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Abstract

Periods of nutrient shortage impose strong selection on animal populations. Experimental studies of genetic adaptation
to nutrient shortage largely focus on resistance to acute starvation at adult stage; it is not clear how conclusions drawn
from these studies extrapolate to other forms of nutritional stress. We studied the genomic signature of adaptation to
chronic juvenile malnutrition in six populations of Drosophila melanogaster evolved for 150 generations on an extremely
nutrient-poor larval diet. Comparison with control populations evolved on standard food revealed repeatable genomic
differentiation between the two set of population, involving >3,000 candidate SNPs forming >100 independently
evolving clusters. The candidate genomic regions were enriched in genes implicated in hormone, carbohydrate, and
lipid metabolism, including some with known effects on fitness-related life-history traits. Rather than being close to
fixation, a substantial fraction of candidate SNPs segregated at intermediate allele frequencies in all malnutrition-
adapted populations. This, together with patterns of among-population variation in allele frequencies and estimates
of Tajima’s D, suggests that the poor diet results in balancing selection on some genomic regions. Our candidate genes for
tolerance to larval malnutrition showed a high overlap with genes previously implicated in acute starvation resistance.
However, adaptation to larval malnutrition in our study was associated with reduced tolerance to acute adult starvation.
Thus, rather than reflecting synergy, the shared genomic architecture appears to mediate an evolutionary trade-off
between tolerances to these two forms of nutritional stress.

Key words: experimental evolution, genomics, Drosophila melanogaster, larval malnutrition, directional selection,
balancing selection.

Introduction
The availability and quality of organic nutrients is a key eco-
logical factor that determines the survival and fitness of ani-
mals. Natural selection imposed by periods of nutrient
shortage is therefore thought to have shaped manifold
aspects of animal physiology, life history and behavior
(Baker et al. 2004; Boggs and Freeman 2005; Behrman et al.
2015; McNamara et al. 2016). Resulting adaptations may im-
part many aspects of performance, such as susceptibility to
metabolic or infectious disease (Vijendravarma et al. 2015;
Hardy et al. 2018), and thus be relevant for human health
(Prentice 2005; Wells 2006).

Most of research investigating the phenotypic and genetic
bases of evolutionary adaptation to nutritional stress focuses
on acute starvation resistance, that is, the ability to survive

periods of complete food deprivation, mainly at adult stage;
much of this work has been done in Drosophila. Selection for
greater starvation resistance of adult fruit flies results in longer
development time, greater longevity, increased lipid storage
and larger body size (reviewed in Rion and Kawecki 2007;
Kubrak et al. 2017; Hardy et al. 2018; Michalak et al. 2019).
This implies that frequent exposure to starvation favors
greater energy reserves, achieved by increased lipid or carbo-
hydrate storage and larger body size (Rion and Kawecki 2007;
Kubrak et al. 2017). Furthermore, food-deprived animals ap-
pear to switch to a “survival mode” to withstand short peri-
ods of malnutrition by reducing metabolic processes and
diverting available resources from reproduction (Tatar et al.
2003; Rion and Kawecki 2007). Consistent with this trade-off,
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selection for starvation resistance usually leads to reduced
fecundity (Rion and Kawecki 2007). Evolve and resequence
studies, which combine experimental evolution and genomic
analyses (Turner et al. 2011; Kofler and Schlötterer 2014),
indicate that the genomic architecture of acute starvation
resistance is complex and highly polygenic, with candidate
SNPs in genes affecting lifespan, feeding behavior, catabolic
metabolism and lipid body structure and function (Hardy
et al. 2018; Michalak et al. 2019).

In contrast to acute starvation, we know much less about
the physiological and genomic bases of adaptation to pro-
longed nutrient shortage—in particular at the juvenile stage.
Juveniles are often the first to suffer from food shortage
(Ronget et al. 2017), and periods of juvenile malnutrition
often have long-lasting consequences for adult fitness
(Lindström 1999; Wells 2007; Koyama and Mirth 2018).
Juveniles will have little chance to accumulate any metabolic
reserve if exposed to nutritional shortage from birth.
Furthermore, juveniles may not be able to minimize their
energy and nutrient requirements to the same degree as
adults: while adults facing nutrient shortage often completely
shut down reproduction, juveniles of most species (with
exceptions, such as the dauer larva of Caenorhabditis elegans)
do not have the option of arresting growth and development.
Thus, they must not only survive, but also develop and grow
with whatever nutrients they manage to acquire. Waiting out
until better times by relying on energy reserves, which is a
major target of selection for acute starvation resistance, is not
a viable option under chronic juvenile malnutrition. Finally, in
insects and many other animals with distinct larval stages,
energy metabolism and the general physiology of the juvenile
and adult organism are likely to be substantially different, as
the two stages are optimized for different functions.
Adaptation to chronic juvenile undernutrition is therefore
expected to involve at least partly different mechanisms
than resistance to acute starvation. Consistent with this, al-
though adult Drosophila selected for starvation resistance
have larger body weight with higher lipid stores (Rion and
Kawecki 2007), those selected for tolerance to poor larval diet
evolve smaller adult body size without enhanced lipid con-
tent (Kolss et al. 2009; Vijendravarma et al. 2012a). Thus, we
hypothesized that adaptation to chronic juvenile malnutri-
tion may involve genes and molecular mechanisms largely
different from those mediating adult starvation resistance.

In this paper we investigate the genomic architecture of
adaptation to chronic larval undernutrition in six replicated
populations of Drosophila melanogaster subject to 150 gen-
erations of experimental evolution on a nutrient-poor larval
diet (“Selected” populations). The poor diet imposes a strong
nutritional stress: larvae from nonadapted populations suffer
high mortality and the survivors take twice as long to develop
until pupation on the poor diet than on standard diet; yet,
the adults still emerge at half of the normal size (Kolss et al.
2009; Erkosar et al. 2017). The Selected populations evolved
genetically based tolerance to the poor diet, manifested in
improved survival, faster larval growth and faster develop-
ment (Kolss et al. 2009; Vijendravarma and Kawecki 2013;
Erkosar et al. 2017). Their adaptation to the poor diet has

been associated with changes in larval behavior
(Vijendravarma et al. 2012b; Narasimha et al. 2015) and in
digestive physiology (e.g., increased activity of digestive pro-
teases; Erkosar et al. 2017) and better amino-acid assimilation
(Cavigliasso et al. 2020), but also with increased susceptibility
to an intestinal bacterial pathogen (Vijendravarma et al.
2015).

We use whole genome pooled sequencing to analyze the
architecture of genomic divergence between the six
“Selected” populations evolved on the poor larval diet and
six “Control” populations derived from the same gene pool
but evolved on standard diet. We identify and annotate can-
didate SNPs putatively underlying the adaptive divergence
and find that they show contrasting patterns of allele frequen-
cies suggestive of being driven by different modes of selection.
We also combine the genome sequence results with differ-
ences in gene expression patterns (previously characterized
by Erkosar et al. 2017).

We then address the evolutionary relationship between
adaptation to larval malnutrition and resistance to adult star-
vation. In contrast to our expectation expressed above, we
find that experimental evolution in response to these two
forms of nutritional stress involves overlapping sets of genes.
Yet, rather than a common physiological mechanism, the
shared genetic architecture appears to mediate a trade-off
between tolerance to larval malnutrition and resistance to
adult starvation.

Results

Genome-Wide Patterns of Variation and
Differentiation
We sequenced pools of 400 females from each of the six
Selected populations (evolved on poor diet) and six
Control populations (maintained on standard diet). We iden-
tified 976,247 high confidence single-nucleotide polymorphic
sites (SNPs) that satisfied stringent SNP calling criteria. The
SNPs were spread across the five major chromosomal arms
(X, 2L, 2R, 3L, 3R), with a few on the dot chromosome 4.
Principal component analysis on allele frequencies of all these
SNPs clearly separated the Selected from the Control popu-
lations, mainly along the first principal component axis, which
accounted for 19% of the SNP variation (fig. 1, Welch’s t-test
on the first principal component scores t7¼ 13.1, P< 0.0001).
These results indicate that 150 generations of evolution on
the poor versus standard diet resulted in a replicable differ-
entiation of gene pools, with adaptation to the poor diet
being to a large degree parallel at the genomic level across
the replicate Selected populations.

Despite the same census population sizes, selection under
the harsh conditions of the poor diet was expected to reduce
the effective population size (Ne) of Selected populations rel-
ative to Controls by increasing variance in reproductive suc-
cess (Barton 2000). To assess to what degree this was the case,
we estimated Ne based on among-population variance in
allele frequencies at putatively neutral SNPs (synonymous
and in short introns). Although these estimates did tend to
be smaller for Selected than Control populations, the
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difference was small: 120 versus 144 (P¼ 0.15) for the two
main autosomes (chromosomes 2 and 3), 65 versus 74 for the
X chromosome (P¼ 0.59, randomization test, see Materials
and Methods). Interestingly, Ne estimates for the X chromo-
some are about half of those of autosomes; the theoretical
expectation is that Ne of the X should be 3=4 of Ne of auto-
somes (Hartl and Clark 2007). Genome-wide patterns of
within-population variation (quantified as nucleotide diver-
sity p and Watterson’s h) were likewise similar between the
evolutionary regimes (see supporting information, supple-
mentary fig. S1 and supplementary table S1, Supplementary
Material online). Thus, although evolution on the poor versus
standard diet resulted in clear differentiation of the gene
pools, differences between regimes in within-population pat-
terns of genetic variation were at most minor.

For each replicate population, we further estimated the
population genetic statistic Tajima’s D for nonoverlapping
genomic windows of 200 kb length and on a genome-wide
scale. D summarizes the shape of the site frequency spectrum
and provides information about potential adaptive and non-
adaptive evolutionary forces at play (Nielsen 2005). Negative
Tajima’s D indicates an excess of low-frequency variants
which may be the result of selective sweeps or population
size expansion, whereas positive values of D imply an excess of
intermediate allele frequencies, for example, caused by bal-
ancing selection or reductions in population size. Our analy-
ses revealed that genome-wide Tajima’s D was overall positive
and significantly different from zero (one-sample Student’s t-
test) in all populations (�DCtrl¼ 0.69, SD¼ 0.09, P< 0.001;
�DSel¼ 0.61, SD¼ 0.08, P< 0.001) without significant differ-
ences among the regimes (Mann–Whitney U test;
P¼ 0.25). This is consistent with either an initial loss of ge-
netic variation when setting up the experimental populations

or with reductions of effective population size in response to
the evolutionary regime both in the Selected and the Control
populations. Variation in Tajima’s D among genomic regions
(see fig. 2A) may indicate different types of selection in action.
Besides directional selection in the Selected Population, these
potentially also include balancing selection resulting in re-
gional positive Tajima’s D in the Selected populations, or di-
rectional selection in the Control populations (see below).

Candidate SNPs Form Many Independently Evolving
Clusters
To identify candidate SNPs underlying differentiation be-
tween the Selected and Control populations we employed
a statistical approach based on combining Fisher’s exact tests
(FET) and generalized linear mixed models (GLMM). The
GLMM emphasizes parallel changes in all replicate popula-
tions whereas the FET-based approach emphasizes the differ-
ence in mean allele frequencies and can detect cases where an
allele becomes fixed in most replicate populations but lost by
drift in one. The false discovery rate (FDR) was estimated
based on permutations following Jha et al. (2015; for details
and rationale see Materials and Methods). From the SNPs
that passed the FDR ¼ 0.05 threshold for at least one of
the tests we focused on SNPs at which the average allele
frequency difference between regimes was greater than the
arbitrary threshold of 0.3. (For details and rationale of this
approach see Materials and Methods.) This approach yielded
2,483 and 1,140 candidate SNPs from FETs and GLMMs, re-
spectively, resulting in a total of 3,425 candidate SNPs (only 97
of those SNPs were shared between both sets; see supple-
mentary table S2, Supplementary Material online and fig. 2B;
the color-coded categories of SNPs are defined in the next
section).

The candidate SNPs formed clusters characterized by sim-
ilar patterns of allele frequencies (fig. 2B and C), consistent
with selection on a relatively small number of target SNPs and
genetic hitchhiking of neighboring SNPs at linkage disequilib-
rium with the target SNPs. Polymorphic sites that are con-
strained to evolve together as a consequence of linkage
disequilibrium should vary in a highly correlated manner
among replicate populations. Therefore, to assess the degree
of hitchhiking, we estimated within-regime correlations of
allele frequencies between pairs of candidate SNPs (i.e., cor-
relations of residuals from regime means across the 12 pop-
ulations) rw. The imprint of linkage disequilibrium is visible as
a large excess of rw > 0.8 between candidate SNPs on the
same chromosomal arm, relative to the distribution of rw

between pairs of SNPs on different chromosomes (fig. 3A).
Analysis of rw indicated the existence of massive blocks of
highly correlated SNPs on chromosomes X and 3L (fig. 3B,
above diagonal). The SNPs forming these blocks are closely
linked, as indicated by low pairwise recombination rates
(fig. 3B, below diagonal). However, there are other parts of
the genome—notably on chromosomal arm 2R, but also on
2L and 3R—that show at most small, correlated blocks, sug-
gesting that in those regions many candidate SNPs were free
to evolve independently, despite similarly low recombination

FIG. 1. Principal component analysis on all SNPs. The Selected (red)
and Control (blue) populations plotted on the first two principal
component axes derived from PCA on allele frequencies at all
976,247 SNPs that had at least 10-fold coverage in each population.
The % values refer to the fraction of total variance explained.
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rates. Thus, the size of co-evolving candidate SNP clusters is
not determined by recombination rates alone.

We used the within-regime correlation rw to delineate
clusters of linked candidates SNPs whose evolution was ap-
parently strongly bound together by linkage disequilibrium.
Two neighboring candidate SNPs were included in the same
cluster if 1) distance between them was <200 kb and 2) any
SNP within 200 kb left of the midpoint between them was
correlated with any SNP within 200 kb right of the midpoint
with rw > 0.8. While necessarily arbitrary, this criterion was
effective in grouping most highly correlated SNPs within the
same cluster, with correlations between clusters on the same
chromosomal arm having a similar distribution to correlation
of SNPs on different chromosomes (fig. 3C; see also supple-
mentary fig. S2, Supplementary Material online). Of 131 pu-
tative candidate SNP clusters defined by this approach, 48
consisted of a single SNP. At the other end of the spectrum, a
cluster on the X chromosome contained 744 candidate SNPs

within a 685 kb block, and the largest cluster (on chromo-
some 3R) spanned 3.5 Mb although it only contained 26 can-
didate SNPs (supplementary table S3, Supplementary
Material online).

Such large linkage blocks may result from chromosomal
inversions, which suppress recombination in heterozygous
state (Hoffmann and Rieseberg 2008; Kirkpatrick 2010;
Kapun and Flatt 2019). However, an indirect analytical ap-
proach (Kapun et al. 2014) indicated that the known chro-
mosomal inversions were absent or at very low frequencies
(< 0.05) in all replicate populations and thus unlikely to have
contributed to the evolutionary response in our experiment
(see additional analyses in the supporting information,
Supplementary Material online).

Distinct Allele Frequency Patterns at Candidate SNPs
Patterns of allele frequencies at candidate SNP loci can be
suggestive of the mode of selection driving them (Nielsen

FIG. 2. Population genetic analysis of candidates for selection. (A) The top panel show chromosome-wise averages for the population genetic
estimator Tajima’s D in nonoverlapping windows of 200 kb size. Solid lines and semitransparent polygons show means and standard deviations for
these estimators, respectively, that were calculated from six selected (red) and six control (blue) replicate populations. (B) The central figure shows
Manhattan plots depicting SNP-wise –log10—transformed nominal P-values from generalized linear models (GLMM; top panel) and Fisher Exact
tests (FET; bottom panel). Putative candidates for balancing selection are highlighted in orange, candidates for directional selection in cyan, and
candidates with uncertain selection type are shown in dark purple. The black and gray bars separating the upper and lower Manhattan plots
indicate linkage blocks which were inferred by correlation of allele frequencies among neighboring SNPs. (C) The bottom figures show the
distribution of allele frequencies for candidate SNPs in six selected (red dots) and six control (blue dots) populations focusing on three genomic
regions that harbor clusters of candidates SNPs potentially affected by balancing or directional selection. All candidate SNPs were conditioned for
the alleles that were on average more frequent in the selected populations.
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2005). By convention, in the following we refer to the alleles
with higher mean frequency in the Selected than in the
Control populations as the “selected” alleles. For �27% of
candidate SNPs, the “selected” alleles were fixed or close to
fixation (frequency > 0.9) in all Selected populations while
showing intermediate to low frequencies in Controls, typically
quite variable among replicate Control populations (e.g., the
region around position X: 15 Mb, fig. 2C left). This pattern is
consistent with directional selection in the Selected popula-
tions (i.e., on the poor diet) and weak or no selection in the
Controls. At another 17% of candidate SNPs the “selected”
allele was fixed or at a high frequency at five Selected popu-
lation but absent from the sixth; almost all of these SNPs were
within an apparent large linkage block on chromosome X
between positions 14.37 and 14.66 Mb, where the Selected
population S4 lacked the “selected” allele (fig. 2C left). This
pattern is also consistent with directional selection on some
of the SNPs in the cluster, but with the selected haplotype
being lost due to drift/founder effect in one of the Selected
populations.

In contrast, many other candidate SNPs showed a very
different pattern, being polymorphic with intermediate fre-
quencies in all Selected populations, with the “selected” allele

being lost or at low frequencies in Controls (e.g., the region
around positions 3L: 15.5–15.8 Mb, fig. 2C right). While this
pattern could occur under other scenarios (see Discussion), it
is consistent with balancing selection favoring initially rare
alleles and subsequently maintaining them an intermediate
frequency in Selected populations. Balancing selection would
not only act to maintain polymorphism, but also tend to keep
allele frequencies close to a polymorphic equilibrium and
hence reduce variation among replicate populations evolving
under the same regime. Thus, if balancing selection played a
greater role in the Selected than in the Control populations
then among-population variance in allele frequency at can-
didate SNPs should tend to be smaller in the Selected than in
the Controls.

To address this prediction, we calculated the standard
deviation of population allele frequencies at each candidate
SNP for each regime separately. We then compared these
standard deviations between Selected and Control popula-
tions, binned by the respective regime means. Candidate
SNPs with mean frequency in Selected populations in the
0.25–0.75 range were generally characterized by lower
among-population variance than candidate SNPs satisfying
the corresponding criterion in Control populations (fig. 4).

A B

C

FIG. 3. Correlations of allele frequencies between candidate SNPs indicate clusters of SNPs at linkage disequilibrium. (A) Frequency distribution of
the within-regime correlations between candidate SNPs on the same chromosomal arm (yellow) compared with the corresponding distribution
for pairs of SNPs on different chromosomes (purple). (B) Above diagonal: Heat map of within-regime correlations of the frequency of the “selected”
allele between candidate SNPs on the same chromosomal arm. The heat values are Pearson’s correlation coefficients of residuals of population
allele frequencies from their corresponding regime means, calculated for each pair of SNPs across the 12 populations. Below diagonal: pairwise
recombination rates (cM) between candidate SNPs on the same chromosomal arm based on estimates from Comeron et al. (2012). The axes
preserve the order of SNPs on the chromosome, but not the distance between them; thus, the size of clusters of correlated SNPs in the plot is
proportional to the number of candidate SNPs in the cluster but not to the spatial extent of the cluster on the chromosome. (C) Frequency
distribution of the within-regime correlations between SNPs assigned to the same cluster (yellow) and between SNPs sharing chromosomal arm
but assigned to different clusters (purple); for criteria defining the clusters see text.

Kawecki et al. . doi:10.1093/molbev/msab061 MBE

2736



To formally test for this difference while accounting for the
nonindependence of linked SNPs, we relied on the 131 puta-
tively independent candidate SNP clusters defined above. For
each cluster we picked the SNP whose mean allele frequency
in Selected populations was closest to 0.5, and of those we
retained 28 SNPs with the mean allele frequency in the 0.4–
0.6 range. Analogous procedure identified 23 SNPs from dif-
ferent clusters whose mean frequency in Control populations
was in the 0.4–0.6 range. Comparison of these two small sets
of SNPs confirmed that SNPs with intermediate mean fre-
quency in Selected populations were less variable among rep-
licate Selected populations than the SNPs with intermediate
mean frequency in Controls were variable among replicate
Control populations (median SD 0.15 vs. 0.22, P¼ 0.011,
Mann–Whitney U Test).

No such difference in among-population variation was
observed for noncandidate SNPs (fig. 4B), for which the me-
dian variance for Selected populations was slightly higher
than for Controls, in agreement with the lower Ne estimates
of the former. Thus, the lower among-population variation in
allele frequency in the Selected than Control populations at
SNPs that are far from fixation is specific to candidate SNPs. It
should be noted that the statistical tests used to detect the
candidate SNPs, as well as the above comparison of variation,
are both symmetric with respect to evolutionary regimes and
the identity of the alleles. Therefore, this difference in the
pattern of variance of candidate SNPs suggests that diet-
specific selection acts to maintain polymorphism to a greater
degree in the Selected than in the Control populations.

In order to see if candidate SNPs showing these two dis-
tinct allele frequency patterns show different functional
annotations, we operationally defined two subsets of candi-
dates. “High frequency” candidates were defined as those
with frequencies of the “selected” allele � 0.75 in all

Selected populations, or in five Selected populations and be-
ing lost from the sixth population (1,818 SNPs or 53% of
candidates, cyan in fig. 2B). “Mid-frequency” candidates
were defined as candidate SNPs at which frequencies of the
“selected” allele in each replicate Selected population ranged
between 0.1 and 0.9 and whose mean allele frequency in the
Selected populations was between 0.25 and 0.75 (548 SNPs
16% of candidates, spread across all autosomal arms; purple in
fig. 2B). As can be seen in figure 2B, these two types of SNPs
mainly occurred in different clusters. The remaining 1,059
candidate SNPs did not correspond to either of the above
criteria (orange in fig. 2B). SNP classified to these different
classes are color-coded in figure 2B.

Candidates Are Enriched for Metabolic and Hormonal
Signaling Genes
Only 124 candidate SNPs (3.6%) in 72 genes were annotated
as nonsynonymous coding (supplementary table S2,
Supplementary Material online), roughly what would be
expected based on the total number of nonsynonymous
SNPs. Relative to an expectation based on genomic distribu-
tion of noncandidate SNPs, we found a significant excess of
candidates in intergenic regions and a deficiency in regions
comprising 2 kb up and downstream from genes (supple-
mentary fig. S3, Supplementary Material online). However,
we found a significant excess of candidate SNPs in known
regulatory regions (REDfly database; Gallo et al. 2006).

Using SNPeff (v.4.2; Cingolani et al. 2012) we annotated the
2,511 candidate SNPs to 771 genes (many SNPs were anno-
tated to more than one gene) and performed a GO-term
enrichment analysis using Gowinda (Kofler and Schlötterer
2012). Genes associated with candidate SNPs showed a sig-
nificant enrichment of GO categories related to hormonal
signaling and metabolic processes (supplementary table S4,

FIG. 4. Variation in allele frequency at candidate SNPs among replicate Selected and Control populations. Standard deviation of allele frequency
calculated separately for each SNP among Selected (red) and Control (blue) populations and binned according to the mean frequency of the SNP
in the respective regimes based on (A) candidate SNPs and (B) randomly drawn noncandidate SNPs.
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Supplementary Material online). They include key genes in
ecdysteroid metabolism, notably ecdysone oxidase (Eo), with
three missense candidate SNPs in its coding region, and sev-
eral of its paralogs (fiz, CG9512, CG9503, CG9514, CG12398;
Takeuchi et al. 2005), as well as dib involved in early stages of
ecdysteroid synthesis (Warren et al. 2002). Three transcription
factors that play a key role in triggering metamorphosis in
response to ecdysone (Eip75B, Kr-h1, and fkh) are likewise
associated with candidate SNPs. Also associated with candi-
date SNPs are key members of insulin receptor signaling, in-
cluding foxo, a major transcription factor mediating
transcriptomic response to reduced insulin signaling (Alic
et al. 2011), dock, which is a negative regulator of insulin
signaling (Willoughby et al. 2017), and the fat-body expressed
ilp6, which regulates metabolic response to nutrient shortage
(Chatterjee et al. 2014). Among genes involved in metabolism,
multiple genes directly involved in accumulation of triglycer-
ides for storage (SCAP, Lpin, Acsl, Dgat-2) and their mobiliza-
tion for catabolism (Lsd-2, dob and pdgy; Heier and Kühnlein
2018) are associated with candidate SNPs, in particular of
those showing the “high frequency” pattern described above
(supplementary table S4, Supplementary Material online).
Interestingly—given the context of chronic nutrient short-
age—we found no indication of the nutrient-sensing TOR
signaling to have been targeted; none of the 62 genes in
the GO term “TOR signaling” was associated with a candidate
SNP. We also do not find any indication of epigenetic mech-
anisms being targeted, despite the implication of epigenetic
mechanisms in phenotypically plastic response to nutrition
(Dai et al. 2020): only four of 138 genes in the GO term
“regulation of gene expression, epigenetic” are associated
with candidate SNPs.

Significantly enriched GO terms (supplementary table S4,
Supplementary Material online) also include a category of
glutamate receptors involved in neuromuscular junctions in
the larval body wall, one (GlurIIB) with two missense SNPs,
and salivary gland proteins involved in adhesion of pupae to
surfaces, again with one glue gene (Sgs4) with missense SNPs
and one (chc) previously found to have a lower expression in
Selected larvae (Erkosar et al. 2017). While these may seem
idiosyncratic, they can be linked to phenotypic differences
between the Selected and Control populations (see
Discussion).

Interestingly, when testing for enrichment separately in the
“high frequency” and “mid-frequency” sets of candidate genes
defined in the preceding section, we found no overlap in
significantly enriched GO terms. As in the analysis of all can-
didate SNPs, we found that the “high frequency” candidates
were enriched in genes involved in hormonal metabolic pro-
cesses, lipid metabolic processes and Insulin/Insulin-like sig-
naling, whereas the “mid-frequency” candidates were mainly
associated with sugar/amino-sugar transferases (e.g., sff, sxc,
GlcAT-S). The statistical significance of top GO term enrich-
ment was markedly higher in this separate analysis of “high
frequency” and “mid-frequency” types than when all candi-
date SNP were analyzed jointly (table 1). This suggests that
these two categories of candidate SNPs not only show

different allele frequency patterns, but are also functionally
different.

Functional Links between Genomic and
Transcriptomic Candidate Genes
The excess of candidate SNPs in known regulatory regions
suggests that the dietary adaptation has been at least partly
mediated by regulatory changes, consistent with previously
reported differences in gene expression patterns between the
Selected and Control populations (Erkosar et al. 2017). Those
gene expression (RNAseq) data were obtained after �190
generations of experimental evolution, that is, �40 genera-
tions after the whole genome sequence data. The divergence
between Selected and Control populations likely increased
somewhat during these additional 40 generations of evolu-
tion, but as the selection regimes remained constant, major
shifts in the identity of diverged genes are unlikely, justifying a
comparison between the two data sets.

To explore the degree to which gene expression differences
between Selected and Control populations may have been
cis-regulatory, we assessed the overlap between genes identi-
fied as differentially expressed by Erkosar et al. (2017) and
genes to which candidate SNPs from this study were anno-
tated. We found 102 such candidate genes showing both SNP
and expression differentiation, located in 46 of the 131 linked
SNP clusters defined above, spread among all chromosomal
arms (supplementary fig. S4, Supplementary Material online).
Although this overlap between the SNP and expression can-
didate genes is not greater than expected by chance (P¼ 0.33,
Super Exact Test), these candidates include numerous genes
involved in insulin signaling and lipid metabolism already
mentioned in the previous section: foxo, Ilp6, dock, Acsl,
Lpin, Lsd-2, dob, pdgy; all are downregulated in the Selected
populations except for dock—which is a negative regulator of
insulin signaling. It also includes fiz, a putative ecdysone ox-
idase with natural variants that affect larval growth (Glaser-
Schmitt and Parsch 2018), which is strongly downregulated in
Selected populations and has several candidate SNPs closely
upstream from the coding region. Thus, although the list of
potential candidates for cis-regulatory evolution is short, it
includes a number of genes whose function is highly relevant
to response to nutrition.

To explore potential functional links between genomic
and expression candidates, and to see to what degree the
different candidate genes interact physically, we constructed
networks of candidate genes based on the existence of known
interactions between them (based on the DroID database [Yu
et al. 2008; Murali et al. 2011]). The combined set of all ge-
nomic and transcriptomic candidate genes was characterized
by 2.3 pairwise interactions per gene on average,�40% more
than expected based on a randomly drawn set of genes of the
same size (P¼ 0.011). Almost all genes in this set formed a
single interconnected network (supplementary fig. S5 and
supplementary table S5, Supplementary Material online),
which is particularly notable for the high number of edges
converging on several micro-RNA genes (in green). This
includes miR-92a, linked to the control of metabolism
(Chen and Rosbash 2017), and miR-92b, implicated in larval
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locomotion (Chen et al. 2012). Even though micro-RNAs tend
to have higher number of known interactions, the number of
interactions of our candidate micro-RNAs with other candi-
date genes is in excess of what would be expected at random
(P¼ 0.026). We explore some specific links between genes
with candidate SNPs and genes that differ in expression in
the Discussion.

Shared Candidates for Tolerance to Larval
Malnutrition Tolerance and Adult Starvation
In the Introduction, we hypothesized that adaptation to
chronic juvenile malnutrition would rely on different mech-
anisms than resistance to acute adult starvation—not only is
a different life stage concerned but also the type of adaptation
that can be expected differ. To address this hypothesis, we
assessed the overlap between our candidate genes and can-
didate genes identified in two experimental evolution studies
of adult starvation resistance (Hardy et al. 2018; Michalak
et al. 2019). We found that 70 (9%) of our candidate genes
were also identified as candidates in at least one of those two
studies; the shared genes constituted 10% of candidate genes
found by Hardy et al. (2018) and 16% of those found by
Michalak et al. (2019), roughly three times more than
expected by chance (fig. 5A; supplementary table S6,
Supplementary Material online). Because all these studies
likely missed some relevant genes, and it suffices for a “true”
candidate to be a false negative in one of them to be excluded
from the overlap, the above numbers likely underestimate the
true degree to which the evolutionary response in those stud-
ies involved shared genes. For comparison, only 53 candidate
genes were shared between Hardy et al. (2018) and Michalak
et al. (2019) (14% and 19% of each other’s pool of candidates),
even though both selected for the same trait using similar
protocols (supplementary table S6, Supplementary Material
online). Thus, these results suggest that, contrary to our pre-
diction, evolutionary adaptation to chronic larval malnutri-
tion acted in part on the same genes as the response to
selection for adult starvation resistance.

Populations Adapted to Larval Malnutrition Are Less
Resistant to Adult Starvation
The overlap of candidate genes between our study and those
of Hardy et al. (2018) and Michalak et al. (2019) suggested
that adaptation to chronic larval malnutrition shared to some
degree genetic architecture, and thus physiological mecha-
nisms, with resistance to acute adult starvation. If so, our
Selected populations should show improved adult starvation
resistance compared with Controls. To test this prediction,
we quantified starvation resistance of males and females, both
when raised on standard and poor diet. Contrary to the pre-
diction, Selected flies showed a lower starvation resistance
(died sooner when deprived of food) than Control flies
(fig. 5B; F1,15.0 ¼ 74.5, P< 0.0001). This held for both sexes
(all interactions involving sex P> 0.5). The difference was
greater in magnitude in flies raised on the poor diet (regime
� diet interaction F1,13.2 ¼ 9.1, P¼ 0.0099); the Selected flies
died �10 h (14%) earlier than Controls when raised on the

standard diet (t17 ¼ 4.6, P¼ 0.0003) and �20 h (27%) earlier
when raised on the poor diet (t17 ¼ 7.5, P< 0.0001).

These results suggest that experimental evolution of im-
proved tolerance to larval malnutrition traded off with poorer
resistance to adult starvation. This may suggest that the over-
lap of candidate genes for adaptation to larval malnutrition
versus adult starvation reflects antagonistic phenotypic
changes favored by selection driven by these two types of
nutritional stress.

Discussion

Adaptation to Chronic Malnutrition Is Highly
Polygenic and Mainly Regulatory
Our results imply that experimental adaptation to an ex-
tremely nutrient-poor larval diet was highly polygenic. We
identified >3,000 candidate SNPs, spread across the genome
and annotated to >700 genes, that were significantly diver-
gent in allele frequency between the poor diet-adapted
Selected populations and the Controls evolved on a standard
diet. Many of those candidate SNPs formed linked clusters
with highly correlated allele frequencies, as observed in other
evolve and resequencing studies (Franssen et al. 2017; Barghi
and Schlötterer 2019; Kelly and Hughes 2019; Michalak et al.
2019). This indicates that most candidate SNPs were not
targets of selection but diverged by genetic hitchhiking.
Nonetheless, we identified 131 clusters of candidate SNPs
that appeared to evolve independently from one another,
suggesting at least as many different targets of selection.
These clusters were spread across all chromosomal arms, in-
cluding several small and two large clusters on the X chro-
mosome. This corroborates previous results from line cross
analyses, which indicated large contributions of the X chro-
mosome to improved performance of Selected populations
on the poor diet (Vijendravarma and Kawecki 2013, 2015).
The polygenic response to selection is consistent with adap-
tation to poor diet impinging upon many aspects of physiol-
ogy, behavior, life history and possibly even morphology (see
below).

Genetic hitchhiking makes it inherently difficult to identify
the causative genomic targets of selection (Nuzhdin and
Turner 2013). Therefore, following most other studies
(Michalak et al. 2017; Hardy et al. 2018; Hoedjes et al. 2019;
Kelly and Hughes 2019), we did not attempt to separate the
putative target SNPs from the putative hitchhikers but used
all candidates in the downstream analysis. The fact that we
find consistent enrichment of certain functional categories of
genes, greater connectivity between candidates than
expected by chance, and overlap of candidate genes with
other studies of nutritional adaptation implies that the ratio
of the signal of adaptation to the noise of hitchhiking is suf-
ficient to make biologically interesting conclusions, as dis-
cussed below. Furthermore, hitchhiking of nontarget alleles
is a relevant factor of correlated responses to selection
(Falconer and Mackay 1996) and thus an important mediator
of evolutionary trade-offs (Lande 1982; Sinervo and Svensson
1998). Finally, such closely linked clusters may represent dis-
tinct haplotypes consisting of multiple co-adapted variants.
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For example, the cluster of candidate SNPs centered at chro-
mosomal position X: 14,900,000 and spanning 350 kb,
includes several candidate genes with roles in ecdysone and
lipid metabolism (Eo and its paralogs, pdgy, Lsd-2 and dob).
The center of this cluster corresponds to a region that has
been subject to a selective sweep during the out-of-Africa
expansion of D. melanogaster and contains multiple genetic
variants unique to temperate populations (Werzner et al.
2013), suggesting it might have acted as a “supergene” in
adaptation to the new conditions.

Patterns of Allele Frequencies Hint at Balancing
Selection at Some Loci
We expected that, after 150 generations of selection, alleles
mediating adaptation to the poor diet would reach high fre-
quencies in the Selected populations. This was indeed the case
for many of the candidate SNPs. However, we also detected a
substantial number of candidate SNPs that were characterized
by intermediate allele frequencies in all Selected populations
(the “mid-frequency” candidates). Such a pattern could be
generated under at least three evolutionary scenarios.

First, these SNPs might represent incomplete selective
sweeps in the Selected populations. If so, the fact that they
have not reached fixation after 150 generations would imply
weak selection and/or low initial frequencies of the “selected”
allele.

Second, initially neutral alleles might have segregated at
intermediate frequencies in the base population and later in-
creased under directional selection in the Control populations
whereas remaining neutrally polymorphic in the Selected pop-
ulations. Although the Control populations were maintained
on the same diet as the base population, we cannot rule out
that the base population had not yet completely exhausted
additive variation for fitness on that diet. Furthermore, to
synchronize the generations of Control and Selected

populations despite a difference in developmental time on
the two diets, the Control populations reproduced at a slightly
older age than Selected populations (�9 vs. 6 days since eclo-
sion on average) (Kolss et al. 2009). Although this is well within
the flies’ period of maximum reproduction, it might nonethe-
less have resulted in some selection on delayed reproduction
in the Control populations.

Third, stable intermediate allele frequencies may be main-
tained by balancing selection. Evidence for balancing selection
during experimental evolution is relatively scarce (e.g.,
Skrzynecka and Radwan 2016; Michalak et al. 2017) and the
underlying evolutionary mechanisms remain elusive. However,
several previous studies suggested that high degree of compe-
tition due larval crowding induces negatively frequency-
dependent selection, possibly mediated by a trade-off between
fast resource acquisition and tolerance to accumulation of
metabolic waste products (Kojima and Huang 1972;
Gromko and Richmond 1978; Borash et al. 1998). Although
larval density experienced by the Selected populations was
low, the larvae likely experienced resource competition and
deteriorating environmental conditions. In contrast to the two
above scenarios, balancing selection would act to reduce var-
iation among replicate populations. Consistent with this,
among-population variance in allele frequencies at candidate
SNPs with intermediate allele frequencies was smaller in the
Selected than in the Controls. Together with positive values of
Tajima’s D (which indicate an excess of intermediate frequency
alleles) observed in the Selected populations at the corre-
sponding genomic regions, this provides indirect support for
some role of balancing selection in adaptation to the poor diet.

Genomic Differentiation Is Associated with Diverse
Phenotypic Adaptations
One aspect of the evolutionary adaptation of the Selected
populations to the poor diet is an improved ability to extract

A B

FIG. 5. Candidate genes shared with starvation resistance experiments, but reduced starvation resistance in Selected populations. (A) Observed
(black bars) and expected (gray bars) overlap of candidate genes between this study (TS) and two studies of selection for starvation resistance,
Hardy et al. (2018) (H) and Michalak et al. (2017) (M). Asterisks indicate significantly larger overlap (P< 0.001) than expected by chance. (B)
Starvation resistance of female and male adult flies from the Selected (red) and Control (blue) populations. Starvation resistance was quantified as
time to death on nonnutritional agar, and was assessed in 1-day old flies raised either on standard or poor diet. Each point shows the mean of a
specific replicate population; the black diamond is the overall regime mean.
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and assimilate nutrients (notably amino-acids and other ni-
trogenous compounds; Cavigliasso et al. 2020). This has pre-
sumably been mediated at least in part by changes in
expression of digestive proteases and a higher proteolytic ac-
tivity in the guts of the Selected larvae (Erkosar et al. 2017).
Yet, although several candidate SNPs were annotated to up-
stream regions of digestive enzymes (notably to Jon66Cii,
which is also overexpressed in the guts of Selected larvae;
[Erkosar et al. 2017]), overall the candidate SNPs show no
sign of enrichment in genes involved in digestion.

Rather, the genomic differentiation points to wide-ranging
changes in metabolism. This includes an enrichment of can-
didate SNPs associated with lipid and carbohydrate metabo-
lism. An earlier gene expression study likewise revealed a
strong signal of changes in lipid metabolism in these popu-
lations, with many genes showing a reduced expression in
Selected larvae relative to Controls (Erkosar et al. 2017). In
particular, a majority of enzymes directly involved in convert-
ing dietary carbohydrates and fatty acids into triglycerides,
their storage in lipid droplets and their mobilization (Heier
and Kühnlein 2018) show reduced expression in Selected
populations and several are also associated with candidate
SNPs (fig. 6). The main transcription factor promoting triglyc-
eride synthesis (SREBP) is likewise downregulated while its key
activator (SCAP) carries a nonsynonymous candidate SNP.
These genomic and transcriptomic results are consistent
with the finding that the Selected larvae assimilate less car-
bohydrates and accumulate less triglycerides than Controls
(Cavigliasso et al. 2020). This implies that adaptation of the
Selected populations to the poor diet not only targeted nu-
trient acquisition, but also the way the meager nutrients are
used.

Analysis of candidate SNPs also indicates a major role of
hormonal regulation in the evolutionary differentiation be-
tween the Selected and Control populations. This includes
cellular response to insulin signaling, which regulates growth
in response to nutritional status of the organism. We have
previously reported that, when raised on the poor diet, the
Selected larvae show a lower expression of foxo and many of
its target genes than Controls (Erkosar et al. 2017). Combining
of the expression data from that study with our SNP data
suggests involvement of other components of the insulin
signaling pathway (fig. 7). Interestingly, although some core
members of the pathway tend to be downregulated, several
negative regulators are upregulated in the Selected popula-
tions. Overall, the changes in insulin signaling appear complex
and not interpretable at this stage as a general upregulation
or general downregulation of the signaling. Interestingly, with
the exception of the fat-body expressed ilp6, neither genomic
nor transcriptomic data point to changes in the upstream
part of insulin signaling. We also did not find any evidence
that the TOR signaling pathway has been a target of adapta-
tion to low nutrient level, despite its key role in regulating the
physiological response to nutrients (Templeman and Murphy
2018). This suggests that the experimental adaptation to
chronic larval malnutrition modulated the response to the
perceived physiological nutrient level, but not nutrient sens-
ing itself.

We also found a strong signal of genomic changes in
ecdysteroid signaling, which regulates molt and metamor-
phosis. In particular, several genes with known or predicted
ecdysone oxidase activity show multiple associated candidate
SNPs (including several nonsynonymous substitutions) and/
or strongly reduced expression. The reaction catalyzed by
ecdysone oxidases inactivates ecdysone; thus, lower ecdysone
oxidase activity might lead to a faster rise in ecdysone. This
finding dovetails with the lower critical weight for metamor-
phosis initiation and shorter development (independent of
diet) evolved by the Selected larvae (Vijendravarma et al.
2012a).

The list of GO terms enriched among candidate genes
includes a category specific to nervous system: a group of
glutamate receptors involved in neuromuscular junctions in
the larval body wall, including GluRIIA, which mediates loco-
motor responses to nutrient shortage in the larvae. The can-
didates also include multiple genes implicated in larval
neuromuscular development, including several genes of the
Beat family (Li et al. 2017) and the micro-RNA miR-92b; de-
letion of the latter causes larvae to be sluggish (Chen et al.
2012). Changes in these genes might have contributed to the
reduced locomotion of Selected larvae while foraging
(Vijendravarma et al. 2012b) and their reduced tendency
for tunneling prior to pupation (Narasimha et al. 2015).
Both might have been favored on the poor diet to save
energy.

Finally, the genomic candidates are enriched in genes in-
volved in the adhesion of pupae to surfaces: two salivary gland
glue proteins and a protein involved in their secretion. While
this may seem idiosyncratic, anecdotical observations suggest
that the Selected populations tend to pupate more often
close to the surface of the food medium. This strategy may
have evolved to save scarce protein. This example underlines
the general finding of this study that adaptation to nutrient
shortage impinges on manifold and sometimes unexpected
aspects of phenotype.

Adaptation to Extreme Malnutrition Targets Some of
the Same Genes as Mild Variation in Nutrition
Hoedjes et al. (2019) have recently analyzed genomic differ-
entiation between D. melanogaster populations evolved on
larval diets of different nutrient content. However, the range
of concentrations of yeast (the main source of most
nutrients) used in that study (250, 100, and 25 g/l) was above
those on which not only our Selected populations, but even
our Controls evolved (respectively 3.2 and 12.5 g/l). The dif-
ference in the nutritional conditions used in the two studies is
also reflected in the egg-to-adult developmental time, which
is 11 days on average on the poorest diet used by Hoedjes
et al. (2019) and May et al. (2019) and 14–18 days on our poor
diet (Kolss et al. 2009). In spite of the milder nutritional
conditions and a different founder population in their exper-
iment, 132 (17%) of genes associated with our candidates
were also found by Hoedjes et al. (2019), many more than
expected by chance. This suggests that at least some aspects
of adaptation to the extremely poor larval diet involves in
part the same genes that mediate evolutionary response to
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nutritional conditions well within the normal physiological
tolerance of the species.

Shared Genetic Architecture Points to Trade-off, Not
Synergy in Resistance to Different Types of Nutritional
Stress
A major question we asked concerned the relationship be-
tween adaptation to chronic larval malnutrition and resis-
tance of adult flies to starvation. As argued in the
Introduction, the two main strategies mediating starvation
resistance—accumulation of energy reserves and minimizing
energy demands while food-deprived (Rion and Kawecki
2007)—are unlikely to be effective for juveniles facing poor
quality diet from birth until maturation. We therefore hy-
pothesized that adaptation to these two types of nutritional
stress will largely rely on different genes and molecular mech-
anisms. Against this expectation, we found a substantial over-
lap between our genes associated with our candidate SNPs
and candidate genes from two genomic studies of starvation
resistance (Hardy et al. 2018; Michalak et al. 2019), suggesting

at first sight a shared genetic bases, and thus common mo-
lecular and physiological mechanisms.

However, despite being more tolerant to larval nutrient
shortage (Kolss et al. 2009; Erkosar et al. 2017), our Selected
populations turned out to be less resistant to adult starvation
than the unselected Control populations. Strikingly, the infe-
riority of Selected populations to Controls in starvation resis-
tance was greater when the flies were raised on poor diet,
even though the Selected populations are adapted to this diet
and Controls are not. This suggest that the lower adult star-
vation resistance is at least in part a direct consequence of
changes in larval development and metabolism that mediate
the adaptation of the Selected populations to larval malnu-
trition, but which affect the phenotype of the emerging adult.
In particular, Selected larvae approach pupation with lower
lipid stores (Cavigliasso et al. 2020), which could directly im-
pact the amount of metabolic reserves of the emerging adults.
However, it is also possible that changes in metabolic genes
mediating the larval adaptation also impinge on the regula-
tion of metabolic processes in adult flies. Although the main

FIG. 6. Signature of genomic and gene expression changes in genes involved in triglyceride (TAG) storage and mobilization. Green outline: genes
with associated candidate SNPs; blue: genes downregulated in Selected larvae relative to Controls (data from Erkosar et al. 2017); no genes are
upregulated. Pathway redrawn with modifications from Heier and Kühnlein (2018); FA, fatty acid; G3P, glycerol-3-phosphate; LPA, lysophospha-
tidic acid; PA, phosphatidic acid; DAG, diacylglycerol.
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functions of the metabolism of the larvae and adults are
different (growth and accumulation of reserves versus con-
version of food into locomotion and reproduction), they are
largely regulated by the same genes (Murillo-Maldonado and
Riesgo-Escovar 2017). Such nonindependence of juvenile and
adult metabolism had been proposed to contribute to met-
abolic disease in humans (Prentice 2005; Wells 2007; Vasseur
and Quintana-Murci 2013). This idea is consistent with a
strong signal of implication of our candidate genes in cata-
bolic processes; whereas the amount of energy reserves obvi-
ously important for starvation resistance, it is the efficiency of
the catabolic processes that will determine how long the
animal can survive on those reserves (Rion and Kawecki
2007).

It has been hypothesized that resistance to different
types of environmental stresses may be mediated in large
part by the same physiological mechanisms and be posi-
tively genetically correlated (Hoffmann and Parsons 1993;
Djawdan et al. 1998; Bubliy and Loeschcke 2005; Sisodia
and Singh 2010). Our results demonstrate that this is not
the case even for two types of nutrient shortage, chronic
juvenile malnutrition and acute adult starvation. Even
though evolutionary responses to these two types of nu-
tritional stress implicate in part the same molecular and
physiological processes, they apparently modify them in
antagonistic directions. Thus, despite common theme of
nutrient shortage and the shared genetic architecture, tol-
erance to larval malnutrition and to adult starvation are
bound by an evolutionary trade-off.

Materials and Methods

Experimental Populations
The experimental populations analyzed here originate from
an evolution experiment on adaptation to low-nutrient larval
diet initiated in 2005. Originally, a base population was de-
rived from several hundred D. melanogaster adults collected
close to Basel/Switzerland in 1999. Four populations derived
from these founders were maintained under standard labo-
ratory conditions at census sizes of>200 individuals for>120
generations, allowing them to adapt to the lab conditions.
Before the start of the experimental evolution, the four pop-
ulations were mixed and bred for seven generations at a
census size of >1000 individuals to allow recombination to
break up large haplotypes in the artificial populations. The
evolution experiment was initiated in 2004: six Selected and
six Control populations were derived from this base popula-
tion and maintained ever since at constant laboratory con-
ditions (25 �C; 60% humidity) and controlled larval densities
(�200 eggs per fly vial) on poor and standard larval diet,
respectively. The standard diet consists of 15 g agar, 30 g su-
crose, 60 g glucose, 12.5 g dry yeast, 50 g cornmeal, 0.5 g
MgSO4, 0.5 g CaCl2, 30 ml ethanol, 6 ml propionic acid, and
1 g nipagin per 1 l water; the poor diet contains a quarter of
the amounts of sugars, yeast, and cornmeal of the standard
medium. Under both regimes, adults were transferred to
standard diet with supplemental yeast to facilitate oviposition
at every generation; the nutritional restriction was thus lim-
ited to the larval stage (Kolss et al. 2009).

FIG. 7. Signature of genomic and expression changes in the insulin signaling pathway. Gene network based on known interactions of genes from the
Insulin signaling network obtained from FlyBase. Genes with associated candidate SNPs have a green outline; transcriptomic candidates are
highlighted if down (blue) or upregulated (red) in Selected larvae relative to Controls (data from Erkosar et al. 2017). Symbol shape indicates the
role of gene the gene in the pathway (core component, negative regulator, positive regulator), based on information from FlyBase.
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In addition to laboratory natural selection to chronic larval
malnutrition we further selected against delayed develop-
ment, which is a common correlated phenotypic response
to malnutrition and has similarly been observed in this selec-
tion experiment (Kolss et al. 2009). Long development times
may be highly maladaptive in nature given that rotting fruit,
which represent the natural substrate for developing larvae,
decay rapidly and are thus only available for a limited amount
of time. We therefore chose flies that developed within
14 days from egg to adult to contribute to the next genera-
tion for both regimes. Flies were then maintained for another
six days on standard diet before the next generation was
initiated.

DNA Extractions and Genome Sequencing
Genomic DNA was extracted from whole flies for each of the
six selected and six control populations in 2014, after �150
generations. We pooled 400 females per population and ho-
mogenized them in liquid nitrogen prior to pooled DNA
extractions using the Qiagen Dneasy Blood and Tissue DNA
extraction kit (Qiagen, Hilden, Germany) with modifications
(Kapun et al. 2020). DNA of each sample was sheared in a
Covaris instrument. Sample-wise library preparation following
manufacturer’s instructions for paired-end sequencing were
carried out using the Illumina TrueSeq Nano Library kit
(Illumina, San Diego, CA). DNA pools were sequenced in
two multiplexed batches of six samples (three selected and
three control population per batch) each on an Illumina 2500
sequencer at the genomics technologies facility of the
University of Lausanne, yielding paired-end sequences of
100 bp lengths.

Mapping Pipeline and Variant Calling
Raw FASTQ reads from all libraries were trimmed and filtered
using cutadapt (v.1.8.3; Martin 2011) to remove low-quality
bases (minimum base PHRED quality ¼ 18; minimum se-
quence length ¼ 75 bp) and Illumina-specific sequencing
adaptors. We only retained read pairs where both reads
fulfilled all quality criteria and mapped these against a com-
pound reference consisting of the genomes from
D. melanogaster (v.6.04) and common commensals and
pathogens, such as Saccharomyces cerevisiae
(GCF_000146045.2), Wolbachia pipientis (NC_002978.6),
Pseudomonas entomophila (NC_008027.1), Commensali-
bacter intestine (NZ_AGFR00000000.1), Acetobacter pomo-
rum (NZ_AEUP00000000.1), Gluconobacter morbifer
(NZ_AGQV00000000.1), Providencia burhodogranariea
(NZ_AKKL00000000.1), Providencia alcalifaciens
(NZ_AKKM01000049.1), Providencia rettgeri
(NZ_AJSB00000000.1), Enterococcus faecalis (NC_004668.1),
Lactobacillus brevis (NC_008497.1), and Lactobacillus planta-
rum (NC_004567.2) using bwa mem (v.0.7.15; Li 2013) with
default parameters. After that, we removed read duplicates
and reads with mapping qualities < 20 using Picard (v.1.109;
http://broadinstitute.github.io/picard/, last accessed March
11, 2021) and re-aligned sequences flanking indels with
GATK (v.3.4-46; McKenna et al. 2010). We then used samtools

mpileup (v.1.3; Li and Durbin 2009) to merge quality filtered
BAM files from all samples and performed heuristic SNP call-
ing on the mpileup file based the following parameters using
PoolSNP (Kapun et al. 2020): 1) minimum coverage from all
samples � 10�, 2) maximum coverage from all samples �
the 95th coverage percentile for a given chromosome and
sample, 3) minimum read count for a given allele� 20�, and
4) minimum read frequency of a given allele� 0.01 across all
samples pooled. We further excluded positions where� 20%
of all samples did not fulfill the minimum and maximum
coverage thresholds, which overlapped with indel polymor-
phisms or were located within 5 bp distance or which were
spanned by known transposable elements (TE) based on the
D. melanogaster TE library v.6.10.

All sequenced libraries were of high quality with average
raw PHRED-scaled base qualities exceeding 28 in all samples.
Our mapping pipeline with stringent quality filtering resulted
in similar coverages across all major chromosomal arms and
yielded sample-wise average read depths ranging between
30� and 46� (see supplementary table S1, Supplementary
Material online).

Multivariate Analyses of SNP Frequencies
We performed a principal component analysis in SAS v. 9.4
on allele frequencies of 976,247 SNPs which fulfilled the cov-
erage threshold criteria in all twelve replicate samples; be-
cause allele frequencies are already measured on the same
scale, this was done on the covariance rather than correlation
matrix. To test for separation between the evolutionary
regimes we compared their scores on the principal compo-
nent axis with Welch’s t-test.

Population Genetic Analyses
To characterize the extent and distribution of genetic varia-
tion in each sample, we estimated the population genetics
statistics p, Watterson’s h and Tajima’s D focusing on SNPs
located on the six major chromosomal arms (X, 2L, 2R, 3L, 3R,
and 4). Prior to calculations, we homogenized all sequencing
data to an even 30-fold coverage to control for the coverage
sensitivity of Watterson’s h and Tajima’s D. Sites with cover-
ages >30-fold were randomly subsampled without replace-
ment. In contrast, we thirty times randomly sampled reads
with replacement for sites where sequencing depths were
below the target coverage (Kofler et al. 2011; Kapun et al.
2020). For each statistic, we calculated genome-wide and
window-wise averages in sliding windows of 200 kb length
with 200 kb step-size with PoolGen (Kapun et al. 2020), which
employs statistical corrections for population genetics esti-
mators as described in Kofler et al. (2011). These corrections
account for sampling biases and sequencing errors as a result
of pooled resequencing (Futschik and Schlötterer 2010).

We estimated the effective population sizes (Ne) of the
Selected and Control populations based on among-
populations variance in allele frequencies at putatively neutral
SNPs. Under drift, the expected variance in allele frequencies
at a SNP locus among replicate populations as estimated
from Pool-seq data is
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Var pð Þ ¼ p0 1� p0ð Þ 1� 1� Cð Þ 1

2Ne

� �t� �
;

where p0 is the initial allele frequency, t¼ 150 is the number
of generations since the populations were established from a
common base, and C is a correction factor to account for
variance due to genetic drift and sequencing (Jonas et al.
2016). Estimating p0, Var(p) and C and solving the equation
yields a SNP-specific estimate of Ne. Following J�on�as et al.
(2016), for each population j we first calculated Cj ¼ 1/2S
þ 1/Rj þ 1/(SRj) where Rj is the number of reads used to
estimate the allele frequency (i.e., the read depth) of popula-
tion j, and S is the number of individuals included in the
pooled sample (400 for all populations). C for a given SNP
was then calculated as the arithmetic mean of Cj across pop-
ulations (C is thus a function of harmonic mean of read depth
across populations). Because sequence data from the initial
base population were not available, the initial frequency p0 for
each SNP was estimated as the average frequency of this SNP
across all 12 populations at time t (Hardy et al. 2018). Because
we wanted to compare Ne estimates between the evolution-
ary regimes, we obtained separate estimates of allele fre-
quency variance for the Selected populations as

cVarSEL pð Þ ¼
P

j2SEL ðpj � p0Þ2

n� 0:5
;

where n¼ 6 is the number of replicate populations per re-
gime; an analogous equation was used to obtain cVarCTL pð Þ
for the Control populations. The subtraction of 0.5 from the
denominator reflects the estimation of p0 using one degree of
freedom, half of it contributed by data from each regime.
(Note that the average of cVarSEL pð Þ and cVarCTL pð Þ equals
the variance of pj across all 12 populations.)

We applied the above approach to SNPs that were in short
introns (<60 bp length), and thus thought to be neutral
(Parsch et al. 2010; Clemente and Vogl 2012). Of those, we
only used SNPs with minimum coverage of 10 in each pop-
ulation and mean allele frequencies between 0.4 and 0.6 (724
SNPs on chromosomes 2 and 3, 103 SNPs on the X); Ne

estimates based on SNPs with asymmetric mean allele fre-
quency tend to be biased upward (Hardy et al. 2018). For each
of these SNPs, we obtained a separate Ne estimate for the
Selected and Control populations; we took the median of
these values (separately for the autosomes and the X) as
our final estimates. The significance of differences in Ne esti-
mates between regimes was assessed by randomization. We
generated 100 data sets by dividing the 12 populations at
random in two groups each consisting of three Control and
three Selected populations. We then estimated Ne for the two
groups for each of these randomized data and used the dis-
tribution of pairwise differences of these estimates as a null
distribution to which we compared the difference of Ne esti-
mates between Selected and Control populations.

Detecting Candidate SNPs
Although some recent evolve and resequence studies took
advantage of temporal trajectories of alleles from the

beginning of experimental evolution, such data are not avail-
able for our populations, limiting us to the analysis based on
the comparison of allele frequencies between sets of popula-
tions exposed to different regimes. Because the expected dis-
tribution of SNP allele frequencies under a combination of
selection and drift does not correspond to the assumptions of
any classic statistical tests, a range of heuristic statistical
approaches has been used to identify putative candidate
SNPs in this type of data. Some studies employed approaches
that emphasize the consistency of allele frequency differenti-
ation among replicate populations, such as the “diffstat” sta-
tistics (Turner et al. 2011) or GLMM (e.g., Jha et al. 2015) or a
general linear model (e.g., Hoedjes et al. 2019). Other studies
relied on test that emphasize the mean difference in allele
frequency and are insensitive to heterogeneity among repli-
cates, such as Fisher’s exact test on pooled replicate popula-
tions (e.g., Burke et al. 2010) or Cochran–Mantel–Haenszel
(CMH) test (e.g., Orozco-terWengel et al. 2012; Michalak et al.
2019). (It should be noted that even though the CMH test
uses stratified data [e.g., pairs of populations], it assumes that
the odds ratios are homogenous across strata and the value of
the CMH statistics is little affected by heterogeneity [Wiberg
et al. 2017].) This second approach is justified because an
initially rare SNP allele is likely to become lost from some
replicate populations due to drift even if it has a strong se-
lective advantage. This will generate a highly heterogenous
pattern where the allele is at high frequency in most selected
populations but absent in one or a few; this pattern can be
detected by an approach that is insensitive to heterogeneity,
as we demonstrate in this article.

We employed a two-pronged approach to detect adaptive
alleles showing either of the above patterns. 1) We used SNP-
wise FET, which targeted SNPs that were on average strongly
differentiated between the regime groups, but not necessarily
consistent across replicate populations (Remolina et al. 2012).
To equalize contribution of each population we subsampled
each SNP position to a 30-fold coverage in each library as
described above and then we pooled SNP allele counts from
all populations within each regime. The resulting 2� 2 con-
tingency tables were tested with FET in R for each SNP sep-
arately. 2) Independently, we fitted SNP-wise GLMM with a
binomial error structure to allele counts without subsam-
pling, which detect SNPs that might have only moderately
diverged in frequency between the regimes, but in a way that
is consistent among the replicate populations. We used the
glmer function of the R package lme4 (Bates et al. 2015) to
calculate GLMMs of the form: yi ¼ Regime þ
Population(Regime) þ?i, where yi is the allele frequency of
the ith SNP, Regime (control vs. selected) is a fixed factor,
Population is a random factor for replicate populations nested
within Regime (to account for overdispersion) and ?i denotes
a binomial error term. We tested for significant effects of the
evolutionary regime by comparing the full model to a re-
duced model without the fixed effect by means of likelihood
ratio tests using the R function anova.

As has been noted previously, FET applied to pooled data
results in a large excess of small P-values (Turner et al. 2011),
and even for GLMM the null distribution of P-values is not
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uniform (Jha et al. 2016), that is, there are not true P-values,
but rather should be treated as statistics with an a piori un-
known distribution. To account for this, we followed the ap-
proach of Jha et al. (2015): We estimated FDR by comparing
the distribution of P-values obtained in each of the two
above-mentioned statistical tests with a corresponding em-
pirically estimated null distribution. To generate these null
distributions of P-values, we permuted the input data by
randomly assigning three Selected and three Control samples
to each of two treatment groups and performed the FET and
GLMM as described above. This was done on five indepen-
dently permuted data sets. From these permutations we cal-
culated, for any cutoff value of bP, the expected (null)
cumulative distribution function CDFE(bP) as the proportion
of P-values � bP (averaged over the five permutations). The
observed cumulative distribution function CDFO(bP) was anal-
ogously defined for the original (nonpermuted) data. FDR (i.e.,
the adjusted P-value) corresponding to a given raw P-value P
was then estimated as

q Pð Þ ¼ minbP�P

CDFEðbPÞ
CDFOðbPÞ
 !

:

Because the null distributions of raw P-values were differ-
ent between the two tests, we performed this procedure
separately for the FET and GLMM. Sites with q� 0.05 in at
least one of the two tests were considered significant. Prior to
all subsequent analyses, we further filtered the resulting can-
didate SNP data set by removing those where average allele
frequency difference between Selected and Control popula-
tions was smaller than an arbitrary threshold of 0.3. This re-
moved 101 SNPs detected by GLMM, that had very uniform
allele frequencies across replicate populations, not expected
after 150 generations at a rather small population size. Even if
these SNPs were under selection, the small difference in mean
allele frequency despite 150 generations of selection would
imply a very small selection coefficient.

Association among Candidate SNPs and Genes and
the Impact of Variable Recombination Rates
To assess the extent of linkage disequilibrium resulting in
nonindependent evolution of linked SNPs we calculated
within-regime correlations between allele frequencies at dif-
ferent candidate SNPs. To this end, we first expressed allele
frequencies as deviations from the regime means (residuals),
thus removing the component of covariance which is due to
evolution under the same selection regime. Then we calcu-
lated pairwise correlations of these frequency deviations be-
tween all pairs of SNPs on the same chromosomal arm across
all 12 populations. The fact that allele frequencies at two
neighboring SNPs have highly correlated residuals is most
parsimoniously explained by a combination of linkage dis-
equilibrium and drift (including founder effect). These corre-
lations were plotted as a heat map.

Complementary to the analyses of pairwise correlations of
allele frequencies, we investigated and similarly visualized
pairwise recombination rates among candidates. We there-
fore downloaded average recombination rate estimates in

100-kb windows (Comeron et al. 2012) from the Drosophila
recombination rate calculator (https://petrov.stanford.edu/
cgi-bin/recombination-rates_updateR5.pl, last accessed
March 11, 2021). Then, we converted genomic positions to
match the Drosophila reference v.6 coordinates and calcu-
lated approximate pairwise recombination probabilities by
summing site-specific recombination rate estimates between
candidate SNPs on the same chromosomal arm.

Functional Characterization of Candidate SNPs
Based on the Ensembl genome annotation (v. BDGP6.82) we
used SNPeff (v.4.2; Cingolani et al. 2012) with standard param-
eters to annotate the total SNP data set for genomic features
and to predict genetic effects. We further identified SNPs
located in regulatory elements using information for cis-
regulatory modules (CRMs) and transcription factor binding
sites (TFBS) from the REDfly database (v.5.2.2; Gallo et al.
2006). We employed Fisher’s exact test s with Bonferroni
correction (corrected a ¼0.006) to test whether SNPs map-
ping to different genomic features were under or overrepre-
sented among candidate data sets relative to all other
polymorphic sites.

Using Gowinda (Kofler and Schlötterer 2012), which per-
forms permutation tests based on randomly drawn SNPs
without replacement, we further tested for enrichment of
gene ontologies (GO) in all candidates jointly as well as in
candidates for balancing and directional selection separately.
Gowinda allows to control for a spurious overrepresentation
of GO terms composed of long genes, since these have a
higher probability to contain false-positive candidate SNPs
compared with short genes.

We further tested for functional links between our list of
genomic candidates and previously published transcriptomic
data from the same experimental populations (Erkosar et al.
2017). We therefore focused on genes that were previously
identified as candidates for differential expression with re-
spect to selection regime based on limma voom (Law et al.
2014) analyses as described in Erkosar et al. (2017). We used
the R package SuperExactTest (Wang et al. 2015), which esti-
mates predicted intersections among the data sets based on
the size of a common statistical background population. This
background was calculated based on all genes that harbored
polymorphic SNPs in the genomic data sets and that had� 1
count per million in at least six samples of the RNA-Seq data.
We further used information about known interactions
among genes from the DROID database (Yu et al. 2008;
Murali et al. 2011) to identify functional links between can-
didates in the joint genomic and transcriptomic data sets. The
aim of this approach was to trace for allelic changes that may
lead to variation in expression patterns in functionally con-
nected genes, such as transcription factors and their target
genes. To this end, we further used a FlyBase database
(“gene_group_data_fb_2019_02.tsv”) to roughly classify can-
didate genes into 1) transcription factors, 2) enzymes, 3) sig-
naling genes, 4) channel proteins, 5) microRNA’s, and 6)
unclassified genes. We further used a FlyBase genome anno-
tation file (“dmel-all-r6.17.gtf.gz”) to categorize candidates by
gene-length. Based on these classifications, we 1,000 times
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randomly drew noncandidate gene sets from the gene back-
ground that matched in classification and length to the true
candidate lists and counted the number of interactions
among genes within each random gene set. Based on the
distribution of numbers of interactions in the 1,000 random
data sets, we calculated an empirical P-value using the num-
ber of interactions of the true candidate set as our threshold.
Using cytoscape (Shannon et al. 2003), we then visualized the
interaction networks and highlighted the gene classification
by color and the source of each candidate gene (Genomic
and/or Transcriptomic candidate) by the shape of the net-
work edges.

At last, we tested to which extent the complete list of
candidate genes, as well as separately the “mid-frequency”
and “high frequency” subsets, are shared with the studies of
Hardy et al. (2018) and Michalak et al. (2019), which both
investigated the adaptation for starvation resistance during
experimental evolution. For each combination of data sets,
we calculated expected and observed gene overlap and tested
for significance using the R package SuperExactTest as de-
scribed above.

Assay of Starvation Resistance
We measured starvation resistance in flies of the Selected and
Control populations raised as larvae on the standard or the
poor diet. This took place after 219 generations of selection,
followed by three generations on the standard diet to remove
the effect of parental nutritional environment
(Vijendravarma et al. 2010). Flies of both sexes were collected
within 24 h of emergence and transferred in groups of 15 to
vials with 3.3% agarose (three replicates per population and
sex). Dead flies were counted every 8–10 h; flies that died
between two checks were assigned the middle of the interval
as their time to death. Mean time to death was calculated for
each replicate and analyzed as the response variable in a
general mixed model, with regime, diet and sex as fixed fac-
tors, and population (nested in regime) and its interactions
with diet and sex as random factors using the R packages
lme4 (Bates et al. 2015) and emmeans (Lenth et al. 2019). For
populations C2, C4, and S4 only flies raised on standard diet
were assayed; the corresponding poor diet culture bottles did
not provide sufficient numbers of adults.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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