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KEYWORDS Abstract Background/purpose: Diagnostic methods of oral squamous cell carcinoma (SCC)

Computational neural using artificial intelligence (Al) and digital-histopathologic images have been developed. How-
networks; ever, previous Al training methods have focused on the cellular atypia given by the training of

Artificial intelligence; high-magnification images, and little attention has been paid to structural atypia provided by

Digital image low-power wide fields. Since oral SCC has histopathologic types with bland cytology, both
processing; cellular atypia and structural atypia must be considered as histopathologic features. This study

Oral squamous cell aimed to investigate Al ability to judge oral SCC in a novel training method considering cellular
carcinoma and structural atypia and their suitability.

Materials and methods: We examined digitized histological whole-slide images from 90
randomly selected patients with tongue SCC who attended a dental hospital. Image patches
of 1000 x 1000 pixels were cut from whole-slide images at 0.3125-, 1.25-, 5-, and 20-fold
magnification, and 90,059 image patches were used for training and evaluation. These image
patches were resized into 224 x 224, 384 x 384, 512 x 512, and 768 x 768 pixels, and the dif-
ferences in input size were analyzed. EfficientNet BO was utilized as the convolutional neural
network model. Gradient-weighted class activation mapping (Grad-CAM) was used to elucidate
its validity.

Results: The proposed method achieved a peak accuracy of 99.65% with an input size of
512 x 512 pixels. Grad-CAM suggested that Al focused on both cellular and structural atypia
of SCC, and tended to focus on the region surrounding the basal layer.
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Conclusion: Training Al regarding both cellular and structural atypia using various magnifica-
tion images simultaneously may be suitable for the diagnosis of oral SCC.

© 2022 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

The incidence of oral cancers continues to increase. In
2018, 246,000 cases of lip and oral carcinoma and 177,000
related deaths were reported worldwide.? Oral squamous
cell carcinoma (SCC) is the most common type of oral can-
cer, accounting for more than 90% of oral cancers® that
occur on the oral mucosal surface. Despite the development
of new treatment modalities for cancer, the prognosis re-
mains poor, with a low 5-year survival rate.* ¢ Early diag-
nosis of cancerous lesions can prevent progression through
effective early treatment. However, small cancerous lesions
often clinically resemble other noncancerous lesions’ such
as stomatitis. Underestimation by the clinician or patient
himself/herself leads to delayed diagnosis and disease
advancement. With respect to pathological diagnosis, there
is also the potential for underdiagnosis that leads to disease
progression. The oral mucosa easily displays significant
cellular atypia (e.g., nuclear swelling) from inflammatory
stimulation; meanwhile, well-differentiated oral SCC
sometimes does not show remarkable cellular atypia.® In
addition, histopathological diagnosis has the possibility of
being influenced by subjective view.’

In this context, artificial intelligence (Al) is expected to
assist in achieving a more reliable, objective, and accurate
diagnosis that leads to better clinical outcomes.’ Some
studies have already used convolutional neural networks
(CNNs), a major approach for Al-learning, for analyzing
digital-histopathologic images of oral SCC. However, although
these CNNs showed a high classification accuracy of more than
90%,'°""2 the training data set used in these previous studies
had high magnification but a narrow range for histological
images,'"'? that is, their Al studied cellular atypia only. In
general, pathologists diagnose oral SCC with cellular and
structural atypia in both low- and high-power fields for the
reasons described above. Structural atypia, which is observ-
able in low-power fields, is important for diagnosis. Small-
field or cell-by-cell observation has limitations in diagnosing
oral SCC; therefore, a novel approach for training Al in
structural atypia for carcinoma and cellular atypia is needed.

Thus, this study aimed to develop Al that can recognize
both cellular and structural atypia to diagnose the entire SCC
phenotype, including well-differentiated SCC with bland
cytology. Towards this goal, broad views (large image patches)
of various magnifications were used for training datasets that
may resemble the pathologist’s approach to diagnosis.

Materials and methods
Histological image processing

The histological dataset comprised primary tongue SCC
samples with hematoxylin-eosin (HE) staining. The samples
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were acquired from biopsy or operative treatment of 90
patients randomly chosen from patients diagnosed with SCC
during 2018—2020 at a university dental hospital. Nano-
Zoomer (Hamamatsu Photonics K.K., Shizuoka, Japan) was
used for the digitization of whole-slide images, and images
were taken at 20-fold magnification (objective lens). The
original images were too large for our computer; therefore,
they were divided into patches of 1000 x 1000 pixels at
0.3125-,1.25-,5-, and 20-fold magnification. Image patches
were categorized into “cancer, non-cancer, suspicious,”
and “do not know.” Images with cancer, even if only min-
ute, were also categorized as “cancer,” whereas image
patches with no cancer, such as muscle, connective tissue,
minor salivary gland, and granulation tissue, were catego-
rized as “non-cancer” (Fig. 1).

Images that could not be evaluated as “cancer” or “non-
cancer” despite having indications of cancerous lesions
were categorized as “suspicious.” Images impossible to
evaluate because of issues such as defocus were catego-
rized as “do not know.” For example, ulcer-like lesions that
could not be diagnosed at low magnification were thus
categorized as “do not know.” These image classifications
were performed by three board-certified pathologists.
Finally, 90,059 image patches comprising 8332 cancer and
81,727 non-cancer sets were prepared as datasets. Other
categories were not used for training.

Generally, when the dataset is imbalanced, over-
sampling or undersampling are commonly used for
balancing data distributions. However, generating minority
data or excluding majority data often leads to the deletion
of important samples or inclusion of meaningless new ob-
jects.">' In addition, given the nature of cancer, it seems
unnatural to align the numbers of cancer and non-cancer.
Therefore, we did not perform oversampling or under-
sampling, and trained our model in a straightforward
manner.

Ethics approval statement

This study was approved by the appropriate ethical review
board. Patients were informed of the opportunity to opt out
on the website of our institution. Informed consent was not
obtained.

Classification model training

EfficientNet is a CNN-based, high-performance image clas-
sification model that achieves state-of-the-art images on
the ImageNet dataset'® with better accuracy and efficiency
than previous famous convolutional networks such as
ResNet,'® DenseNet,'” Inception,’® and Xception.' Effi-
cientNet scales up from base BO to B7 step by step, and the
image recognition accuracy also improves as the base
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Figure 1

increases. However, because the parameters and compu-
tational complexity increase exponentially as EfficientNet
scales up, we utilized the lightest EfficientNet BO as our
classification model, and its parameters were initialized by
a pretrained imagenet weight. Given that imagenet weight
was not pretrained on histopathological images, it was
considered undesirable to replace the fully connected head
layers or freeze some layers. Therefore, we performed fine-
tuning on all layers of EfficientNet BO. Using a larger input
size has been reported to effectively increase image
recognition performance.?’ EfficientNet BO was trained
with input sizes of 224 x 224, 384 x 384, 512 x 512, and
768 x 768 pixels, and the results were compared. Insuffi-
cient training data can lead to overfitting,?" and our study
had limited data. Thus, data augmentation, which included
random choices of bellows (horizontal flip, vertical flip,
hue, saturation, contrast, brightness, cropping, rotation,
zoom, and shift), was utilized.

Evaluation

A 5-fold stratified cross-validation (5CV) (Fig. 2) was per-
formed so that each fold could have the same proportion
of cancer and non-cancer images. Training datasets were
split into 5 folds, and EfficientNet BO was trained with 4
folds of data. Subsequently, the remaining fold was eval-
uated with a trained model. We iterated this training five
times, and our training metrics used out-of-fold pre-
dictions. Al diagnosis was visualized using gradient-
weighted class activation mapping (Grad-CAM).?? Two pa-
thologists with 6 and 30 years of experience evaluated the
results of Grad-CAM to determine the efficiency of the Al
for recognizing both cellular and structural atypia in his-
tological images.

Histological image samples are used for training and evaluation in which the resolution is
224 x 224, 384 x 384, 512 x 512, and 768 x 768 pixels after tagging.

Top: examples of cancer obtained at low to high magnifications (magnifications: x0.3125, x1.25, x5, x20, and x20 from left to
right). Bottom: image patches of non-cancer, including stratified squamous epithelium, skeletal muscle, inflammatory tissue, and
salivary glands (magnifications: x5, x5, x20, x20, and x20 from left to right).
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reduced to image sizes of

Results

Accuracy, precision, and recall improved with increased
image size to 512 x 512 pixels. The image patches of tongue
normal tissue and SCC were classified with a peak accuracy
of 99.65% (Fig. 3A). The precision and recall in the cancer
group were 97.83% and 98.36%, respectively (data were
rounded off to the second decimal place) (Fig. 3B).

Grad-CAM revealed that Al focused on reasonable fea-
tures of cancer for judgment as follows. In high-
maghnification images of cancer, Al focused on cancer
pearl and ectopic keratinization which are the most com-
mon features of well-differentiated SCC (Fig. 4A and B).
Invasive tumor nests and atypical cells were reasonably
focused on in cases of moderately (Fig. 4C and D) to poorly
differentiated SCC (Fig. 4E and F). In the low-power field of
<5-fold magnification, Al focused on anomalous structures,
such as irregular overgrowth of epithelial components,
abnormal distribution of stroma (Fig. 4G and H), and
ectopic keratinization (Fig. 4l and J).

Furthermore, we found a tendency for Al to focus on the
region surrounding the basal layer. In high-magnification
images of cancer, especially when the cancer lesion
showed sheet-like proliferation and there was no notable
keratinized nest, the outer edges of the cancerous paren-
chyma were the focus (Fig. 5A and B). In the non-cancer
images, Al focused on the boundary area between the
epithelium and juxta-epithelial stroma (Fig. 5C and D) at
every magnification. If the picture contained all layers of
the stratified squamous epithelium at high magnification,
the focus was dispersed throughout all layers of the
epithelium (data not shown).

Grad-CAM also revealed that the focus points for eval-
uation were sharpened with increasing image size. As
shown in Fig. 5E—H, Al recognized cancerous or non-
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Figure 2
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Scheme of classification model training and evaluation.

Training datasets are split into 5 folds, and EfficientNet BO is trained with 4 folds of data. Subsequently, the remaining fold is
evaluated with a trained model. This training is iterated five times, and out-of-fold predictions are used to evaluate our training

results.
A %
99.8
99.6
&
o
-
Q
Q
<
99.4
99.2
Figure 3

98.0

image size

— precision

— recall

_
Q975
g
2
S 97.0
c
]
0
‘G 96.5
[
S
o
96.0
95.5
95.0
224x224 384x384 512x512 768x768

Accuracy, prediction, and recall at each image size.
The accuracy (A), precision, and recall (B) for cancer are improved

224x224

performance improvement plateaued at resolutions higher than 512 x 512 pixels.

325

384x384

3 512x512
image size

768x768

by using larger (higher resolution) images. However, the
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Figure 4 Representative images of cancer (A, C, E, G, |) and
corresponding gradient-weighted class activation mapping (B,
D, F, H, J).

In the case of well-differentiated squamous cell carcinoma
(SCC) (A), cancer pearl and ectopic keratinization receive the
most attention (B). Artificial intelligence (Al) focus on indi-
vidual cancer cells and nests is almost similar between
moderately differentiated (C, D) and poorly differentiated SCC
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cancerous epithelial components, including the wide
epithelial or stromal area, even in small-sized images
(lower resolution). Further, the sharpness of the focus
points was increased in larger images (higher resolution)
(Fig. 5A—D). The atypical epithelium formed by the effect
of inflammation was not focused on and was correctly
classified as non-cancer. Ulcers, granulation tissue, dena-
tured striated muscles with swollen nuclei, macrophages,
and foreign body giant cells, often associated with cancer,
were almost classified as non-cancer. The thickness of the
tissue section and blurring of images did not result in
classification errors.

However, there were some false-positive and false-
negative classifications. For example, Al missed the can-
cer component located in the corner, probably because it
was too focused on the non-cancer component (Fig. 6A and
B). Moreover, minor salivary glands, muscle, or blood ves-
sels located on the outside edge of the image patches were
judged as cancer in a few cases (Fig. 6C and D).

Discussion

We investigated the effect of image size (resolution) on
classification performance. The results showed that a
higher resolution up to a size of 512 x 512 pixels improved
the performance but did not increase further at a resolu-
tion of 768 x 768 pixels (Fig. 3). This indicates that an
image size of 512 x 512 pixels is sufficient to achieve
adequate classification performance in EfficientNetBO. In
addition, Grad-CAM comparison by image size revealed
that limiting the focus area of Al increased its perfor-
mance. As shown in Fig. 5, focused points were confined to
the boundary area between the epithelium and stroma at
higher resolutions, whereas focus points were scattered
widely at lower resolutions. These results suggest that
alteration in the basal layer and juxta-epithelial stroma
was recognizable at high resolution and an important fac-
tor for evaluation.

The results using images of 512 x 512 pixels were as
follows. Trained Al showed high classification ability. There
was little response to non-stratified squamous epithelium
components (e.g., granulation tissue, denatured muscle,
and endothelial cells with swelling nuclei), which are
commonly confusing to the uninitiated. Thus, Al must have
learned features of SCC. At high magnification, the pre-
pared cancer images included recognizable cancerous
cellular atypia, such as nuclear swelling, anisokaryosis, high
nuclear-cytoplasmic ratio, hyperchromic nucleus, and large
nucleolus. Al focused on such atypical cell with little in-
formation on structural atypia (Fig. 4E and F); therefore, Al
must have learned individual cellular features of SCC as in
previous studies. However, because the images contained

(E, F). In low-power fields, abnormal distribution of stroma due
to unusual hyperplasia of SCC (G) and ectopic keratinization (l)
are focused on as cancer (H, J). Magnifications: x20 in A—F; x5
in G, H; and x1.25 in I, J. Image size: 512 x 512 pixels. The
dotted line shows the border between the epithelium and
stroma or other components.
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Cancer

Non cancer

Figure 5

Artificial intelligence (Al) focuses on the outer edges of the cancerous parenchyma (A, B) or the region surrounding the

basal layer of normal epithelium (C, D). Al focus is limited as the image size increases. In small-size images (224 x 224 pixels), Al
recognizes the epithelial component, including the wide area (E—H). Magnification: x20 in A—H. Image size: A—D, 512 x 512 pixels;
and E—H, 224 x 224 pixels. The dotted line shows the border between the epithelium and stroma.

limited structural atypia, such as ectopic keratinization, Al
learned and valued this over cellular atypia in many cases
of well-differentiated SCC (Fig. 4A and B). In moderately
differentiated SCC, pictures contained cellular and struc-
tural atypia; therefore, Al may have focused on both fea-
tures (Fig. 4C and D).

Additionally, we confirmed that Al focused on the
outside edges of the cancerous parenchyma, especially
when the pictures contained stroma and parenchyma. This
showed a sheet-like growth pattern (Fig. 5A and B), which
is when the loss of basal cell polarity was emphasized in
some cases of well-differentiated SCC. In the non-cancer
images, Al also focused on the basal layer, including
juxta-epithelial stroma, for judgement. It is also known
that an alteration of basement membrane can be observed
in cancer,?® and the stroma affected by cancer becomes
fibrotic.?* These results support the abovementioned idea
that alteration in the basal layer and juxta-epithelial
stroma was recognizable and was as important as individ-
ual epithelial cellular atypia for evaluation. Moreover,
when the picture contained all layers of the stratified
squamous epithelium at high magnification, the focus was
distributed throughout all layers of the epithelium in non-
cancer images. This may suggest that differentiation to-
ward the surface was also a focus.

At low-power fields of <5-fold magnification, Al also
recognized cancer components despite the unclear cellular
morphology. Structural atypia, such as irregular overgrowth
of epithelial components, ectopic keratinization, and
abnormal distribution of stroma due to unusual hyperplasia
of the stratified squamous epithelium, was adequately
focused on for classifying the lesion image as cancer. These
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results suggest that Al could distinguish cancer from non-
cancer based on structural atypia without detailed infor-
mation on cellular atypia. Collectively, the results support
the notion that Al studied both cellular and structural
atypia of SCC using the proposed method.

However, Al did not study images classified as “do not
know” or *suspicious,” which are images that we could not
evaluate using image patches only. For example, some low-
power magnification images of ulcers were classified as “do
not know.” Moreover, even if the image was clearly a part
of cancer, it was classified as “suspicious” and was not used
for training when the pathologist could not recognize the
cellular or structural atypia as carcinoma within the patch.
This indicates that Al still has limited applicability at this
time. Images classified as "suspicious” provide important
data for the diagnosis of carcinoma under Al, even if the
pathologist’s diagnosis is conflicting. Therefore, we tested
the trained Al with the "suspicious” data set. The results
varied widely for similar images (Supplemental Fig. 1). The
count distribution of cancer probability showed a gradual
sigmoid curve (Supplemental Fig. 2), suggesting that the
trained Al contradicted the classification task.

As such, we tried to train Al with “suspicious” images as
“cancer” to assist in improving its performance. However,
the classification accuracy was slightly decreased. Although
it had an insignificant effect on recall, precision was
reduced in the cancer group. These results suggest that Al
had learned the characteristics of cancer similar to pa-
thologists, whereby “suspicious” images remained suspi-
cious, and Al was confused by suspicious data, similar to
pathologists. Pathologists do not use such suspicious data
for diagnosis. As such, simple Al training that includes
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False-negative

Figure 6 Examples of false-negative (A, B) and false-positive
(C, D) findings. Artificial intelligence (Al) misses the cancer
component located in the corner (A, B, arrowhead). Al highly
focused on normal interstitial tissue (B). Minor salivary glands
located on the outside edges of the images (C, arrow) are
judged as cancer (D, arrow). Magnifications: x20 in A, B; and
x1.25 in C, D. Image size: 512 x 512 pixels. The dotted line
shows the border between the cancer nest and stroma.

*suspicious” cancer images may have a disadvantage. The
proposed method in this study using only cancer and non-
cancer images may be suitable for developing Al for the
diagnosis of oral SCC. However, in clinical practice, suspi-
cious images should be excluded in Al categorization at the
pathologist’s discretion. Despite these limitations, our re-
sults show that Al can help standardize oral SCC diagnoses.
Further research may be needed to construct more reliable
and reproducible Al, e.g., training with a larger sample size
and validation with independent institutions and patholo-
gists. Moreover, advanced methods using combined data of
HE staining and immunostaining should be examined.

In conclusion, Al can be trained to evaluate cellular and
structural atypia of oral SCC using our proposed method.
Thus, our approach may be suitable for the diagnosis of oral
SCC.
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