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Sahara mustard as a major threat to desert biodiversity 
in the southwest United States and the need to integrate 
contemporary methods to understand its biology

Understanding the nature of biological invasions is an important 
grand challenge, and we share Prof. Hedrick's concern for develop-
ing good theory and mechanistic understanding of the ecological 
and evolutionary dynamics of invasion (Hedrick, 2020).

We understand the concern that FIS cannot be calculated from 
the expected and observed heterozygosity values provided in the 
table 1 of Winkler et al. (2019) and acknowledge this discrepancy 
exists because of the different ways subpopulations and loci were 
handled by our analytical methods. Specifically, FIS was calculated 
using the heterozygosity estimate HS, calculated as 
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∕l, where pi(lg) is the ith allele frequency 
of the lth locus in the gth subpopulation, or the average expected 
proportion of heterozygote individuals within subpopulations 
(Nei, 1987). Calculating heterozygosity estimates with this approach 
is preferred because HS specifically estimates average gene diver-
sity within subpopulations, per our study design. This metric allows 
heterozygosity to be measured on an identical scale for each sub-
population by accounting for sample sizes of individuals/subpopula-
tions and number of loci typed within subpopulations (Coltman 
et al., 1999; Roberts et al., 2006). This is also the standard method 
for calculating FIS per the popular R packages adegenet and hierfstat, 
calculated as FIS=1−HO∕HS (Goudet, 2005; Jombart, 2008). The 
alternative heterozygosity estimate HE, suggested by the author, 
provides the average genetic diversity of loci within a population 
and does not account for the number of subpopulations or number 
of loci like HS does. Given that our sampling approach was continu-
ous and we expected high selfing rates within subpopulations 
(Winkler et al., 2019), we deemed HS the more appropriate metric 
for calculating FIS in this study. Thus, it is inappropriate to calculate 
FIS values as in table 2 of Phillip Hedrick (2020).This method has 
been used to explore a diversity of population-level phenomena and 
processes in many biological systems (e.g., van Boheemen 
et al., 2017; Cruz et al., 2020; Villate et al., 2010). Recent studies 
that use this metric have been published in Ecology and Evolution. 
For example, Andriollo et al. (2018) used FIS to examine diversity 
across bat species and Wogan et al. (2020) used this same metric to 

examine subpopulation differentiation in a generalist bird. A meth-
odological clarification to the original manuscript would have ap-
propriately addressed these concerns.

Prof. Hedrick cites supplementary materials from a dissertation 
chapter (Winkler, 2017) to make claims about data and analyses in 
the related article published in Ecology and Evolution at the center 
of this discussion (Winkler et al., 2019). These claims are unsup-
ported because the data mentioned were written in 2017, almost 
two years before Winkler et al. (2019) was accepted for publication 
in Ecology and Evolution. Methods were revised, data were rescruti-
nized, and supplementary materials were all updated during the peer 
review process at two journals before being accepted by Ecology and 
Evolution.

We have confidence in the sequence data used in analyses as 
they were quality-controlled through standard, rigorous checks. 
Sequencing was carried out on an Illumina HiSeq2000 platform at 
the University of Oregon, and nextRAD methodology is detailed in 
Russello et al. (2015). Prior to analyses, raw sequence data were qual-
ity-filtered. We retained data with at least 15 × coverage in at least 
10% of samples, removed paralogs, and ensured samples were free 
of contamination per the methods section of Winkler et al. (2019). 
All resulting data in Winkler et al. (2019) are publicly available via 
the National Center for Biotechnology Information (NCBI) as a 
BioProject under accession number PRJNA534338 (https://www.
ncbi.nlm.nih.gov/biopr oject/ PRJNA 534338). We encourage others 
to utilize these data and hope our contributions advance our under-
standing of the biological mechanisms enabling species like Sahara 
mustard to invade with the speed and force we have witnessed in 
recent decades across the US Southwest.

We should also note that the biology of novel species invasion 
might reveal patterns that are unexpected given traditional ap-
proaches, as exploring new phenomena can challenge the assump-
tions of the techniques we have used to study population dynamics. 
For example, we show Sahara mustard has been introduced at least 
three separate times in the United States, each of which have either 
spread beyond their initial introduction sites or remain isolated, at 
least up to the season we sampled individuals (Winkler et al., 2019). 
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We show this rapid, multi-introduction spread lacks the lag phase 
seen in other invasive species (e.g., Bock et al., 2018; Crooks, 2005; 
Crooks & Soulé, 1999; Pannell, 2015; Parker, 2004). We also demon-
strated substantial phenotypic variation in key functional traits that 
align with climatic gradients across Sahara mustard's invaded US 
range (Winkler et al., 2018). Together, these results illustrate the 
invasiveness of the species while highlighting that we cannot as-
sume typical expansion patterns as invasive species spread through 
increasingly disturbed habitats while simultaneously responding to 
human-induced climate change.

We appreciate that our study has grabbed the attention of an es-
teemed scientist so soon after publication. We are confident we are 
helping to push invasion biology forward by adding to an ever-grow-
ing discussion of species introductions, adaptation, inbreeding, and 
spread that will facilitate deeper understanding of invasions while 
simultaneously providing valuable information to managers seeking 
to curtail and prevent further spread.
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