circRNAs. To
generate an RNA-seq database of circRNAs (transcriptome
sequencing) and RNC-RNAs (translatome sequencing), we used
ribosomal RNA-depleted total RNA and RNC-RNAs from nor-
mal human astrocytes (NHA) and U251 glioblastoma cells
(Fig. 1a). The brief procedure of RNC extraction is listed in the
“Methods” section and is based on the article by Wang et al.32.

Total RNA and RNC-RNAs were sequenced separately on
an Illumina HiSeqTM 4000. The obtained reads were mapped
to reference ribosomal RNA (Bowtie2, http://bowtie-bio.
sourceforge.net/bowtie2/) and a reference genome (http://ccb.
jhu.edu/software/tophat/)33,34, and 20mers from both ends of the
unmapped reads were extracted and aligned to the reference
genome to identify unique anchor positions within the splice site.
Anchor reads that aligned in the reverse orientation indicated
circRNA splicing was subjected to find_circ (https://omictools.
com/find-circ-tool) to identify circRNAs2. The anchor alignments
were then extended such that the complete read aligned, and the
breakpoints were flanked by GU/AG splice sites. A candidate
circRNA was called if it was supported by at least two unique
back-spliced reads. As RNC-seq may have low identification rate,
we designed to collect four times data in RNC-seq than that of
RNA-seq. Through sequencing, a total of 15,189 circRNAs (7017
from RNA-seq and 12,863 from RNC-RNA seq) were identified,
4597 of which were matched in circBase35 (Fig. 1b and Supple-
mentary Table 1). We next analyzed the characteristics of these
circRNAs. The majority of the identified circRNAs were gener-
ated from exon coding sequences (CDS), but many circRNAs
were derived from antisense or intronic regions (Fig. 1c). Most of
the identified circRNAs were less than 1500 nucleotide (nt) in
length (Fig. 1d), and the chromosome distribution was not uni-
fied between NHA and U251 circRNAs as previously reported36.
Quantitatively, 4879 circRNAs were identified by using RNA-seq
and 9451 circRNAs were identified by RNC-seq in NHA. 4066
circRNAs were identified by using RNA-seq and 5992 circRNAs
were identified by using RNC-seq in U251 (Fig. 1e, RNC-seq has
a larger sequencing depth compared with RNA-seq, see Supple-
mentary Fig. 1a and Supplementary Table 2 and Supplementary
Data 1). Among these candidates, 4840 and 666 differentially
expressed circRNAs were identified in NHA and U251, respec-
tively, from total RNA or RNC-RNAs with a false discovery rate
(FDR) of ≤0.01 and a fold-change ≥2 (Fig. 1f). We cross-matched
these differentially expressed candidates from total RNA and
RNC-RNAs, and 320 overlapped circRNAs were further identi-
fied (Fig. 1g, upper). Gene Ontology (GO) enrichment analysis
was performed for the host genes of these circRNAs (274 genes),
and this gene set was enriched (FDR < 0.05) for GO molecular
functions including protein binding and cellular component
organization (Fig. 1g, lower and Supplementary Table 3). As
mentioned previously, most circRNAs shared the same CDS with
their host protein-coding genes. To exclude false-positive data
from further investigation, we focused only on non-coding host
genes among these 274 candidates. A total of ten non-coding host
genes were found and in which five had coding-potential (Sup-
plementary Table 4). After initial screening, we focused on LINC-
PINT (ENSG00000231721) for further investigation. LINC-PINT
is a tumor-suppressive long intergenic non-coding RNA
(lincRNA) that is involved in Polycomb repressive complex 2
(PRC2)37. No evidence thus far has suggested that LINC-PINT is
a coding RNA38,39.

Identification of a circRNA formed by exon 2 of LINC-PINT.
We first visualized the back-spliced reads of exon 2 of LINC-PINT
in our sequencing data. As shown in Fig. 2a, upper panel, there
were 15 back-spliced junction-specific reads in the RNC-RNA
group compared with 7 reads in the total RNA group, implying
that exon 2 of LINC-PINT was identified as a translatable circular
RNA. In contrast, junction reads were not identified in either
total RNAs or RNC-RNAs from U251. The IGV plot showed that
reads number of exon 2 LINC-PINT were higher in NHA com-
pared with U251, both in RNA-seq and RNC-seq. Notably,
exon 1 and exon 3 reads were much lower than exon 2 reads in

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06862-2

2 NATURE COMMUNICATIONS |          (2018) 9:4475 | DOI: 10.1038/s41467-018-06862-2 | www.nature.com/naturecommunications

http://bowtie-bio.sourceforge.net/bowtie2/
http://bowtie-bio.sourceforge.net/bowtie2/
http://ccb.jhu.edu/software/tophat/
http://ccb.jhu.edu/software/tophat/
https://omictools.com/find-circ-tool
https://omictools.com/find-circ-tool
www.nature.com/naturecommunications


1000

RNA seq

N
um

be
r 

of
 c

irc
R

N
A

s

Backspliced reads Backspliced reads

10

0

0 5 10 15 20

RNC-RNA seq

0

1000

N
um

be
r 

of
 c

irc
R

N
A

s

10

0 30

a

AAAAA

AAAAA

AAAAA

Extract total RNA

Extract total RNA-RNC
Sequence circRNAs

Sequence circRNAs

Isolate RNC fraction

Map RNA-seq reads to
circRNAs ref.sequence

Sorting for differentially
expressed circRNAs

Map RNA-seq reads to
circRNAs ref.sequence

Sorting for differentially
expressed circRNAs

NHA or U251 cells

Gene A Gene B

Gene A Gene B

AAAAA
AAAAA

AAAAA

d
RNA seq

1200

1000

N
um

be
r 

of
 c

irc
R

N
A

s

Length of circRNAs Length of circRNAs

200

0

400

600

800

0 500 1000 1500 2000 2500

RNC-RNA seq

N
um

be
r 

of
 c

irc
R

N
A

s

2000

1500

0

500

1000

0 1000 2000

f

1e–03

1e–03

1e–01

1e–01

1e+01

1e+01

1e+03

1e+03

Pearson correlation:0.3825
Up-regulated genes (279)
Down-regulated genes (387)
Not differential expressed (6350)

V
al

ue
 o

f U
25

1 
(R

P
K

M
)

Value of NHA (RPKM)

RNC-RNA seq

Pearson correlation:0.1403

Up-regulated genes (2238)
Down-regulated genes (2602)
Not differential expressed (8023)

RNA seq

1e–03 1e–01 1e+01 1e+03

1e–03

1e–01

1e+01

1e+03

1e+05

V
al

ue
 o

f U
25

1-
R

 (
R

P
K

M
)

Value of NHA-R (RPKM)

1.5

1

0.5

0

–0.5

–1

–1.5

c

Exons

CDS

2044

5′UTR

3′UTR

1042

1413

976331

508

115

Antisense

Intergenic

Intronic

RNA seq

5′UTR

3′UTR

1746

2193

1607658

1857

282

Antisense

Intergenic

Intronic

RNC-RNA seq

Exons

CDS

3190

e NHA

3051

U251

2038 1828 6400

RNA-seq RNC-seq

2028 3954

RNA-seq RNC-seq

g

4520 320 346

NHA-vs-U251
RNC-RNA seq

Differentially 
expressed 
circRNAs

Differentially 
expressed 
circRNAs

b

10 20 5040

588 1330

NHA NHA-R U251 U251-R
3000 3000 4000

NHA-vs-U251
RNA seq

Fig. 1 Translatome sequencing and proteome profiling of potential coding circRNAs in normal and cancer cells. a Illustration of the screening protocol.
Briefly, total RNAs or RNC-RNAs were isolated separately from NHA or U251 cells. Equal amounts of total RNA or RNC-RNA were reverse-transcribed and
subjected to deep RNA sequencing. Identified differentially expressed circRNAs were annotated in the genome, and the host genes were cross-matched
between NHA and U251. b RNA-seq read abundance distribution of identified circRNAs. Upper, total RNA seq; Lower, RNC-RNA seq. X-axis: the back-
spliced read numbers of circRNAs detected by sequencing. Y-axis: the abundance of circRNAs classified by different read numbers. The majority of called
circRNAs in the study were supported by more than 10 reads. c Venn plot showing the number of circRNAs derived from different genomic regions. Upper,
total RNA seq; lower, RNC-RNA seq. d Length distribution of the identified circRNAs. Upper, total RNA seq; lower, RNC-RNA seq. X-axis: the length of
circRNAs detected in this study. Y-axis: the abundance of circRNAs classified by different lengths. e The Venn plot of the numbers of called circRNAs in
NHA and U251 by RNA-seq or RNC-seq. RNC-seq identified more circRNAs due to the higher sequencing depth (see Supplementary Figure 1). f Scatter
plot of all differentially expressed circRNAs between NHA and U251 cells. Upper, total RNA-seq; lower, RNC-seq (x and y axes represent circRNA
expression value, RPKM). g Upper, differentially expressed circRNAs between NHA and U251 cells in total RNA or RNC-RNA were cross-matched. A total
of 320 differentially expressed circRNAs were identified, generated from 274 host genes. Lower, the host genes were subjected to GO enrichment analysis
(The gene expression value in heatmap was normalized by Z score in each row.)
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RNC-seq, implied that linear LINC-PINT is not translated
(Fig. 2a, lower panel). The long exon 2 of LINC-PINT, which
contains the 3′ AG receptor and 5′ GT donor sequences required
for back-splicing, was identified as a circRNA in human CircBase
(has circ-0082389, Fig. 2b, upper panel, and Supplementary
Fig. 1b). Therefore, we first determined whether exon 2 of LINC-
PINT formed an endogenous circRNA in human cells. Head-to-
tail splicing was assayed by performing quantitative polymerase

chain reaction (q-PCR) after reverse transcription with con/
divergent primers specific for the linear or circular form of LINC-
PINT (Fig. 2b, lower panel). The PCR products from divergent
primers were analyzed via Sanger sequencing to reveal the
junction of circular LINC-PINT exon 2 (Fig. 2c). To exclude the
possibility that this back-splicing was attributable to genomic
rearrangement or was a PCR artifact, we validated this circRNA
through northern blotting with an exon probe or a circular probe,
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which recognize both the linear and circular forms or only the
circular forms of LINC-PINT exon 2 (which we designated cir-
cPINTexon2), respectively. CircPINTexon2 was detected endo-
genously in 293T cells, while upregulated or decreased
accordingly after synthetic circPINTexon2 plasmid overexpression
or junction siRNA transfection (Fig. 2d, lanes 1–4, schematic
diagram of the overexpression plasmid shown in Fig. 3f). Fur-
thermore, exon probes detected both LINC-PINT and cir-
cPINTexon2, as shown in Fig. 2d, lanes 5–8. Q-PCR and
fluorescence in situ hybridization (FISH) analyses with primers/
probes specifically designed to detect the circular junction or
linear junction further confirmed the existence of the head-to-tail
spliced circular form of LINC-PINT exon 2 in human cell lines
and tissues. Both linear LINC-PINT and circPINTexon2 were
expressed in human neural stem cells (hNSC) and 293T cells, but
their expression decreased in different glioma/brain tumor-
initiating cells (BTIC) cell lines (Fig. 2e). LINC-PINT and cir-
cPINTexon2 presented different cellular localizations: linear
LINC-PINT largely localized to the nucleus, whereas cir-
cPINTexon2 was mostly cytoplasmic (Fig. 2f and Supplementary
Fig. 2).

CircPINTexon2 encodes a peptide. To test the hypothesis that
circPINTexon2 is translatable (circPINTexon2 junction reads were
identified in RNC-seq, and exon 2 reads on LINC-PINT were
much higher than exon 1 and exon 3), we first analyzed all
putative sORFs in LINC-PINT exon 2. We identified two sORFs,
potentially encoding peptides 69 aa and 87 aa in length, in this
exon that were highly conserved among multiple species (Sup-
plementary Fig. 3). To explore whether these putative ORFs were
active, we cloned full-length exon 2 of LINC-PINT into the
PLCDH-ciR vector (with artificial side flanking sequences and
SA/SD sequences), containing green fluorescent protein (GFP),
without start or stop codons, fused immediately upstream of the
stop codons of the two sORFs. Immunofluorescence (IF) results
showed that only the second sORF, which encoded the 87-aa
peptide, was expressed in 293T cells with the overexpression of
the above vector (Supplementary Fig. 4). Although the 87-aa
sORF was an active in-frame sORF in vivo compared with the 69-
aa sORF, further investigations were needed to show that the 87-
aa peptide was translated by endogenous circPINTexon2 but not
linear LINC-PINT in vivo.

First, to demonstrate that circPINTexon2 contains a natural
internal ribosome entry site (IRES), which is required for translation
initiation in 5′-cap-independent coding RNAs40–42, we carried out
a bioinformatics analysis (Supplementary Fig. 5) and an IRES
activity test43, as shown in Fig. 3a. mCherry and GFP were cloned

into a dual-cistronic reporter construct with or without the putative
IRES (478 bp upstream of the 87-aa sORF) or with the indicated
mutations between them (Fig. 3a, left). Under normal eIF4E
conditions, both mCherry and GFP were detected with the putative
IRES; in contrast, only mCherry was detected if the putative IRES
was deleted. GFP was not detected when the sequence −478 to
−231 upstream of the 87-aa sORF was deleted, indicating the IRES
is located in this area. When eIF4E was inhibited (under treatment
with 4EGI-1), the putative IRES induced the expression of GFP but
not mCherry; thus, the natural IRES in circPINTexon2 induced
ribosome entry and initiated translation. To quantitatively test the
putative activity of circPINTexon2 IRES, we performed further
experiments. Briefly, we used a tandem Rluc–Luc reporter plasmid
in which the Rluc ORF was driven by a CMV promoter, and the
Luc ORF was fused immediately after the RLuc stop codon, without
any promoter between them. We cloned the IRES-478bp, IRES-
209bp and IRES-231bp sequences between RLuc and Luc, and the
luciferase activity of Luc relative to that of RLuc was measured for
each plasmid. IRES-209bp presented the lowest luciferase activity
(Luc/Rluc), close to that of the empty vector, indicating that IRES-
209bp does not induce ribosome entry. IRES-478bp and IRES-
231bp exhibited significantly higher Luc/Rluc activities than the
empty vector, further supporting the notion that an active IRES is
located upstream of the 87-aa sORF (Fig. 3b).

Next, we performed qPCR on the translating RNAs (RNC-
RNAs) from 293T cells to further show that PIN87aa is encoded
by circPINTexon2 but not linear LINC-PINT. RNC-RNAs were
reverse-transcribed using oligo-dT (for mRNAs) or random
primers (for all RNAs). Total RNAs were reverse-transcribed by
random primers as a positive control. As shown in Fig. 3c, both
circPINTexon2 and linear LINC-PINT-specific PCR products
were amplified from cDNA reverse-transcribed from total RNAs
with random primers, indicating that circPINTexon2 and linear
LINC-PINT are both present in 293T cells. However, only
circPINTexon2-specific PCR products were amplified from cDNA
reverse-transcribed from RNC-RNAs with random primers,
indicating that circPINTexon2 is bound to the ribosomal nascent
chain complex and is undergoing translation. In contrast, linear
LINC-PINT-specific PCR products were not detected in cDNA
reverse-transcribed from RNC-RNAs with random primers or
oligo-dT primers, indicating that linear LINC-PINT does not
undergo translation. These data were consistent with our RNC-
seq data described above (Fig. 2a, RNC-seq showed few reads on
exon 1 and 3 of LINC-PINT, indicating that linear LINC-PINT
was not translated).

Based on the above information, we generated an antibody
against the 87-aa peptide (antibody construction is described in
the Supplementary Data 2). Immunoblotting showed that this

Fig. 2 Identification of exon 2 of LINC-PINT as a circRNA. a Upper, visualization of the forward reads within the exon 2 region in the LINC-PINT junction site
of NHA cell in RNA-seq and RNC-seq. These junction reads are specific for circular form of LINC-PINT exon 2. Lower, IGV plot of all reads located on exon 2
of LINC-PINT in RNA-seq and RNC-seq. The IGV plot also included the reads on exon 1 and 3 of LINC-PINT. b Illustration of the annotated genomic region of
LINC-PINT (Ensembl number: ENSG00000231721), the putative different mRNA splicing forms (linear splicing and head-to-tail splicing) and the validation
strategy for LINC-PINT circular exon 2 (circPINTexon2). Divergent primers detected the circular form of circPINTexon2 in cDNA but not in gDNA. Convergent
primers spanning exon 1 and exon 2 of LINC-PINT (variants LINC-PINT-208, shown in a) specifically detected the linear splicing form. β-actin was used as a
linear RNA control. c Sanger sequencing was performed following PCR using the indicated divergent flanking primers to confirm the head-to-tail splicing of
circPINTexon2 in 293T cells. d Northern blots of 293T total RNA with the exon probe and the junction-specific circular probe for circPINTexon2. Lanes 1–4
detected circPINTexon2 with circular probes. Lanes 5–8 detected circPINTexon2 and LINC-PINT with exon probes. CircPINTexon2-overexpression plasmid was
shown in Fig. 3f. e Q-PCR followed by with junction-specific primers was used to detect the expression of circPINTexon2 in vitro. Primers specific for linear
LINC-PINT were also used to detect LINC-PINT expression. RNase R treatment was used to validate circPINTexon2. Data are presented as mean ± s.e.m. from
three independent experiments. **P < 0.01; ns, P > 0.05, determined by two-tailed Student’s t-tests. f FISH with junction-specific probes specific to
circPINTexon2, whereas linear specific probes specific to linear LINC-PINT indicated their cellular localization in vitro. Normal brain tissues and GBM
samples were stained with indicated probes. Overexpressed or knocked-down circPINTexon2 or LINC-PINT using corresponding plasmids or siRNA/ASOs in
293T cells to indicate the specificity of these probes. Scale bars, 10 μM. EV empty vector, si-NC random scrambled siRNA, circPINTexon2 circPINTexon2
overexpression vector, ASO LINC-PINT anti-sense oligos
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antibody successfully recognized the predicted glutathione-S-
transferase (GST)-fused protein (Fig. 3d). Endogenous immuno-
precipitation using this antibody followed by LC-MS/MS in
293T cells further confirmed that the 10-kDa peptide sequences
matched the predicted 87-aa sORF (Fig. 3e). Because the 87-aa
sORF did not overlap the circPINTexon2 junction, we designed

several synthetic plasmids to further test the coding ability of this
circRNA (Fig. 3f, upper panel). In the circPINTexon2 vector, the
circRNA junction was moved inside the 87-aa sORF, and
circularization of this plasmid induced by side flanking sequences
resulted in the formation of the same circRNA as the natural
circPINTexon215. In contrast, the 87-aa sORF was not present in
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the circPINTexon2 vector’s linear reading frame. As shown in
Figs. 2c and 3f, lower panel, northern blotting and western
blotting indicated that transfection of this synthetic plasmid
resulted in successful overexpression of circPINTexon2 and the
87-aa peptide. However, the transfection of control plasmids in
which the IRES was deleted did not result in overexpression of the
87-aa peptide (Supplementary Fig. 6). Importantly, 87-aa peptide
overexpression induced by this synthetic circRNA plasmid was as
strong as that of the CMV-driven linear 87-aa sORF over-
expression plasmid, demonstrating the high translation efficiency
of circRNA44 (Fig. 3f, lower panel). We next used two siRNAs
that specifically target the circular junction of circPINTexon2.
Junction-specific siRNAs successfully reduced circPINTexon2 and
87-aa peptide levels without affecting linear LINC-PINT (Fig. 3g).
In contrast, two antisense oligonucleotides (ASOs) specifically
designed to target linear LINC-PINT did not decrease the
expression of circPINTexon2 or the 87-aa peptide (Fig. 3h, left).
Furthermore, stable overexpression of linear LINC-PINT in 293T/
hNSC did not elevate PINT87aa expression (Fig. 3h, right).
Collectively, these results demonstrated that the 87-aa peptide is
produced by circPINTexon2 but not the linear form of LINC-
PINT. We named this peptide PINT87aa.

Tumor-suppressive effects of PINT87aa in vitro. To investigate
its possible biological functions, we first detected the cellular
localization of PINT87aa. Using RFP fusion protein labeling, we
found that this peptide was concentrated in nucleus, suggesting
PINT87aa plays potential cellular regulatory roles (Fig. 4a). We
next detected circPINTexon2 and PINT87aa baseline expression
in several human tissues. CircPINTexon2 and PINT87aa were
expressed in the brain, liver, kidney, and stomach but showed
lower expression in the breast, intestine, thyroid, and pancreas
tissues (Fig. 4b). Because PINT87aa were abundant in the human
brain, we further detected its expression in several established
glioma and BTIC cell lines. hNSC exhibited high PINT87aa
expression, similar to 293T cells, whereas the anaplastic astro-
cytoma cell lines SW1783 and Hs683 exhibited the modest
expression. The BTICs demonstrated the lowest levels of PIN-
T87aa (Fig. 4c, left). The circPINTexon2 expression in these cell
lines detected using junction-specific primers was consistent with
PINT87aa levels (Fig. 4c, right). Decreased circPINTexon2 and
PINT87aa expression also reflected WHO grades in clinical
glioma samples (Fig. 4c, lower). To determine the biological roles
of PINT87aa in tumor cells, we established 456 and 4121 cells
that stably overexpressed the linear PINT87aa-GFP vector or the
circular circPINTexon2 vector (Fig. 4d). Additionally, we

generated CRISPR/Cas9-induced PINT87aa K.O. SW1783 and
Hs683 cells (Fig. 4e and Supplementary Fig. 7). These cells were
selected because 456 and 4121 exhibited very low PINT87aa
expression, while SW1783 and Hs683 cells exhibited moderate
PINT87aa expression. Compared with corresponding control
cells, both 456 and 4121 cells overexpressing linear PINT87aa and
circPINTexon2 exhibited G1 arrest and reduced cell proliferation
without obvious cellular toxicity (Fig. 5a, b, left), whereas PIN-
T87aa K.O. SW1783 and Hs683 cells showed increased cell cycle
and cell proliferation rates (Fig. 5a, b, right). 456-PINT87aa and
4121-PINT87aa cells overexpressing both linear and circular
vectors showed significant growth reduction (Fig. 5c, left), while
PINT87aa K.O. SW1783 and Hs683 cells showed an enhanced
cell proliferation and malignant phenotype in plate colony and
soft agar (Fig. 5c, right; 5d). As expectation, 456-PINT87aa and
4121-PINT87aa cells overexpressing both linear and circular
vectors showed less effective neuro-sphere formation (Fig. 5e).
PINT87aa overexpression also enhanced the IR sensitivity in both
456 and 4121 cells (Fig. 5f). We also observed a slight inhibition
of invasion ability in PINT87aa transduced 456 and 4121 cells,
although this phenomenon may be induced by an accelerated cell
proliferation (Supplementary Fig. 8a). In contrast, PINT87aa K.O.
SW1783 and Hs683 cells showed radiation resistance compared
with their parental cells (Supplementary Fig. 8b). Based on the
above results, we showed that circPINTexon2 exerts its tumor-
suppressive functions through PINT87aa instead of
circPINTexon2.

PINT87aa regulates the RNA elongation of multiple onco-
genes. To further explore the potential molecular mechanisms
underlying the tumor-suppressive functions of PINT87aa, we
first checked some proto-oncogenes that are critical in glioma
tumorigenesis in PINT87aa overexpressed BTICs. However,
EGFR, MET, and PDGFR were not changed after PINT87aa or
circPINTexon2 overexpression (Supplementary Fig. 8c). Next, we
performed co-immunoprecipitation in PINT87aa-3XFlag-
overexpressing 293T cells to identify its potential targeting
molecules. As shown in Fig. 6a, left, 293T cells transfected with
PINT87aa-3XFlag and corresponding control cells were sub-
jected to immunoprecipitation using an anti-Flag antibody. The
precipitates were subjected to LC-MS/MS to identify potential
PINT87aa-interacting proteins. Among various candidates,
PINT87aa was found potentially bound to the PAF1 protein
complex (Fig. 6a, right). Immunoprecipitation further confirmed
a mutual PINT87aa/PAF1 interaction in 293T cells (Fig. 6b). To
investigate the potential direct interaction between PINT87aa

Fig. 3 circPINTexon2 encodes an 87-aa peptide. a Full-length or truncated circPINTexon2 IRES (478, 231, and 209 bp) were cloned between mCherry and
GFP as indicated to construct several reporter plasmids. These plasmids were transfected into 293T cells as indicated, with or without 4EGI-1 treatment. IF
was performed to determine mCherry and GFP signals. Scale bars, 50 μM. b Rluc and Luc were tandemly cloned into the luciferase reporter plasmid, with
or without the indicated truncated IRES between them. Luc/Rluc activities were measured in each transfected plasmid. c RNC-RNA or total RNA from
293T cells was extracted and reverse-transcribed using oligo-dT or random primers as indicated. Specific primers for circPINTexon2 or LINC-PINT were
analyzed by using q-PCR. d Upper, antibody recognition test for the predicted 87-aa peptide. Lanes 1 and 2, Coomassie blue staining of the GST-PINT87aa
fusion protein; lanes 3 and 4, Western blot performed with GST antibody; lanes 5 and 6, Western blot performed with PINT87aa antibody. Lower, the
predicted 87-aa peptide sequence and antibody generation region was shown as indicated. e Endogenous immunoprecipitation using anti-PINT87aa
antibodies in 293T cells. LC-MS/MS analysis following SDS-PAGE was performed to identified peptide sequences of PINT87aa. f Upper panel, endogenous
circPINTexon2: endogenous formation of circPINTexon2; CircPINTexon2 vector: the artificial circPINTexon2 overexpression plasmid. Note the junction was
moved inside the 87-aa ORF. CicrPINTexon2 Del-IRES vector: negative control, in which the IRES sequence was deleted from the artificial circPINTexon2
plasmid. 87-aa overexpression vector: positive control, in which the 87-aa ORF was cloned downstream of a linear CMV promoter. Lower panel, PINT87aa
expression was tested in 293T cells after transfection of the plasmids indicated above. g circPINTexon2 and PIN87aa expression were determined using
junction-specific siRNA or shRNA specific for circPINTexon2-transfected 293T or hNSC. h Left, LINC-PINT, circPINTexon2, and PIN87aa expression were
determined in two ASOs specific for LINC-PINT-transfected 293T. Right, LINC-PINT and PINT87aa were determined in LINC-PINT stably transduced 293T
and hNSC. b, c, g, h Data are presented as mean ± s.e.m. from three independent experiments. **P < 0.01; ns, P > 0.05, determined by two-tailed Student’s
t-tests
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determined by two-tailed Student’s t-tests. e Establishment of PINT87aa K.O. SW1783 and Hs683 cells using CRISPR/Cas9 technology. Schematic
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Genomic K.O. effects were confirmed via Sanger sequencing, as shown in Supplementary Fig. 7. Western blotting revealed the effects of PINT87aa K.O. in
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Fig. 5 Biological functions of PINT87aa. a Left, cell cycle was determined in PINT-87aa or circPINTexon2 stably overexpressed 456 and 4121 BTICs. Right,
cell cycle analysis of PINT87aa K.O SW1783 and Hs683 cells. b MTT proliferation assay was examined in PINT87aa-GFP or circPINTexon2 stably
overexpressed 456 and 4121 cells or PINT87aa K.O SW1783 and Hs683 cells. c Edu proliferation assay was examined in PINT87aa-GFP or circPINTexon2
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4121, P < 0.001, by ELDA analysis). f PINT-87aa or circPINTexon2 stably overexpressed 456 and 4121 BTICs and their control cells were subjected to 6 Gy
radiation. DNA damage was determined by flow cytometry and γ-H2AX expression. a–d, f Data are presented as mean ± s.e.m. from three independent
experiments. *P < 0.05; ns, P > 0.05, determined by two-tailed Student’s t-tests
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and PAF1, PINT87aa conformations were modeled with PEP-
FOLD and docked to PAF1 based on the ATTRACT2 force field
through the PEP-SiteFinder pipeline45. Because PINT87aa was
too long, it was split into three sections: 1–36 aa, 27–62 aa, and

53–87 aa. The top ten peptides in complex with PAF1 were
visualized with different colors by PyMOL (The PyMOL Mole-
cular Graphics System, Version 1.8 Schrödinger, LLC.), while
protein–peptide interface residues (within 5 Å for each peptide)
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were labeled. As shown in Fig. 6c, upper left, PINT87aa most
likely directly interacts with the middle region of PAF1. A direct
binding assay using purified proteins further indicated that
PINT87aa interacts with the 150–300-aa domain of PAF1
(Fig. 6d, lower panel), and the amino acid of R20, G21, P23, C32,
R36, and S53 in PINT87aa are critical for PAF1 interaction
(Supplementary Fig. 9). Furthermore, GFP-PINT87aa and PAF1
co-localized in the nucleus (Fig. 6e), suggesting PINT87aa may
be involved in PAF1 target gene regulation. The PAF1 complex is
involved in RNA II polymerase (Pol II) recruitment and reg-
ulating the transcriptional elongation of downstream genes46,47,
and evidence has shown that PAF1 regulates potential oncogenes
during human tumorigenesis, including that of gliomas48–50. We
performed further experiments in PINT87aa-overexpressing 456
and 4121 cells to determine whether PINT87aa is involved in
PAF1 target gene elongation. The mRNA of PAF1 downstream
genes, including CPEB1, SOX-2, c-Myc, etc., was inhibited tran-
scriptionally in PIN87aa-overexpressing 456 and 4121 cells
compared with that in control cells (Fig. 6e). In PINT87aa K.O.
Hs683 and SW1783 cells, the expression of these genes increased
at both the mRNA and protein levels (Supplementary Fig. 10a).
Further 2nd ChIP assay showed that PINT87aa and PAF1 were
co-occupied in CPEB1 promoter (Fig. 7a), suggesting PINT87aa
involved in PAF1/Pol II complex regulation. However, PINT87aa
overexpression did not change PAF1 expression in 456 or 4121
BTICs. Instead, PINT87aa enhanced PAF1 and its target genes’
promoter interaction (Fig. 7b). PINT87aa overexpression or
knocking down enhanced or decreased PAF1/CPEB1 promoter
affinity, respectively (Fig. 7c), suggesting that PINT87aa could
decide PAF1/CPEB1 promoter interaction. We assumed that
PINT87aa may work as an anchor and keep PAF1 complex on
target genes’ promoter, which sequentially pauses Pol II-induced
mRNA elongation. Loss of PINT87aa or overexpression of PAF1,
which was seen in many cancers, results in PAF1 losing its
proper localization51. Freed PAF1 is sequentially involved in
many other biological processes such as cell cycle regulation,
histone modification, MAPK signaling transduction as well as
cancer-stem-cell self-renewal51. LINC-PINT knockdown in
SW1783 and Hs683 cells using specific ASOs increased cell
viability but did not alter PAF1 downstream gene mRNA or
protein levels (Supplementary Fig. 10b and c), indicating LINC-
PINT and PINT87aa are involved in different signaling path-
ways. Interestingly, stable knockdown of PINT87aa in normal
cells, such as NHA cells, also decreased cell vitality (Supple-
mentary Fig. 11). PINT87aa appears to be required for normal
cell survival, but its loss in cancer cells induces cell cycle accel-
eration and cell proliferation. LINC-PINT was reported to be
regulated by p5337. We did not find PINT87aa altering p53
expression or affecting p53 downstream targets, in both p53 wild
type or mutant cells (Supplementary Fig. 12a, b and c). In con-
trast, overexpression of p53 in A172 and 293T cells could

upregulate PINT87aa (Supplementary Fig. 12d). We inferred that
PINT87aa exerts biological functions independent of LINC-PINT
although they are possibly both regulated by p53. Clearly, further
investigations are still needed to clarify upstream signaling of
PINT87aa.

The tumor-suppressive role of PINT87aa. To understand the
potential clinical implications of PINT87aa, we detected the
expression of circPINTexon2 and PINT87aa in human glioma
samples and paired adjacent normal tissues. CircPINTexon2 and
PINT87aa were expressed in tumor-adjacent normal brain tissues,
but their expression decreased in all brain tumor tissues, similar to
LINC-PINT (Fig. 8a and Supplementary Fig. 13). Specifically,
WHO grade IV glioblastomas exhibited the lowest expression
levels of PINT87aa. In WHO grade I astrocytomas, PINT87aa was
detectable, but levels were decreased compared with those in
normal tissues. These data suggest that PINT87aa negatively
impacts the clinical prognosis of glioma. We obtained similar
results regarding circPINTexon2 and PINT87aa expression in
other human malignancies, including breast cancer, hepatic cell
carcinoma, and gastric cancer (Fig. 8b and Supplementary Fig. 13).
Clearly, circPINTexon2 and PINT87aa downregulation is normal
in human malignancies. In animal models, 456 and 4121 cells
stably overexpressing PINT87aa either on linear or circular plas-
mids exhibited decreased in situ tumorigenic potential compared
with control cells, as assessed by tumor growth and animal sur-
vival (Fig. 8c). Furthermore, Hs683 and SW1783 PINT87aa K.O.
cells and control cells were subcutaneously injected into nude
mice, and tumor growth was subsequently monitored with calipers
and through in vivo fluorescence imaging (Fig. 8d). Compared
with their parental cells, PINT87aa K.O. cells resulted in sig-
nificantly increased xenograft tumor volumes, further supporting
the anti-cancer effects of the PINT87aa peptide in vivo.

Discussion
CircRNAs are a widespread RNA species in the human
transcriptome4,52. In addition to acting as regulators of gene
expression or development by adsorbing microRNAs, circRNAs
were recently demonstrated to be critical in human malig-
nancies53–55. However, only a few circRNAs contain perfect
multiple microRNA trapping sites, raising the question of whe-
ther circRNAs exhibit functions beyond acting as microRNA
sponges2,3. Recent evidence has confirmed the existence of
functional peptides translated from sORFs in ncRNAs, including
pri-microRNAs and lncRNAs21,22, suggesting that the coding
potential of these ncRNAs has been largely underestimated. To
explore the coding potential of circRNAs, we perform RNC-RNA
deep sequencing and confirmed that an endogenous circRNA
(circPINTexon2) encodes a tumor-suppressive peptide in human
cells. Although the 87-aa sORF did not span the circPINTexon2

Fig. 6 PINT87aa directly interacts with the PAF1 complex and inhibits mRNA transcriptional elongation. a Left, immunoprecipitation was performed using
an anti-Flag antibody in PINT87aa-3XFlag or empty vector transfected 293T cells. Western blotting using an anti-Flag antibody confirmed PINT87aa
overexpression. The precipitates were subjected to LC-MS/MS to identify potential PINT87aa-interacting proteins. Right, PAF1 complex-related proteins
were identified in PINT87aa precipitates. b Immunoprecipitation was performed in PINT87aa-3XFlag-transfected cells or control cells. Western blotting
was performed using an anti-PAF1 antibody. c Upper, PINT87aa conformations were modeled with PEP-FOLD and docked to PAF1 based on the ATTRACT2
force field using the PEP-SiteFinder pipeline. PINT87aa was split into three segments: 1–36 aa, 27–62 aa, and 53–87 aa. The top ten peptides in complex
with PAF1 were visualized with different colors using PyMOL (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.), while the
protein–peptide interface residues (within 5 Å for each peptide) were labeled. Lower, the direct mutual interactions of PINT87aa with different domains of
HA-tagged PAF1 were tested using purified proteins (Flag-tagged PINT87aa and HA-tagged PAF1). d IF was performed to determine PINT87aa-PAF1
colocalization in PINT87aa-GFP transfected 293T cells or hNSC. Scale bar, 20 μM. e The expression of PAF1 downstream genes was determined by
performing Western blotting and q-PCR in PINT87aa- or circPINTexon2-overexpressed 456 and 4121 BTIC and their respective controls. Data are resented
as mean ± s.e.m. from three independent experiments. **P < 0.01, ns, P > 0.05, determined by two-tailed Student’s t-tests
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Fig. 7 PINT87aa decides the localization of PAF1 complex on target genes promoter. a 2nd ChIP assay was used to determine the co-occupation of PAF1
complex/PINT87aa in CPEB1's promoter region by using RT-PCR or q-PCR. At least three independent experiments were performed. b ChIP assay was
performed in circPINTexon2 stably overexpressed 456 and 4121 cells by using indicated antibodies. PCR products of indicated genes’ promoter were
analyzed by using RT-PCR or q-PCR. c PINT87aa was overexpressed or knocked-down in 293T or hNSC cells by using indicated plasmid or shRNA,
respectively. ChIP assay was performed by using indicated antibodies and PCR products of CPEB1 promoter region were analyzed by using RT-PCR or q-
PCR. b, c At least three independent experiments were performed
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junction, multiple lines of evidence indicated that this peptide was
not translated from its related linear RNA. Similarly, Pamudurti
et al. and Yang et al. used ribosomal profiling to identify trans-
latable circRNAs, showing that translatome high-throughput
technologies are the most reliable methods to discover coding
circRNAs25,27.

Although we identified approximately 320 potentially transla-
table circRNAs, we focused only on candidates whose host genes
were previously designated as ncRNAs. This criterion may result
in certain real coding-circRNAs being overlooked, but it reduces
the false-negative rate to a maximum extent. Among the candi-
date coding-circRNAs, only few exhibit spanning junction sORFs.
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Fig. 8 Clinical implications of circPINTexon2 and PINT87aa. a Expression of circPINTexon2 and PINT87aa in human glioma samples with different WHO
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A spanning junction sORF is the distinctive feature of circRNA-
encoded peptides. Most translatable circRNAs share similar
sORFs with their related linear RNAs, although it is possible for
their functions to differ. In addition, pre-mRNAs that generate
long ncRNAs may also be back-spliced into translatable cir-
cRNAs, as is the case for LINC-PINT and circPINTexon2. Our
discovery suggests that coding RNAs and ncRNAs are not very
different. A recent publication described a coding circRNA
database (circRNADb) in which 16,328 circRNAs were annotated
as having putative ORFs, 7170 of which contained IRES elements.
Furthermore, 46 circRNAs from 37 genes were reported to have
corresponding proteins30. We match our screening results with
circRNADb, but circPINTexon2 is not included because cir-
cRNADb excludes peptides less than 100 aa in length. Although
this report did not provide experimental evidence supporting the
coding ability of circRNAs, we believe that circRNADb provides
an initial reference for screening translatable circRNAs based on
our comparative results. Furthermore, our results show that cir-
cRNAs encoding peptides shorter than 100 aa should not be
disregarded.

CircPINTexon2 was previously identified in several cancer cell
lines with only 1–2 junction reads7. In a recently reported brain
circRNA dataset, circPINTexon2 was not annotated8. The GC-
rich junction region of circPINTexon2 or the sequencing depth
may result in it being overlooked during high-throughput iden-
tification; nevertheless, absolute quantification PCR revealed that
circPINTexon2 copy numbers were not necessarily very low in
normal brains in our study and a most recent study supported
that the translation efficiency of circRNAs may be higher
than linear mRNA (most likely due to the higher stability of
circRNAs)44.

Thus far, no coding circRNAs generated from long ncRNAs
have been reported. Based on our results, circPINTexon2 exerts its
biological functions independently in glioma, although it is gen-
erated from LINC-PINT gene. Glioma is a highly heterogenetic
tumor56–58, which also gives rise to some limitations of our
research. For instance, the PINT87aa expression was not eval-
uated in the molecular sub-types of GBM56; some of the
experiments were performed not by using the patient-derived
BTICs; and some molecular features such as chromosome 7
hypermethylation was not studied regarding to PINT87aa. Also,
some critical genes variation such as c-Myc, sox-2 may also be
induced by intra-tumoral heterogeneity instead of PINT87aa
expression59. Nevertheless, our data supported that PINT87aa is a
potential tumor-suppressive peptide and is lowly expressed in
human cancers other than glioma. Substantial further works,
including PINT87aa with GBM sub-types, PINT87aa upstream
regulation or even single-cell level investigation, are needed for
clarifying PINT87aa’s comprehensive tumor-suppressive roles.

Although no evidence showed that PINT87aa directly binds to
DNA and act as a transcription factor, its interaction with PAF1
complex suggested its role during transcriptional elongation. To
our knowledge, the binding partner of PAF1 complex decided its
biological functions and cellular localization60–62. As a newly
identified interacting protein, PINT87aa may serve its role in
deciding PAF1 complex proper localization.

Our discovery of peptides encoded by circRNAs and their
regulatory effects on human malignancies show that circRNAs
may exert more biological functions than previously predicted.
Additionally, our findings raise many questions. For example,
how many translatable circRNAs are present in mammalian cells,
and what are their general functions? With respect to this study,
how does circPINTexon2 translocate into the cytoplasm, while
LINC-PINT remains in the nucleus? Do circPINTexon2 and
PINT87aa serve as specific tumor biomarkers for detection,
intervention, and/or prognostication? Further investigations are

clearly warranted to address these questions. Nevertheless, the
present study shows that circRNA-encoded small peptides reg-
ulate human cancer behavior and may have important clinical
implications and applications. Additionally, our results provide a
fresh perspective regarding circRNAs and long ncRNAs, whose
biological functions are largely yet to be revealed.

Methods
Human cancer and normal tissues. All human cancerous and adjacent normal
tissues were collected from the 1st Affiliated Hospital of Sun Yat-sen University.
The human materials were obtained with informed consent, and the study was
approved by the Clinical Research Ethics Committee.

Cell culture and RNase-R treatments. All cells used in this study were tested for
mycoplasma contamination. 293T, U251, A172, Hs683, and SW1783 cells were
authenticated December 2015 by STR sequencing. 293T cell was purchased from
ATCC (ATCC number: CRL-11268), and A172 cell was also from ATCC (ATCC
number: CRL-1620). Specifically, A172 cells were not contained by U251MG as
listed in ICLAC (http://iclac.org/databases/cross-contaminations), authenticated by
STR sequencing. U251, Hs683, and SW1783 cells were kindly provided by Dr.
Suyun Huang (MD Anderson). These cells were cultured in Dulbecco’s modified
Eagle’s medium (Gibco, Carlsbad, CA) supplemented with 10% fetal bovine serum
(Gibco, Carlsbad, CA) according to standard protocols. NHA were purchased from
Lonza and cultured using an AGM Bullet Kit™ (Lonza, Walkersville, MD) as
recommended by the manufacturer. BTICs including 456, 4121, 387, and H2S were
kindly provided by Dr. Jeremy N. Rich (UCSD) and were cultured in Neurobasal
medium (Gibco, Carlsbad, CA) with B27 (without vitamin A), basic fibroblast
growth factor (20 ng ml−1, R&D, Indianapolis, IN) and epidermal growth factor
(20 ng ml−1, R&D, Indianapolis, IN). hNSC, purchased from Gibco (Gibco,
Carlsbad, CA, A15654), were cultured as the recommendation of the manufacturer
(StemPro® NSC SFM (A10509-01)) supplemented with 2 mM GlutaMAX™-I
Supplement (35050), 6 U/ml heparin (Sigma, St. Louis, MO, H3149), and 200 μM
ascorbic acid (Sigma, St. Louis, MO, A8960). Only the early passages of hNSC were
used (less than 3 passages). RNase-R (Epicentre Biotechnologies, Madison, WI)
treatment (20 U/μl) was performed on total RNA (20 μg) at 37 °C for 15 min.

Ribosome-nascent chain complex (RNC) extraction. Cells were pre-treated with
100 μg/ml cycloheximide for 15 min, followed by pre-chilled phosphate buffered
saline washes and the addition of 2 ml of cell lysis buffer [1% Triton X-100 in
ribosome buffer (RB buffer): 20 mM HEPES-KOH (pH 7.4), 15 mM MgCl2, 200
mM KCl, 100 μg/ml cycloheximide, and 2 mM dithiothreitol]. After a 30-min ice
bath, cell lysates were scraped and transferred to pre-chilled 1.5-ml tubes. Cell
debris was removed by centrifuging at 16,200g for 10 min at 4 °C. Supernatants
were transferred to the surface of 20 ml of sucrose buffer (30% sucrose in RB
buffer). RNCs were pelleted after ultra-centrifugation at 185,000g for 5 h at 4 °C.
RNC-RNA and total RNA were reverse-transcribed with a RevertAid H Minus
First Strand cDNA Synthesis Kit (Thermo Fisher, Waltham, MA) using random
hexamer primers (oligo-dTs primers for poly-A RNAs were used in Fig. 3c), fol-
lowing the manufacturer’s instructions. The cDNA was then subjected to PCR with
specific primers using DreamTaq PCR Master Mix (Thermo Fisher, Waltham,
MA) for 40 cycles (95 °C for 30 s and 68 °C for 60 s for each cycle).

Strand-specific RNA-seq library construction and sequencing. Total RNA was
isolated using TRIzol (Life Technologies, Carlsbad, CA). After total RNA was
extracted, rRNA was removed by using VAHTS Total RNA-seq (H/M/R) Library
Prep Kit for Illumina (Vazyme Biotech Co., Ltd, Nanjing, China) to retain other
types of RNA, including mRNAs and ncRNAs. The enriched mRNAs and ncRNAs
were fragmented into short fragments in fragmentation buffer (MgCl2) integrated
into VAHTS Total RNA-seq (H/M/R) Library Prep Kit for Illumina (Vazyme
Biotech Co., Ltd, Nanjing, China), then the RNA fragments were reverse-
transcribed into cDNA with random primers. Second-strand cDNA was synthe-
sized with DNA polymerase I, RNase H, dNTPs (dUTP instead of dTTP), and
buffer. Next, the cDNA fragments were purified with a QiaQuick PCR extraction
kit, end-repaired, underwent poly(A) addition, and ligated to Illumina sequencing
adapters. Then, UNG (uracil-N-glycosylase) was used to digest the second-strand
cDNA. The digested products were size-selected via agarose gel electrophoresis,
PCR-amplified, and sequenced using an Illumina HiSeqTM 4000 by Gene Denovo
Biotechnology Co. (Guangzhou, China).

Bioinformatics analysis and identification of target circRNAs. The short reads
alignment tool Bowtie2 was used to map reads to an rRNA database. The mapped
rRNA reads were then removed. The remaining reads were further subjected to
alignment and analysis. The rRNA removed reads were then mapped to a reference
genome (Human genome hg38) using TopHat2 (version 2.0.3.12). Reads that
mapped to genomes were discarded according to the mapping information
recorded in bam files using in-house perl scripts, and unmapped reads were then
collected for circRNAs identification. Next, 20mers from both ends of the
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unmapped reads were extracted using in-house perl scripts and aligned to the
reference genome (bowtie2, version 2.3.0) to locate unique anchor positions within
splice sites. Anchor reads that aligned in the reverse orientation (head-to-tail)
indicated circRNA splicing and were then subjected to find_circ (version 1.2,
https://github.com/marvin-jens/find_circ/) to identify circRNAs. The anchor
alignments were then extended such that the complete aligned reads and the
breakpoints were flanked by GU/AG splice sites. A candidate circRNA was called if
it was supported by at least two unique back-spliced reads from at least one sample.
Host genes of identified circRNAs were determined using in housed perls scripts
according to gtf files from Ensembl database (http://www.ensembl.org/). CircRNAs
were also blasted against circBase to determine if they have been reported. cir-
cRNAs that were not annotated were defined as newly discovered circRNAs. To
quantify circRNAs, back-spliced junction reads were scaled to RPM (reads per
million mapped reads) using the following formula:

RPM ¼ 106C
N

In this formula, C is the number of back-spliced junction reads that uniquely
align to a circRNA. N is the total number of back-spliced junction reads.
Differential expression analysis was performed using edgeR in OmicShare, an
online platform for data analysis (www.omicshare.com/tools). The default
parameters of edgeR were used, and differentially expressed genes (DEGs) were
selected based on log2 fold-changes ≥1 and q-values > 0.05. Because there were no
replicates in this study, the biological coefficient of variation (BCV), which is the
square-root of dispersions, was set to 0.01 following the suggestion of the edgeR
official manual. GO enrichment analysis was performed for the host genes of
differentially expressed circRNAs.

Northern blotting. Approximately 10–20 µg of total RNA and circular RNA was
run in a 1.2% agarose gel containing formaldehyde. The RNA was then transferred
to Amersham hybond-N1 membranes (GE Healthcare, Pittsburgh, PA). The
membranes were hybridized with digoxin-labeled DNA oligonucleotides specific to
LINC-PINT exon 2 in Church buffer (0.5 M NaPO4, 7% SDS, 1 mM EDTA, 1%
BSA, pH 7.5) at 37 °C and washed in 2× SSC (300 mM NaCl, 30 mM Na-citrate,
pH 7.0) with 0.1% SDS at room temperature. The membranes were finally exposed
on phosphorimager screens and analyzed using Quantity One or Image Lab soft-
ware (Bio-Rad, Foster City, CA).

RNA fluorescence in situ hybridization (FISH). Oligonucleotide probes com-
plementary to circular exon 2 of LINC-PINT and linear exon 2 of LINC-PINT were
designed using the Clone Manager suite of analysis tools (Sci Ed Central, listed in
Supplementary Table 5). Cells were seeded on glass coverslips in 12-well plates.
The cells were washed in PBS, fixed in 4% paraformaldehyde for 15 min, and then
permeabilized overnight in 70% ethanol. Next, the cells were washed twice in PBS
containing 5 mM MgCl2 (PBSM) and rehydrated for 10 min in 50% formamide
and 2× SSC. For FISH, cells were incubated at 37 °C in a solution containing 50%
formamide, 2× SSC, 0.25 mg/ml Escherichia coli transfer RNA, 0.25 mg/ml salmon
sperm DNA (Invitrogen, Carlsbad, CA), 2.5 mg/ml BSA (Roche, Indianapolis, IN),
and fluorescently-labeled circular probes and linear probes at 125 nM (obtained
from Generay Biotech Co, Ltd, Shanghai, China). After 12 h, the cells were washed
twice for 20 min at 37 °C in 50% formamide and 2× SSC followed by 5-min washes
for 4 times in PBS [with the penultimate wash containing 4,6-diamidino-2-phe-
nylindole (DAPI)] and an additional brief wash in nuclease-free water. The cells
were mounted in ProLong Gold (Invitrogen, Carlsbad, CA) and left overnight at
room temperature.

Plasmids and transfection. GFP and mCherry sequences were amplified from the
pEGFP-C1 and pLVX-mCherry-N1 vectors (Takara, Mountain View, CA),
respectively. The wild-type and mutant IRES sequences of circular LINC-PINT
were obtained through chemical gene synthesis. mCherry-IRES-GFP frames were
obtained via overlap PCR and were then cloned into the psin-EF2 vector (Daen
Gene Co, Ltd, Guangzhou, China) at the EcoRI and BamHI sites. GFP sequences
without the ATG initiation codon and TAA stop codon were inserted into the C-
terminal putative coding sequences of PINT87aa and circPINT69aa. Next, exon 2
of LINC-PINT, together with PINT87aa-GFP or circPINT69aa-GFP, was cloned
into the psin-EF2 vector using the EcoRI and BamHI sites. For the artificial cir-
cRNA overexpression vectors, the junction of natural circPINTexon2 was moved
inside the 87-aa ORF, and the side-flanking acceptor and donor sequences were
added. The IRES sequence was deleted in the negative control plasmid, and the
CMV-87aa-ORF linear overexpression vector was cloned as a positive control. The
plasmids were transfected using Lipofectamine 3000 (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions.

Stable cell line generation. For stable PINT87aa overexpression, the artificial
circPINTexon2 overexpression plasmid or the linear 87-aa-GFP ORF was cloned
into the psin-EF2 vector using EcoRI and BamHI for lentiviral production. The cell
lines were then infected, followed by selection with 2 μg/ml puromycin for 72 h. To

generate PINT87aa stable knockdown cell lines, lentivirus-induced shRNA (Gen-
ePharma, Shanghai, China) was used according to the manufacturer’s instructions
(shRNA sequences are listed in Supplementary Table 5).

Target DNA deletion using CRISPR/Cas9 technology. We designed CRISPR
gRNAs to target the 87-aa ORF sequences of PINT87aa using the online software at
http://crispr.mit.edu/. To clone the target sequences into the lentiCRISPRv2
(AddGene 52961) backbone, we synthesized oligos containing the same overhangs
after BsmBI. The transfer plasmid lentiCRISPRv2-gRNA (1.2 µg) was co-
transfected into 293T cells with the lentiviral packaging plasmids pVSVg
(AddGene 8454, 0.5 µg) and psPAX2 (AddGene 12260, 1 µg). Sixty hours post-
transfection, lentiviral infection of the SW1783 and HS683 cell lines was per-
formed. After 48 h, cells were selected with 2 mg/ml puromycin for 1 week. Then,
the cells were trypsinized and plated in 96-well plates at a seeding density of 1 cell/
well. The cells were monitored for single colony formation and expanded upon
confluency. A DNA extraction kit (QIAGEN, Germantown, MD) was used for
DNA extraction. PCR was carried out to amplify the targeting region, and Sanger
sequencing was performed to detect gene mutations.

Antibody generation and western blotting. A polyclonal antibody against the 87-
aa peptide produced by circPINTexon2 was obtained by inoculating rabbits. The
antibody was purified using affinity chromatography columns. After extraction with
RIPA buffer and quantified with a BCA kit (Thermo, Waltham, MA, 23228), equal
loading proteins of cell lysate or tissue lysate were added to each well of SDS PAGE.
Followed by electrophoresising, transfer-membraning, and blocking with 5% non-fat
milk in PBST for 1 h, then diluted primary antibodies were incubated at 4 °C over-
night. After washing with PBST every 10min for 3 times, diluted horseradish per-
oxidase (HRP)-conjugated secondary antibodies were incubated for 1 h at room
temperature, then the signals were visualized. The 87-aa antibody was used at a 1:2000
dilution. The other primary antibodies used were anti-PAF1 (abcam; ab137519;
1:1000), anti-β-actin (Sigma; A5441; 1:5000), anti-GFP (abcam; ab1218; 1:3000), anti-
flag (Sigma; F3165; 10 µg/ml; 1:1000), anti-HA (abcam; ab18181; 1:1000), anti-γ-
H2AX (abcam; ab2893; 1:1000), anti-CPEB1 (abcam; ab155204; 1:5000), anti-Cyclin
D1 (abcam; ab134175; 1:1000), anti-C-myc (abcam; ab51156; 1:1000), anti-SOX2
(abcam; ab97959; 1:1000), anti-H3 (abcam; ab1791; 1:1000), anti-EGFR (abcam;
ab52894; 1:1000), anti-MET (abcam; ab51067; 1:1000), anti-PDGFR (abcam; ab32570;
1:5000), anti-P53 (abcam; ab26; 1:1000).

PCR. Reverse transcription for mRNA and circRNAs was performed using an
MMLV-RT kit (Takara, Mountain View, CA) with random hexamers according to
the manufacturer’s instructions. PCR was subsequently performed with a 1:10
dilution of reverse-transcribed cDNA. The PCR products were run in a 2% agarose
gel. Real-time q-PCR (RT-q-PCR) was performed using an Applied Biosystems
PCR System (ABI 7500). RT-qPCR SYBR Green Mix (Takara, Mountain View,
CA) was employed, with forward and reverse primers at 50 nM in a 20-μl reaction
system. Relative expression levels were calculated using the 2-ΔΔCT method. To
determine the absolute quantity of RNA, the purified PCR product amplified from
cDNA corresponding to the circPINTexon2 sequence was serially diluted to gen-
erate a standard curve. (Oligo sequences are listed in Supplementary Table 5.)

Immunoprecipitation (IP). Cells were lysed in co-IP buffer [10 mM HEPES (pH
8.0), 300 mM NaCl, 0.1 mM EDTA, 20% glycerol, 0.2% NP-40, protease and
phosphatase inhibitors]. The lysates were then centrifuged and cleared via incu-
bation with 25 μl of protein A/G agarose for 1.5 h at 4 °C. The pre-cleared
supernatant was subjected to IP using the indicated primary antibodies at 4 °C
overnight. Then, the protein complexes were collected by incubating with 30 μl of
protein A/G gel for 2 h at 4 °C. The collected protein complexes were separated via
SDS-PAGE and analyzed by performing MS or blotting.

Neurosphere formation assay. Extreme limiting dilution analysis (ELDA) was
performed to evaluate self-renewal capacity. BTICs were dissociated in TrypLE™
Select (Gibco, Carlsbad, CA) for 5 min at 37 °C. Cells were triturated into a single-
cell solution. The solution was incubated with Hoechst (Thermo, Waltham, MA,
33342) for 30 min at 37 °C. Live cells were identified using a LIVE/DEAD staining
kit (Thermo, Waltham, MA, L10119). Live cells were sorted into 96-well plates.
Spheres were counted at 14 days. Cell density per well ranged from 1, 10, 25, 50,
100, 250, 500 to 1000. Each condition was tested in 10 independent wells. Volume
of medium per well was 200 μl medium with growth factors spike-ins every
3–4 days. Neurosphere-forming capability was determined using the ELDA web-
based tool (http://bioinf.wehi.edu.au/software/elda/).

Cell proliferation assays. Cells were seeded into 96-well plates. At the indicated
time points, the cells were incubated with 100 μl of sterile MTT for 4 h at 37 °C,
after which the medium was removed and replaced with 150 μl of DMSO. The
absorbance was measured at 570 nm. All experiments were performed in triplicate.

EdU incorporation assay. 8-Well chamber slides were coated with poly-L-lysine.
Cells were then seeded at 40,000 cells per well. 10 μM EdU was added to each well.
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Cells were fixed after 24 h using 4% paraformaldehyde in PBS and stained using the
Click-iT EdU kit as protocol (Invitrogen, Carlsbad, CA). Proliferation index was
then determined by quantifying percentage of EdU labeled cells using confocal
microscopy at 200× magnification. All experiments were performed in three bio-
logical replicates.

LC-MS analysis. Proteins were separated via SDS-PAGE, and gel bands were
manually excised and digested with sequencing-grade trypsin (Promega, Madison,
WI). The digested peptides were analyzed using a QExactive mass spectrometer
(Thermo Fisher, Carlsbad, CA). Fragment spectra were analyzed using the National
Center for Biotechnology Information nonredundant protein database with Mascot
(Matrix Science).

Colony formation assays. Cells were plated in 6-well plates (1000 cells per plate),
cultured for 10 days, fixed with 10% formaldehyde for 5 min, stained with 1.0%
crystal violet for 30 s, and counted. All experiments were performed in three
biological replicates.

ChIP and re-ChIP assays. For the ChIP assay, 2 × 106 cells were prepared with the
ChIP assay kit (Cell Signaling Technology, Danvers, MA, 56383) according to the
manufacturer’s instructions. The resulting precipitated DNA samples were ana-
lyzed by PCR. In the re-ChIP assay, 107 cells were used for the first-step ChIP. The
DNA complexes were first immunoprecipitated using the indicated antibodies and
then eluted by incubation for 30 min at 37 °C in 100 μl of 10 mM DTT. After
centrifugation, the supernatant was diluted 50× with re-ChIP buffer and immu-
noprecipitated again using the indicated antibodies, as with the ChIP procedure.
(Primer sequences are listed in Supplementary Table 5.) All experiments were
performed in three biological replicates.

Cell cycle analyses. Cells were harvested via trypsinization, washed in ice-cold
PBS, fixed in ice-cold 75% ethanol in PBS, centrifuged at 4 °C, and suspended in
PBS. RNase A was then added at a final concentration of 4 mg/ml, followed by
incubation at 37 °C for 30 min, after which 20 mg/ml propidium iodide (Beyotime,
Shanghai, China) was added, and the samples were incubated for 20 min at room
temperature. The cells were analyzed via flow cytometry. All experiments were
performed in three biological replicates.

IF staining and confocal microscopy. Cells were grown on chamber slides pre-
coated with poly-L-ornithine and fibronectin. The cells were fixed with 4% par-
aformaldehyde, permeabilized for 5 min with PBS containing 0.1% Triton X-100
(PBS-T), quenched with 50 mM NH4Cl in PBS-T, and blocked with 1% BSA in
PBS-T. Immunostaining was performed with appropriate primary and secondary
antibodies, and images were acquired using an Olympus FluoView FV1000 con-
focal microscope.

Animal care and ethics statement. Four-week-old female BALB/c-nu mice were
purchased from the Laboratory Animal Center of Sun Yat-sen University. Mice
were housed in a temperature-controlled (22 °C) and light-controlled pathogen-
free animal facility with free access to food and water. All experimental protocols
concerning the handling of mice were approved by the institutional animal care
and use committee of Sun Yat-sen University.

Intracranial injection. We intracranially injected 2000 cells for each of the indi-
cated BTIC types into nude mice. Eight mice were injected for each group. The
mice were sacrificed after 60 days or when they showed clinical symptoms such as
weight loss and orientation dysfunction. The brain of each mouse was harvested,
fixed in 4% formaldehyde and embedded in paraffin. Tumor formation and phe-
notypes were determined through histologic analysis and assessed in hematoxylin
and eosin-stained sections. Total survival curves were calculated.

Subcutaneous xenograft assay. Xenograft experiments were performed through
the subcutaneous injection of 5 × 106 cancer cells into nude mice. Five mice were
injected for each group. Day 0 indicates the first day of injection. Tumor pro-
gression was monitored by imaging with a Xenogen Spectrum small animal ima-
ging system (Caliper, Hopkinton, MA) or via caliper measurements, as indicated.

Statistical analysis. Statistical tests were conducted using Prism (GraphPad)
software unless otherwise indicated. Data are presented as mean ± s.e.m. from three
independent experiments. For parametric data, unpaired, two-tailed Student’s t-
tests were used. For non-parametric data, two-sided Mann–Whitney test was used.
Data distribution was assumed to be normal, but this was not formally tested. The
limiting dilution assay to test for neurosphere-forming capacity was analyzed with
a Chi-squared test using the ELDA web-based tool (http://bioinf.wehi.edu.au/
software/elda/). A level of P < 0.05 was used to designate significant differences. For
all experiments, analyses were done in biological triplicate. No animals or data
points were excluded from the analyses for any reason. Blinding and

randomization were performed in all experiments. Statistical analyses for RNA-seq
data are described above in the respective sections.

Data availability
The RNA-seq data obtained in this study have been deposited in the SRA database,
with the accession code PRJNA401369. Other data that support the findings of this
study are available from the corresponding author on reasonable request.
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