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Organ Donation and Procurement

Background. Early prediction of whether a liver allograft will be utilized for transplantation may allow better resource 
deployment during donor management and improve organ allocation. The national donor management goals (DMG) reg-
istry contains critical care data collected during donor management. We developed a machine learning model to predict 
transplantation of a liver graft based on data from the DMG registry. Methods. Several machine learning classifiers were 
trained to predict transplantation of a liver graft. We utilized 127 variables available in the DMG dataset. We included data 
from potential deceased organ donors between April 2012 and January 2019. The outcome was defined as liver recovery for 
transplantation in the operating room. The prediction was made based on data available 12–18 h after the time of authori-
zation for transplantation. The data were randomly separated into training (60%), validation (20%), and test sets (20%). We 
compared the performance of our models to the Liver Discard Risk Index. Results. Of 13 629 donors in the dataset, 9255 
(68%) livers were recovered and transplanted, 1519 recovered but used for research or discarded, 2855 were not recovered. 
The optimized gradient boosting machine classifier achieved an area under the curve of the receiver operator characteristic 
of 0.84 on the test set, outperforming all other classifiers. Conclusions. This model predicts successful liver recovery 
for transplantation in the operating room, using data available early during donor management. It performs favorably when 
compared to existing models. It may provide real-time decision support during organ donor management and transplant 
logistics.

(Transplantation Direct 2021;7: e771; doi: 10.1097/TXD.0000000000001212. Published online 27 September, 2021.)
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INTRODUCTION

A total of 7841 adult liver transplants were performed in 
2016 in the United States; 7496 (96%) livers were recovered 
from deceased donors. Of those livers recovered for trans-
plant, 9.0% were not transplanted (nonutilization rate).1 
Many factors, both extrahepatic and hepatic, can preclude 
transplantation of a deceased donor liver. Extrahepatic 
causes include technical reasons, malignant tumor, and 
infection of the donor. Hepatic causes include cirrhosis 
or chronic disease, septic or ischemic liver, and steatosis.2 
Several interventions to improve organ quality and organ 
yield have been investigated. The use of machine perfu-
sion has been recently introduced to help with organ pres-
ervation, assessment of organ function ex vivo, supply of 
nutrients, and removal of cellular waste products from the 
donor organ environment. Allocation strategies and surgical 
approach have also been identified as important in decreas-
ing allograft dysfunction by decreasing cold ischemia time 
and warm ischemia time.3 Recent findings also suggest that 
even livers refused by ≥5 surgical teams could be trans-
planted successfully via a rescue allocation processes.4

Methods to accurately predict transplantation of a graft 
could facilitate more timely interventions in the donor, lead to 
modified allocation processes, and possibly lead to increased 
liver recovery for transplantation in the operating room. The 
best and most widely used tool to date to predict success-
ful transplantation of donor liver is the Discard Risk Index 
(DSRI). It uses the last available laboratory values before 
organ recovery, donor demographic information, and donor 
medical history. The risk score was derived from the stand-
ard data set of 109 540 donors, submitted by organ pro-
curement organizations (OPOs) to the Organ Procurement 
and Transplantation Network (OPTN). The DSRI achieved 

an area under the curve of the receiver operating character-
istic  (ROC-AUC) of 0.8 on its test set. It identifies a useful 
set of variables and predicts liver allograft utilization.5,6 The 
Scientific Registry of Transplant Recipients yield calculator, 
another model to predict liver graft utilization, has a ROC-
AUC of 0.78.7 Its coefficients are updated regularly.8 Both 
models utilize donor data and laboratory values collected 
immediately prior to organ procurement.

Donor Management Goals (DMG) are specific physiologic 
targets that guide the bedside management of organ donors 
after brain death (DBDs) and include mean arterial blood 
pressure, urine output, and serum sodium levels9 (Table  1). 
Data on donor physiology are collected during donor man-
agement and uploaded in the DMG web portal.9

We sought to improve on prior attempts to predict utiliza-
tion of liver grafts for transplantation and to do this at an 
earlier time point during donor management/organ allocation 
based on the DMG dataset. Our goal was to develop a machine 
learning model based on the DMG dataset and to accurately 
predict liver recovery for transplantation in the operating 
room at an early time point during donor management. Such 
a model could help with early identification of livers at risk 
for discard, allow timely medical intervention to improve 
organ quality, reallocation to reduce ischemia times, and guide 
appropriate deployment of expensive recovery teams.

MATERIALS AND METHODS

Approval was obtained by the Institutional Review Board 
of the University of California, San Francisco (Institutional 
Review Board no. 10-03188). This study used data from 
the OPTN. The OPTN data system includes data on all 
donor, wait-listed candidates, and transplant recipients in 

TABLE 1.

Categorical variables included in the machine learning models

Demographic Medical history Transplant logistical information DMGs met

Gender History of cancer Donor type DMGs met at each of the following time points
 Female History of diabetes Donation after circulatory death Authorization
 Male History of myocardial infarction Extended criteria donor h
Ethnicitya History of hypertension Extended criteria donor with donation after circulatory death DMG definitions below
 Latino Infectious disease Standard criteria donor Mean arterial pressure between 60–110 mm Hg
 Non-Latino Hepatitis B surface antibody status Unknown Central venous pressure between 4–12 mm Hg
 Unknown Hepatitis B surface antigen status Blood type Ejection fraction ≥50%
Race Hepatitis B core antibody status A One or fewer low-dose vasopressorsb

 Asian HCV antibody B Arterial blood gas pH between 7.3–7.5
 Black CDC high risk for HIV AB Pao

2
:FIO

2
 ratio ≥300

 Native American HIV status O Serum sodium ≤155 mEq/L
 Pacific Islander Date info Cause of death Urine output ≥0.5 mL/kg/h over 4 h
 White Referral on which day of week? Anoxia Glucose ≤180 mg/dL

Miscellaneous

Biopsy performed
Documented intention of donation

 Multiracial Referral on which day of year? Cerebrovascular/stroke
 Referral on last day of month? Head trauma
 Referral on first day of month? CNS tumor
 Referral on last day of quarter? Other, specify
 Referral on first day of quarter? OPO ID
 Referral on last day of year? Hospital ID
 Referral on first day of year? Region ID

aValues are Latino vs non-Latino.
bDefined as dopamine at ≤10 µg/kg/min, neo synephrine at ≤60 µg/min, and norepinephrine at ≤10 µg/min.
Donor management goals were defined according to the United Network for Organ Sharing Region 5 donor management goals10 and modified glucose goal.11

CDC, Centers for Disease Control and Prevention; CNS, central nervous system; DMG, donor management goal; FIO
2
, fraction of inspired oxygen; HCV, hepatitis C virus; OPO, organ procurement 

organization; Pao
2
, Po

2
 in arterial blood.
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the United States, submitted by the members of the (OPTN. 
The Health Resources and Services Administration, US 
Department of Health and Human Services provides 
oversight to the activities of the OPTN contractor. The 
DMG database is managed by United Network for Organ 
Sharing. The dataset was requested by the authors and 
provided in a deidentified manner by United Network for 
Organ Sharing.

Study Population
The DMG dataset contains demographic information, past 

medical history, and physiologic measures at multiple time 
points during donor management and reports whether the 
DMGs have been met at each time point.10 The dataset con-
sists of donor data from 18 individual OPOs from 9 OPTN 
Regions between April 2012 and January 2019. DMG physio-
logic variables are collected at 4 time points: the referral to the 
OPO (after a potentially nonsurvivable neurologic injury has 
been identified); the time of authorization for organ donation; 
12–18 h after authorization (when organ allocation is tak-
ing place10); and the time point immediately before the donor 
enters the operating room (prior to organ recovery). For 
DBDs, the time period from authorization until organ recov-
ery represents the OPO donor management phase of care. 
For donor/donation after circulatory death (DCD), all of the 
time points represent the donor hospital phase of care, when 
critical care unit teams are managing the patient. The registry 
does not contain data of potential DBDs who are never taken 
to the operating room for organ recovery or potential DCDs 
who took longer than the requisite time to expire after with-
drawal of life-sustaining treatment.

Data Collection
The following donor-related variables were obtained from 

the OPTN: age, gender, body mass index (BMI), height, weight, 
race (Asian, Black, Native American, Pacific Islander, White, 
multiracial), ethnicity (Latino, non-Latino, or unknown), 
cause of death, donor type, donor intent documented (yes, 
no, or unknown), ABO blood type, and admission date. Only 
variables collected at time of authorization and 12–18 h after 
authorization (the time of organ allocation), were used in 
the model. Variables collected after 12–18 h after authoriza-
tion (eg, variables collected at the time point prior to organ 
recovery) were excluded. Tables 2 and 3 show the variables 
used at different time points. DMGs were defined according 
to the OPTN Region 5 DMGs10 and modified glucose goal11 
(Table 1).

Data Preprocessing
Data was prepared using the open-source Python package 

pandas. Variables whose missingness co-occurred with those 
cases in which no organs were recovered with a Fisher coef-
ficient >0.1 were removed from the model. This was done to 
prevent that the absence of variables might identify donors 
whose organs were unlikely to be recovered, and therefore not 
transplanted. Biopsy findings were excluded, but information 
on whether a biopsy was performed was retained as a binary 
variable. We excluded data collected at the time of referral 
to the OPO. We did not exclude variables with a high rate of 
missing data from our model. This was done with the goal 
to improve the utility of the model in the use of real-world 
data, which often includes missing data. Also, missingness is 

TABLE 2.

Donor characteristics

 
Liver not 

transplanted
Liver  

transplanted P a

Total number of donors 4374 9255  
Age, y 38.0 (25.0–52.0) 44.0 (29.0–55.0) <0.001
Gender
 Male 5753 (62.2) 2671 (61.1) 0.226
 Female 3502 (37.8) 1703 (38.9)  
Body mass index, kg/m2 26.5 (22.9–30.9) 27.2 (23.2–32.3) <0.001
Weight, kg 78.9 (24.0) 80.4 (28.7) 0.004
Height, cm 170.2 (163.0–178.0) 170.0 (162.6–178.0) <0.001
Race
 Asian 430 (4.6) 208 (4.8) <0.001
 Black 1232 (13.3) 302 (6.9)  
 Multiracial 71 (0.8) 37 (0.8)  
 Native American 33 (0.4) 40 (0.9)  
 Pacific Islander 46 (0.5) 17 (0.4)  
 White 7443 (80.4) 3770 (86.2)  
Cause of death
 Anoxia 3185 (34.4) 1579 (36.1) <0.001
 Cerebrovascular/

stroke
2718 (29.4) 1424 (32.6)  

 Head trauma 3111 (33.6) 1220 (27.9)  
 Other, specify 198 (2.1) 137 (3.1)  
 CNS tumor 43 (0.5) 12 (0.3)  
 Unknown 0 (0.0) 2 (0.0)  
Donor type
 SCD 6993 (75.6) 2175 (49.7) <0.001
 ECD 1767 (19.1) 844 (19.3)  
 ECD/DCD 31 (0.3) 167 (3.8)  
 DCD 462 (5.0) 1186 (27.1)  
 Unknown 1 (0.0) 2 (0.0)  
History of diabetes
 No 8180 (88.4) 2950 (67.4) <0.001
 Unknown 77 (0.8) 949 (21.7)  
 Yes, 0–5 y 337 (3.6) 192 (4.4)  
 Yes, 6–10 y 187 (2.0) 84 (1.9)  
 Yes, >10 y 377 (4.1) 155 (3.5)  
 Yes, duration 

unknown
97 (1.0) 44 (1.0)  

History of hypertension
 No 6372 (68.8) 2597 (59.4) <0.001
 Yes 2874 (31.1) 875 (20.0)  
 Unknown 9 (0.1) 902 (20.6)  
Hepatitis B
 Negative 8830 (95.4) 3264 (74.6) <0.001
 Unknown 0 (0.0) 898 (20.5)  
 Positive 419 (4.5) 205 (4.7)  
 Test not done 6 (0.1) 7 (0.2)  
Hepatitis C
 Negative 8909 (96.3) 3288 (75.2) <0.001
 Unknown 0 (0.0) 898 (20.5)  
 Positive 345 (3.7) 183 (4.2)  
 Test not done 1 (0.0) 5 (0.1)  
CDC risk HIV
 No 7118 (76.9) 2833 (64.8) <0.001
 Yes 2132 (23.0) 641 (14.7)  
 Unknown 5 (0.1) 900 (20.6)  
 AST at 12–18 h after 

authorization, units/L
49.0 (28.0–98.0) 59.0 (31.0–123.8) <0.001

Continued next page
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an important value that the model can use for prediction; for 
example, a donor might be missing data for brain natriuretic 
peptide because the donor heart is not considered for trans-
plantation. Absent vasopressor dose values were coded as 0. 
All other missing values were coded as −1.

A total of 127 variables were used. Forty-nine categorical 
variables were converted into 1 variable per categorical value 
with a 1 or 0 if present or not (one-hot-encoding). This effec-
tively resulted in 1387 binary variables in place of the ini-
tial 49 categorical variables. For some continuous variables, 
we used the same binning scheme as the donor discard risk.6 
The binned variables included age, BMI, sodium (for sodium 
>160), aspartate aminotransferase, alanine transaminase, and 
total bilirubin. The total number of variables used in the final 
model was 1469. We chose to use values from the 12–18 h 

after authorization time point, as this was the closest to a 
realistic decision-making point if translated to a real-world 
scenario. The outcome was defined as liver recovery for trans-
plantation in the operating room. The data were randomly 
separated into training (60%), validation (20%), and test sets 
(20%).

Statistical Methods and Modeling
Donor characteristics displayed in Table 2 were grouped by 

whether the liver was transplanted or not. The 2 groups were 
compared using chi-squared test for categorical variables, the 
Kruskal-Wallis Test for variables not normally distributed, 
and the Student t-test for variables normally distributed.

We chose to compare complex machine learning techniques 
to traditional statistical techniques (eg, binary logistic regres-
sion) because we hypothesized that there are many nonlin-
ear relationships between the demographic, physiologic, and 
logistical variables that affect whether a donor liver is used for 
transplantation or not. We hypothesized that machine learn-
ing techniques would perform better than previously reported 
risk scores based on logistic regression models.

A gradient boosting machine (GBM) model was trained 
using the python package XGBoost with the default package 
parameters for binary classification.12 When the algorithm 
hyperparameters were optimized using GridSearchCV for high-
est validation set accuracy, the model was evaluated on the test 
set. The optimal hyperparameters were decision tree booster, 
learning rate of 0.01, maximum depth of a tree of 4, learning 
task of binary: logistic, no L1 regularization term, L2 regulari-
zation term on weights of 1.0, and subsample ratio of 0.8.

A fully connected artificial neural network, with 2 layers 
containing 16 384 and 1028 neurons, respectively, was devel-
oped. The model was trained using stochastic gradient descent 
implemented in PyTorch package running on a local central 
processing unit. We used early-stopping technique that opti-
mizes for highest validation ROC-AUC.

Logistic regression was applied using Python Scikit-Learn 
package. The newton-cg logistic regression solver was used. 

 ALT at 12–18 h after 
authorization, units/L

41.0 (23.0–87.0) 44.0 (25.0–96.0) 0.001

 Total bilirubin at h 
after authorization, 
mg/dL

0.7 (0.5–1.1) 0.8 (0.5–1.4) <0.001

 Sodium at h after 
authorization, mEq/L

148.0 (142.0–154.0) 147.0 (142.0–154.0) 0.002

Biopsy performed
 No 6794 (73.4) 3443 (78.7) <0.001
 Yes 2461 (26.6) 931 (21.3)  

aThe 2 groups were compared and P calculated using χ2 test for categorical variables, the 
Kruskal-Wallis test for variables not normally distributed, and the Student t-test for variables 
normally distributed.
Continuous variables are summarized by median (interquartile range), and categorical variables 
are summarized by n (%). CDC high-risk criteria means that donors were at higher risk of blood-
borne diseases, such as HIV.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; CDC, Centers for Disease 
Control and Prevention, CNS, central nervous system; DCD, donor/donation after circulatory 
death; ECD, expanded-criteria donor; SCD, standard criteria donor.

TABLE 2. (Continued)

Donor characteristics

 
Liver not 

transplanted
Liver  

transplanted P a

TABLE 3.

Continuous variables included in the machine learning models

Demographic Medication information Laboratory values Respiratory values Miscellaneous physiologic

Age, y At time of authorization
Weight, kg Dopamine infusion dose, µg/kg/min Creatinine, mg/dL Arterial blood gas, pH Mean arterial pressure, mm Hg
Height, cm Neosynephrine infusion dose, µg/kg/min Serum lactate levels, mmol/L Pao

2
/FIO

2
 ratio Central venous pressure, mm Hg

Body mass index, kg/m2 Norepinephrine infusion dose, µg/kg/min Serum sodium, mEq/L Pao
2
, mm Hg Urine output, mL/4 h

 Epinephrine infusion dose, µg/kg/min Serum glucose, mmol/L FIO
2

Temperature, °C
Date info Vasopressin infusion dose, units/h Serum direct bilirubin, mg/dL Peak inspiratory pressure, cm H

2
O  

Referral d Dobutamine infusion dose, µg/kg/min Serum insulin, mIU/L   
Referral wk Number of total vasopressors    
Referral mo Medication information Laboratory values Respiratory values Miscellaneous physiologic
Referral y 12–18 h after authorization
 Dopamine infusion dose, µg/kg/min Creatinine, mg/dL Arterial blood gas, pH Mean arterial pressure, mm Hg
 Neosynephrine infusion dose, µg/kg/min Serum lactate levels, mmol/L Pao

2
/FIO

2
 ratio Urine output, mL/4 h

 Norepinephrine infusion dose, µg/kg/min Serum sodium, mEq/L Pao
2
, mm Hg Temperature, °C

 Epinephrine infusion dose, µg/kg/min Serum glucose, mmol/L FIO
2

 
 Vasopressin infusion dose, units/h    
 Dobutamine infusion dose, µg/kg/min    
 Insulin infusion dose, units/h    
 Number of total vasopressors    

C, Celcius; FIO
2
, fraction of inspired oxygen; Pao

2
, partial pressure of oxygen in arterial blood.
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FIGURE 1. Receiver operator characteristic curves for 4 different models. Models developed in this paper include GBMs, RF, LR, and ANN. Bar 
plot on the right of the figure shows the numerical AUC of the receiver operator characteristic with a visual representation of the 95% confidence 
interval. AUC, area under the curve; ANN, artificial neural network; GBM, gradient boosting machine; LR, logistic regression; RF, random forest.

Scikit-Learn default parameters were used for the random for-
est algorithm.

Partial dependence plots were created using the pdp.pdp-
box module within python.

The DSRI model with original coefficients was also applied 
to our test set. In addition, we retrained the DSRI coefficients 
on the same DMG training set as used to train our machine 
learning models.

RESULTS

There were 13 629 donors in the DMG dataset from April 
2012 to January 2019 and 9255 (68%) livers were trans-
planted. Out of the 4374 (32%) livers not used for transplan-
tation, 2855 livers were not recovered, 707 were recovered 
and used for research, and 812 were recovered but discarded. 
Table 2 outlines donor characteristics grouped by whether the 
liver was transplanted or not.

The median intervals between important time points in 
the donor management process were median of 33.84 h 
(interquartile range [IQR], 17.74–62.40 h) between referral 
and authorization, median of 17.04 h (IQR, 12.96–24.00 h) 
between authorization, and 12–18 h after authorization, 
median of 21.12 h (IQR, 11.76–33.12 h]) between 12–18 h 
after authorization and prior to organ recovery.

The optimized GBM (ROC-AUC = 0.84; 95% confidence 
interval [CI], 0.82-0.86) performed better than random for-
est (ROC-AUC = 0.83; 95% CI, 0.81-0.86), logistic regres-
sion (ROC-AUC = 0.80; 95% CI, 0.77-0.81) and artificial 
neural network (ROC-AUC = 0.77; 95% CI, 0.73-0.77) on 
the test set (Figure  1, Table S1, SDC, http://links.lww.com/
TXD/A354), as well as DSRI models (Figure  1). The DSRI 
with the native coefficients as reported in6 had a ROC-AUC 
of 0.68; 95% CI, 0.65-0.69. The performance of the DSRI 
model improved after retraining the model the DMG train-
ing set (retrained DSRI model, ROC-AUC = 0.72 [95% CI, 
0.70-0.75).

The ROC-AUCs were compared using de Long method and 
were significantly different (P < 0.01) for most pairs except 
the neural network and retrained DSRI pair (Figure S1, SDC, 
http://links.lww.com/TXD/A354).

 Next, we analyzed the best model (GBM) to elucidate fac-
tors predictive of liver utilization. The feature importance of 
the different variables is shown in Figure 2. The most predic-
tive factors in order of importance were age, BMI, weight, and 
urine output at time of authorization. The continuous vari-
ables with the most predictive value are further examined by 
partial dependence plots in Figures 3–9. Negative values on 
the plot suggest correlation with prediction of utilization for 
transplantation, positive values suggest the variable is corre-
lated with a prediction of nonutilization for transplantation.

DISCUSSION

We developed a machine learning model that can accu-
rately predict liver recovery for transplantation in the operat-
ing room from a deceased donor 12–18 h after the OPO had 
begun management of the organ donor. Our study marks the 
first use of machine learning on detailed data on donor physi-
ology to predict utilization of a donor liver for transplantation. 
In addition to physiologic and demographic data of the donor, 
our model also takes into account OPO, region, and hospi-
tal information for each prediction. Our GBM model with a 
ROC-AUC of 0.84 compares favorably when compared to the 
recently published DSRI,6 and as well the most recently avail-
able result of the Scientific Registry of Transplant Recipients 
yield calculator.7 Our model predicts utilization of a donor 
liver for transplantation at an early time point during donor 
management (Figure 10) and is independent of OPO alloca-
tion/organ offer protocols and their postings on DonorNet. 
Because of the granularity of the DMG dataset, we achieved 
a favorable AUC when compared to the DSRI model but with 
only 12.4 % of donors and based on data available earlier 
during the donor management process.

http://links.lww.com/TXD/A354
http://links.lww.com/TXD/A354
http://links.lww.com/TXD/A354
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FIGURE 3. This PDP shows the relationship within the model between age and the outcome of interest. It measures the variation in prediction 
for every row of the training set as the age is iteratively changed to every possible value seen in the training set for that variable (blue lines). 
The yellow and black line shows the average of the trend of the relationship of the many individual blue lines. Values above 0 on these plots 
suggest the variable is positively correlated with a prediction of nontransplantation, whereas negative values suggest correlation with prediction 
of transplantation. PDP, partial dependency plot.

FIGURE 2. Feature importance of each variable in the best (gradient boosting machine) model. The x-axis is the relative importance of each 
variable measured as the relative quantity the prediction accuracy decreases when only the variable of interest is randomly permuted in the 
training set. These values are calculated by randomly permuting 1 variable at a time and measuring the decrease in accuracy of the model. Note 
that, in this case, the models do not explicitly divulge a positive or negative relationship of these variables to the outcome (eg, does increasing 
or decreasing age make liver transplantation more likely). ABG = pH. ABG, arterial blood gas; bili, bilirubin; BMI, body mass index; DCD, donor 
after circulatory death; MAP, mean arterial pressure; PF ratio, ratio of arterial blood concentration of oxygen over fraction of inspired oxygen.
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Criteria to determine if a liver is suitable for transplanta-
tion are imprecisely defined, and several scoring systems have 
been developed.13-17 Many of the existing scoring systems are 
based on unmodifiable, donor demographic data. One study 
revealed that donor factors associated with delayed or pri-
mary nonfunction included increasing age, hypernatremia 

(sodium levels >155 mEq/L), macrovesicular steatosis (greater 
than 40%), cold ischemia time longer than 12 h, partial-liver 
allografts, donor race, extended criteria donor status, and 
DCD-grafts.18

Meeting DMGs in brain dead organ donors has been associ-
ated with improved organ utilization and outcomes for multiple 

FIGURE 4. This PDP shows the relationship within the model between body mass index and the outcome of interest. It measures the variation 
in prediction for every row of the training set as the body mass index is iteratively changed to every possible value seen in the training set for that 
variable (blue lines). The yellow and black line shows the average of the trend of the relationship of the many individual blue lines. Values above 
0 on these plots suggest the variable is positively correlated with a prediction of nontransplantation, whereas negative values suggest correlation 
with prediction of transplantation. PDP, partial dependency plot.

FIGURE 5. This PDP shows the relationship within the model between urine output at authorization and the outcome of interest. It measures 
the variation in prediction for every row of the training set as the urine output at authorization is iteratively changed to every possible value seen 
in the training set for that variable (blue lines). The yellow and black line shows the average of the trend of the relationship of the many individual 
blue lines. Values above 0 on these plots suggest the variable is positively correlated with a prediction of nontransplantation, whereas negative 
values suggest correlation with prediction of transplantation. PDP, partial dependency plot.
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organs. Achieving these critical care endpoints has been asso-
ciated with an increased number of organs transplanted per 
donor10,19-21 as well as graft survival rates for specific organs.22-24

The relationship between DBD-donor demographics, meeting 
DMGs, utilization of a donor liver for transplantation, and graft 
survival rates of livers has been studied by Bloom et al.22 The 

authors used prospectively collected data from 8 OPOs and after 
controlling for known predictors, donor BMI, male sex, normal 
glucose levels, the use of dopamine at the time of authorization 
for donation, and the use of vasopressin at time of allocation 
were associated with improved liver utilization. However, at 
follow-up, only donor BMI and serum sodium level at the time 

FIGURE 6. This PDP shows the relationship within the model between glucose 12–18 h later and the outcome of interest. It measures the 
variation in prediction for every row of the training set as the glucose 12–18 h later is iteratively changed to every possible value seen in the 
training set for that variable (blue lines). The yellow and black line shows the average of the trend of the relationship of the many individual blue 
lines. Values above 0 on these plots suggest the variable is positively correlated with a prediction of nontransplantation, whereas negative values 
suggest correlation with prediction of transplantation. PDP, partial dependency plot.

FIGURE 7. This PDP shows the relationship within the model between insulin infusion dose 12–18 h later and the outcome of interest. It 
measures the variation in prediction for every row of the training set as the insulin infusion dose 12–18 h later is iteratively changed to every 
possible value seen in the training set for that variable (blue lines). The yellow and black line shows the average of the trend of the relationship of 
the many individual blue lines. Values above 0 on these plots suggest the variable is positively correlated with a prediction of nontransplantation, 
whereas negative values suggest correlation with prediction of transplantation. PDP, partial dependency plot.
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of allocation of organs were associated with improved graft sur-
vival.22 This finding is consistent with several published reports 
of hypernatremia contributing to graft loss.25-27

We identified several modifiable risk factors to be impor-
tant (Figure  2) predicting liver utilization, such as urine 
output, glucose levels, insulin dose, ratio of arterial blood 

concentration of oxygen over fraction of inspired oxygen, 
and mean arterial pressure. These risk factors may allow for 
additional interventions beyond the generally accepted DMG 
guideline.

Our model also identified nonmodifiable risk factors such 
as BMI and age. Overall, our model might allow to improve 

FIGURE 8. This PDP shows the relationship within the model between P to F ratio 12–18 h later and the outcome of interest. It measures the 
variation in prediction for every row of the training set as the P to F ratio 12–18 h later is iteratively changed to every possible value seen in the 
training set for that variable (blue lines). The yellow and black line shows the average of the trend of the relationship of the many individual blue 
lines. Values above 0 on these plots suggest the variable is positively correlated with a prediction of nontransplantation, whereas negative values 
suggest correlation with prediction of transplantation. PDP, partial dependency plot; P to F ratio, ratio of arterial blood concentration of oxygen 
over fraction of inspired oxygen.

FIGURE 9. This PDP shows the relationship within the model between mean arterial pressure at authorization and the outcome of interest.  
It measures the variation in prediction for every row of the training set as the mean arterial pressure at authorization is iteratively changed to every 
possible value seen in the training set for that variable (blue lines). The yellow and black line shows the average of the trend of the relationship of 
the many individual blue lines. Values above 0 on these plots suggest the variable is positively correlated with a prediction of nontransplantation, 
whereas negative values suggest correlation with prediction of transplantation. PDP, partial dependency plot.
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resource allocation during the donor management process. A 
recent study demonstrated that even livers refused by 5 or more 
surgical teams can be transplanted successfully via a rescue 
allocation processes.4 Our model allows timely identification of 
whether a liver will be used for transplantation, or conversely 
is at high risk for discard. Two potential interventions aimed at 
improving an organ’s probability of utilization for transplanta-
tion are a reduction of cold ischemia time through local allo-
cation and machine perfusion. Behavioral changes regarding 
organ acceptance by OPOs and individual transplant centers as 
well as efficiencies gained in transportation can all affect cold 
ischemia times. Finally, newer technologies, such as normother-
mic perfusion, may be able to ameliorate the effects of ischemia 
time and rehabilitate organs to render them more useable for 
transplantation. It can facilitate the development and refinement 
of organ allocation policies to most efficiently manage organ 
donors and place these organs to maximize recipient utility.

In our GBM model, total number of DMGs met at authori-
zation was one of the findings highly associated with utili-
zation of a donor liver for transplantation. The following 
DMG’s were among the top fifty most important variables 
in the GBM model: target CVP (4–12 mm Hg) met at 12–18 
h after authorization, target for number of vasopressors (≤1) 
met at authorization and target pH (7.3–7.5) met at 12–18 h 
after authorization.

The association between the achievement of DMGs and 
organ donation outcomes in DCDs has not been previously 
examined, mainly because DMGs are used by OPO staff to 
guide the bedside management of DBDs after declaration 
of death and authorization for organ donation. In contrast, 
OPO staff are not primarily responsible for the critical care 
of DCDs, as that remains under the purview of donor hos-
pital staff until the withdrawal of life-sustaining treatment. 
However, the critical care parameters of a potential DCD can 
still be evaluated and considered during the allocation process, 
when OPOs decide which donation opportunities to pursue 
and transplant programs make organ acceptance decisions.

This study is an example of how machine learning can be 
utilized to examine a large data set. Machine learning may be 
useful in identifying important variables among several hun-
dred candidates to help identify donors and donor organs that 
could benefit from improved donor management.

Given simplicity of the tabular data, GBM and other meth-
ods perform better than the neural network. Neural networks 

excel at analyzing and learning nonlinear associations and 
patterns within the data that interrelate and form multi-lay-
ered groupings of findings that combine to help the model 
make a prediction.28 The current dataset likely does not hold 
enough data and not enough dimensions to benefit from a 
neural network and may even cause overfitting by the neu-
ral network. A GBM on the other hand uses residual trees to 
attempt to capture the left-over components of the data that 
ascribes itself well to tabular data without overfitting.

The registry does not contain data of potential DBDs who 
are never taken to the operating room for organ recovery and 
therefore our model has not been validated in this group of 
donors. As a result, our model is most useful early during 
donor management and allows optimized resource allocation 
well before the donor is taken to the operating room for pro-
curement. Also, we chose not to include any recipient-related 
factors or outcomes such as findings suggesting graft failure 
as this allows our model to predict earlier in the donation pro-
cess but limits the insights into which donor-recipient matches 
are optimal. Our model does not address recipient outcomes 
or whether discarded livers should have been used for trans-
plant. Our model cannot address differences between coun-
tries as it only includes data from the United States.

Like many other machine learning models, our model pro-
vides the probability for each prediction, which can be used as 
the confidence of the model in the prediction it has just made. 
These values are used to draw the receiver operator character-
istic curves as seen in Figure 1. Also, as our model is a GBM, it 
can provide the variable importance for each prediction made. 
These 2 components will allow ease of use and interpretabil-
ity of the model by providers and allow providers additional 
information in instances when the model makes a different 
prediction than their own clinical expertise. Although these 
interpretability tools can be helpful in making decisions, they 
do not describe a causation relationship between these impor-
tant input variables and the outcome, they only provide expla-
nation of the model’s prediction.

In summary, a GBM machine learning model was used 
to accurately classify donor livers as likely to be utilized for 
transplantation or not. Our model was able to predict uti-
lization earlier in the donor management process than pre-
viously published models. Such a model will be crucial in 
efforts to define and improve a rescue allocation system for 
liver transplantation.

FIGURE 10. This figure shows a timeline of the events occurring during the donor management process and highlights that our model predicts 
the outcome much earlier than other published models.
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