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Heat-Related Hospitalizations in 
Older Adults: An Amplified Effect of 
the First Seasonal Heatwave
Alexander Liss1,2,*, Ruiruo Wu1,2,*, Kenneth Kwan Ho Chui2,3 & Elena N. Naumova1,2,4

Older adults are highly vulnerable to the detriment of extreme weather. The rapid non-linear increase 
in heat-related morbidity is difficult to quantify, hindering the attribution of direct effects of exposure 
on severe health outcomes. We examine the effects of ambient temperatures on heat-related 
hospitalizations (HH) among the elderly in presence of strong seasonality and by assessing the effects 
caused by the first and subsequent seasonal heatwaves. We empirically derived the thresholds for a 
heatwave episode in Boston MSA based on 16 years of daily observations. We compared the health risks 
of heatwaves using the proposed and four alternative definitions. 701 cases of HH in older residents 
of Boston area were examined using harmonic regression models, designed to capture the non-linear 
effects of ambient temperatures and heatwave episodes when the night-time temperature is above 
65.5 °F for 3 consecutive nights. The overall relative risk of HH associated with a heatwave episode 
was 6.9 [95%CI:4.8–9.8]. The relative risk of HH associated with the first heatwave increases up to 13.3 
[95%CI:7.4–24.0]. The risk declined to 3.7 [95%CI:2.4–5.8] for the subsequent heatwave. Four other 
commonly used heatwave definitions confirmed these findings. Public health actions have to target the 
first heatwave to maximize the impact of preventive measures.

Heat waves threaten health, especially of those who are less capable to cope and adapt to the thermal extremes1,2. 
The recent WHO report and the 2016 US Global Change Research Program on Human Health emphasized the 
importance of this issue3,4. The major heat wave in Europe in the summer of 2003 caused 15,000 deaths in France 
alone5–9 and has prompted several investigations of the relationship between human health and maximum daily 
ambient temperature10–12. It has been reported that elderly, defined as people who are 65 years or older, suffer 
disproportionally more than younger population during heat waves due to lower efficiency of their thermoregula-
tory mechanisms, potential side effects of medications, and limited mobility13–18. Furthermore, high perspiration 
threshold combined with increased blood viscosity, elevated cholesterol level, and diminished ability to detect 
changes in body temperature may further contribute to severe heat-related health conditions in older adults. The 
older adult population in the USA is increasing in both size and proportion19, underpinning the need of targeted 
preventive actions20.

While the body of research on adverse health effects of extreme weather is rapidly growing, some methodo-
logical issues of assessing such effects have yet to be addressed. One of the major ongoing issues is the definition 
of a heatwave. The WHO report3 lists at least fifteen different exposure metrics used to categorize heat exposure. 
The Report on the Impacts of Climate Change on Human Health in the United States also notes the lack of 
commonly accepted methodology in defining extreme hot weather: “Extremes can be defined by average, mini-
mum, or maximum daily temperatures, by nighttime temperatures, or by daytime temperatures. However, there is no 
standard method for defining a heat wave or cold wave. There are dramatic differences in the observed relationships 
between temperature, death, and illness across different regions and seasons; these relationships vary based on aver-
age temperatures in those locations and the timing of the heat or cold event”4. Recent studies provide extensive and 
detailed overviews and comparisons of various indicators of extreme heat events21–24. It is apparent that the most 
promising and realistic measures consider both duration and intensity of exposure21–24, so the heatwave indicators 
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mark when the value of a specific measure exceeds an absolute or relative threshold for a selected environmental 
condition lasting for some period of time, usually from 1 to 5 days. Examples of such definitions include situa-
tions when a heat wave is defined as “environmental condition when the daily maximum temperature of more 
than five consecutive days exceeds the average maximum temperature by 5 °C (9 °F)”25, or “when minimum daily 
temperature exceeds 95th percentile for 2 consecutive nights”21.

The heatwave threshold is typically determined using absolute values of used measures (physiology-based 
threshold), as well as relative values (location-based threshold), such as 81st to 99th percentiles26. Physiology-based 
thresholds are linked to comfort-related ergonomic conditions with potentially less narrow range than 
location-based thresholds, which vary dramatically and thus reduce comparability of research findings. Yet, the 
concordance between physiology-based and location-based thresholds is rarely established.

The decision for selecting physiology-based or location-based thresholds in specific context is not clear, yet 
a solution can be found in better understanding the non-linear relationship between ambient temperature and 
health conditions. Heat-related morbidity and temperature typically shows a J-shaped relationship with shapes 
varying by location, climate features, and affected populations16,27–32. The lower part of the “J” shape indicate 
a thermal “comfort” zone, in which heat-related morbidity are less likely to occur. Above the comfort zone, 
the associated increase in mortality with a unit of exposure increase accelerates. A better characterization of 
such non-linear relationships should advance the detection of meaningful thresholds and the formulation of 
location-specific physiologically relevant definition of heatwave episodes.

Ability to quantify and differentiate the effect of individual heat waves with respect to their time of appearance 
represents another important issue. If the early heat waves pose elevated threat to public, more emphasis could 
be made on protective measures at the onset of warm season33–35. A disproportional effect of the early season’s 
hot weather on mortality has been noted33,34. A study in North Italian province of Veneto has demonstrated that 
morbidity equally peaked at the first and the last heat waves of the season35. Thus, if such a phenomenon holds 
uniformly especially in vulnerable population, effective communication, and mitigation strategies can be better 
tailored.

While the heat-related mortality has been widely discussed, less attention has been paid to morbidity due to 
the limited access to reliable data, complexity of reporting, and multifaceted response to the heat. The benefits of 
using Medicare claim data for large scale investigations of the vulnerable older populations due to its universal, 
near-exhaustive coverage of Medicare beneficiaries aged 65 and above are well demonstrated36,37. Using this large 
national data repository comprising of approximately 220 million individual records, we examined the effects of 
maximum daily ambient temperature on hospitalizations caused by heat exposure among adults residing in the 
Boston Metropolitan Statistical Area (MSA) between January 1st 1991 and December 31st 2006, inclusive. These 
urban communities of Massachusetts are characterized by temperate climate, relatively high living standards, 
close proximity and easy access to points of medical care. We hypothesized that: (1) the magnitude and duration 
of ambient temperature exposure directly contributes to the occurrence and severity of HHs in a non-linear fash-
ion with an accelerating effect when ambient day and night temperatures exceeded specific thresholds; (2) the 
first heatwave of each year is associated with more cases of HHs when compared to the subsequent heatwaves in 
the same year; and (3) the disproportional effect of the first wave will be present after adjusting for the seasonal 
nature of exposure the HHs has well-pronounced temporal features, which can be described by harmonic oscil-
lations and specific calendar effects. We empirically defined location-specific thresholds and describe non-linear 
associations between daily ambient temperature and hospitalization rates due to exposure to environmental heat 
based on International Classification of Diseases (ICD-9-CM). We determined the effect caused by the first and 
subsequent heatwaves by estimating the relative risks in presence of well-pronounced seasonal variations of the 
selected health outcomes. We then compared the proposed data-driven definition with four commonly used 
definitions of a heatwave episode in terms of assessing the detrimental effects on heat-related hospitalizations.

Methods
Hospitalization records. Daily hospitalization records from January 1st 1991 to December 31st 2006 were 
obtained from the CMS database. Each record contains age, ZIP code of residence, date of admission, and up to 
10 diagnostic codes based on International Classification of Disease, 9th Revision, Clinical Modification (ICD-
9-CM). 1123 hospitalization records with ICD-9-CM 992.0–992.9 in any of 10 diagnostic fields were abstracted. 
This ICD category covers a broad range of health conditions, which in the opinion of a treating physician are 
most likely caused by environmental exposures to heat. While other ICD categories are associated with exposure 
to hot weather, we purposefully selected this ICD codes to minimize potential misclassification. For 701 records 
selected for the analysis, the heat-related diagnosis was listed as primary or secondary cause; 83% of cases were 
coded as heat stroke or heat exhaustion (Table 1). Using reported ZIP codes of residence we selected all ZIP codes 
that belongs to Boston-Cambridge-Quincy Metropolitan Statistical Area (Boston MSA) (United States Census 
Bureau 2014). According to the US Office of Management and Budget, MSA is defined as “a region that has at 
least one urbanized area of 5,000 or more population, plus adjacent territory that has a high degree of social and 
economic integration with the core as measured by community ties.” In 2010, Boston MSA was the 10th most 
populated MSA in the US with the total area of 4,674 mi2 and the total population of 4,552,402; consisted of 74.9% 
non-Hispanic White population, 9% Hispanic and Latino population, 7.4% non-Hispanic Black population, 7.1% 
Asians and 1.6% of other races and ethnicities; 10% of MSA population was 65 years old and older (United States 
Census Bureau 2014). Using linear interpolation of Census 1990, 2000, and 2010 data we estimated older adult 
population in the study area, calculated the annual hospitalization rates per 1 million people aged 65 and older. 
We created the MSA maps by matching ZIP codes of the Census basemaps with the list of ZIP codes within 
Boston MSA and mapped the hospitalizations with ArcGIS 10.2. http://www.esri.com/software/arcgis/arcgis-
for-desktop (see Fig. 1).

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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Ambient temperature data. Daily temperature records of the Boston MSA were obtained from the 
National Oceanic and Atmospheric Administration–Global Summary of the Day (NOAA-GSOD) (Unites States 
National Oceanic and Atmospheric Administration 2014) for the study period. The dataset includes maximum 
and minimum daily temperature from 83 meteorological stations situated within the borders of Boston MSA and 
up to 120 miles buffer zone. The daily temperature data were interpolated for each ZIP code (average number of 
stations per ZIP code: 54.4 ±  4.7, distance between nearest station and ZIP code centroid: 7.75 ±  3.84 miles) using 
an inverse distance weighting (IDW) method, which allows for multivariate interpolation by assigning the values 
to unknown locations calculated with a weighted average of the values available at the known points38.

Non-linear fit and empirical definition of a heatwave episode. To capture the effect of a heatwave 
on non-linear exponential increase in hospitalization counts we derived an empirical definition of a heatwave 
episode assuming that the magnitude and duration of ambient temperature exposure directly contributes to the 
occurrence and severity of heat-related hospitalizations (HHs) in a non-linear fashion with an accelerating effect 
when ambient day and night temperatures exceeded specific thresholds.

To estimate thresholds, the maximum (day-time) and minimum (night-time) temperature values were trans-
formed and parameterized as follow:

T LαΘ = δ Θ α… −⁎t n T( , , ) ( , ) (T , ), (1)t t, , t n

where δ (Tt, Θ ) is a Dirac delta function with a threshold parameter Θ , and α… −(T , )t, , t n  is a scaled 
lag-distributed ambient temperature for n periods with exponential decay parameter α.

Dirac delta function δ(Tt, Θ ) in Eq. (1) is defined as:

δ Θ =





> Θ
≤ Θ

T
T
T

( , )
1,
0,

,
(2)

t

t
t

where Tt is the daily temperature value for a t-day and Θ is a temperature threshold value.
Scaled lag-distributed temperature α… −(T , )t, , t n  in Eq. (1) is defined as weighted sum of temperature meas-

ures for n days prior to date t, linearly scaled to the [0..1] interval:


α α α α

α α α α
α =





+ − + − + − + … + −

+ − + − + − + … + −




… −

− − − −scaled T T T T T(T , ) (1 ) (1 ) (1 ) (1 )
1 (1 ) (1 ) (1 ) (1 )

,
(3)

t t t t
n

t n
nt, , t n

1
2

2
3

3
2 3

where α is the exponential decay parameter and n is the number of included temporal lags. Due to the exponen-
tial nature of weights α in Eq. (3), the effective number of lags n, i.e. the number of days with sufficiently large 
weight capable to substantially influence the outcome, is determined as:

α
α

=


 −



.Lag N min n( , ) , 2 1

(4)

By setting parameter n sufficiently large, the exponential decay parameter α effectively determines the num-
ber of lags included in the model. For example, with the number of lags n =  10, and decay parameter α =  0.5, the 
contribution of lag 0 is slightly above 50%, the contribution of lag 4 is about 6%, and the contribution of lag 10 is 
less than 0.1%.

To fit the non-linear association between daily ambient temperature and HH the Negative-Binomial 
Generalized Linear Model (NB-GLM) has been applied:

 = β +β +β +β +H exp , (5)t
Y e0 Tday day Tnight night Y t

ICD-9-CM code Description Cases (%)

992.0 Heat stroke and sunstroke 115 (16.4)

992.1 Heat syncope 49 (7.0)

992.2 Heat cramps 6 (0.9)

992.3 Heat exhaustion, anhydrotic 40 (5.7)

992.4 Heat exhaustion due to salt 
depletion 9 (1.3)

992.5 Heat exhaustion, unspecified 465 (66.3)

992.6 Heat fatigue, transient 2 (0.3)

992.7 Heat edema 0 (0)

992.8 Other specified heat effects 7 (1.0)

992.9 Unspecified effects of heat and 
light 8 (1.1)

Table 1.  Distribution of cases based on diagnostic code ICD-9-CM.
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where Ht is the daily hospitalization counts for the study period; = αΘ… −e T
day
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αΘ… −e T( , )night t t n night, night  and Yt is an indicator variable absorbing inter-year variability. We selected the vector of 

parameters:

 α α= Θ Θ = . . . .( , , , ) (0 69, 0 70, 0 87, 0 56) (6)T day T nightday night

by maximizing goodness of fit of the NB-GLM Eq. (5)) based on Akaike Information Criterion (AIC). The opti-
mized data-driven parameters Θ  and α from Eq. (6) represent temperature threshold and effective duration or a 
number of days with temperature above this threshold that maximizes the non-linear effect of the scaled 
lag-distributed ambient temperature on the health outcome. As such, the parameter vector  can be used to 
determine heatwave episodes. The length of the effective day time lag is = − = − = . ≅

α .
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Figure 1. The distributions of heat-related hospitalizations (HH), population of older adults aged 65 and over, 
or elderly (Panels (A) and (B), respectively), hospitalization rates (per 1 M people) and elderly population 
density (Panels (C) and (D), respectively), within the Boston MSA (Panels (A) and (C), respectively), and its the 
most urbanized part (Panels (B) and (D), respectively) observed in 1991–2006. Maps were created with ArcGIS 
10.2. http://www.esri.com/software/arcgis/arcgis-for-desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
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definition of heatwave for our study area as an environmental condition when daytime temperature is above 
69.5 °F (20.8 °C) for the current and previous day and night-time temperature is above 65.5 °F (18.6 °C) for the 
current and two previous nights. The span between two consecutive heatwave episodes should be no less than 2 
days. A binary variable indicating a day when such condition is met, or a heatwave day, was created for each day 
during the study period.

Alternative definitions of a heatwave episode. In addition to the definition of a heatwave proposed 
above we have examined four alternative heatwave definitions:

Definition A: daily maximum temperature over 95% threshold for 3+  consecutive days3;
 Definition B: daily maximum temperature over 95% threshold (computed over summer months between May 
1 and September 30) for 3+ consecutive days21,26;
Definition C: maximum daily temperature above 80.6 °F (27 °C) for 6+  consecutive days3,39,40;
Definition D: humidex above 104 °F (40 °C) for 2+  consecutive days41,42.

Definitions A–C are based on the simple threshold of one parameter (maximum daily ambient temperature), 
while Definition D is a function of maximum daily temperature and humidity. The first two definitions use rela-
tive measures, while the last two use absolute thresholds. We then created binary variables indicating day when 
relevant conditions are met for each day during the study period to further use in the analysis.

Estimation of seasonal peaks for heat-related hospitalizations and ambient temperature. The 
heat related hospitalizations are highly seasonal phenomenon where of the 701 cases of heat-related admissions, 
621 (89%) occurred in summer. The harmonic regression has the ability to naturally adjust for periodic seasonal 
oscillations by using data for the entire study period. A harmonic component properly accounts for transitional 
periods of spring and autumn and accommodates periods with high level of outcomes (i.e. during the hot season) 
and with low level of outcome (i.e. during the cold season)43,44.

First, we fit a NB-GLM to HH counts, denoted as Model 1:

= β +β +H exp , (7)t
(Seasonality) eL0

where Ht is the daily HH counts for a t-day; β L is the vector of coefficients for a seasonal pattern based on one 
harmonic term with the period ω  =  1/365.25 and Seasonality is a short hand for β ssin(2π ω t) +  β ccos(2π ω t).

Similarly, daily maximum and minimum temperature values were fitted as Gaussian OLS, as Model 1 modi-
fication of:

= β + β + eT (Seasonality) , (8)Lt 0

where Tt is the daily maximum or minimum temperature value for a t-day; β L is the vector of coefficients for a 
seasonal pattern based on one harmonic term with the period ω  =  1/365.25 and Seasonality ~β ssin(2π ω t) +  β c 
cos(2π ω t).

Based on models’ β L values related to seasonal harmonics, the average peak timing of HH and its 95th confi-
dence interval (CI) were estimated using δ –method43,44. Peak timing of a periodic process of the form 
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tive, k =  2π when β s >  0 and β c <  0, and k =  π otherwise.
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From the Model 1 we determined the peak timing of HH and compared it with the peak timing of the ambient 
temperature.

Individual effects of consecutive heat waves. In order to test the stated hypotheses we built statistical 
models sequentially. First, we built a model considering temporal features in HH time series, such as seasonality, 
annual and weekly cycles, and the effects of local social calendars (Model 2). Then, we incorporated the heat-
wave indicator based on the proposed and alternative definitions to test if heatwave days have higher HH than 
non-heatwave days (Model 3). Finally, we used separate indicators for the first heatwave episode and consecutive 
episodes during the same season (Model 4). This model allowed us to test the hypothesis that first heatwave have 
disproportionally large effect on vulnerable population relative to the consecutive heatwaves the same season. 
These steps are described in details below.

Temporal features in the daily time series of HH counts were examined using NB-GLM for count data, 
denoted as Model 2:
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= β +β +β +β +H exp , (11)t
(Year) (Seasonality) (weekend effects) eJ L k0

where Ht is the daily HH counts; β J is the vector of coefficients for the effect of a calendar year based on a set of 
indicator variables with 1991 set as a reference year (the β J term accounts for the inter-year changes in popula-
tion at risk, as well as potential changes in reporting policies and practices during the 16 year study); β L is the 
vector of coefficients for a seasonal pattern based on a harmonic regression with the period ω  =  1/365.25 and two 
harmonics:

β πω + β πω + β πω + β πω .~Seasonality t t t tsin(2 ) cos(2 ) sin(4 ) cos(4 ) (12)L L L L,1 ,2 ,3 ,4

Model 2 also includes variables to account for the effects of weekdays: β k is the vector of coefficients for an 
indicator variable considering weekends combined with major federal holidays (Saturday, Sunday and major hol-
idays, including New Year’s Day (January 1st), Labor Day (June 19th), Independence Day (July 4th), Veterans Day 
(Nov 11th), and Christmas Day (December 25th); weekdays, Monday to Friday, were set as a reference category).

To assess the effect of heatwave episodes we added an indicator variable to Model 2, as in Model 3:

= β +β +β +β +β +H exp , (13)t
(year effect) (seasonality) (weekend effect) (heatwave effect) eJ L k h0

where β h is the coefficient indicating the effects of the heat waves in the season relative to the rest of the days; the 
remaining coefficients are the same as in Eq. (11).

We then further separated the effect of the first heatwave in the season from the effects of the following up heat 
waves on HH in Model 4:

= β +β +β +β +β +β .. +H exp , (14)t
(year) (seasonality) (weekend) (1st heatwave) (2 N heatwave) eJ L k0 h1 h2

where β h1 is the coefficient indicating the effects of the first heatwave in the season relative to the rest of the days, 
and β h2 is the coefficient indicating the effects of the second and all subsequent heat waves in the season relative 
to the all other days. The relative risk of HH associated with a heatwave episode along with its 95th CI were esti-
mated as: β ± . β⁎exp SE( ) 1 96 exp( )h h

 for βh1 and βh2, respectively. Model 4 was also applied to estimate individual 
effects of the first and consecutive heatwaves on HH using four alternative definitions as described above.

We examined the individual contribution of the effects of the year, seasonality, effects of weekdays and the 
effects of heatwaves on variability explained by Models 2, 3 and 4 based on the relationship between total and 
residual deviance and the AIC score.

Results
During the 16-year study period there were 701 hospitalizations due to heat in the Boston-Cambridge-Quincy, 
MA-NH MSA. Figure 1 illustrates the spatial patterns of the abstracted records. Elevated rates of heat-related 
hospitalization tend to concentrate in urban areas with greater population density. The time series of daily 
counts of HH reflects sharp spikes with up to 20-fold increase during summer months (Fig. 2). As estimated 
from Model 1, HH peaked on July 13th with a median peak date at 194th (IQR: 170th; 210th) Julian calendar day. 
As estimated from regression model, ambient maximum and minimum temperature peaked on July 24th (205th; 
IQR: 183rd; 213th) and on August 1st with a median of 213th (IQR: 205th; 243rd) Julian calendar day, respectively. 
Therefore, heat-related hospitalizations are expected to peak on average 11 days earlier than the expected peak 
in temperature.

Based on the proposed definition of heatwave in Boston MSA, we identified 44 heat waves comprised of totally 
111 days during the study period (Table 2). Timing for the individual heatwave days along with the heat map of 
daily night temperature are presented in Fig. 3. Descriptive statistics of heatwave occurrence, duration, the start 
of the first and last episodes and heat-related hospitalizations (HH) during the heatwave episodes are shown 
in Table 3. The number of heatwaves and days associated with heatwaves varied for alternative definitions, yet 
they uniformly agreed on low counts of HH for relatively cold summers of 1992, 1996, 2000, and 2004 (Fig. 4). 
As expected, Definitions A and D appeared to be the most and least conservative estimates for Boston MSA, 
respectively.

Over the study period, there were 111 days marked as heatwave days based on the proposed data-driven 
definition. While they represent only 1.9% out of 5844 days of observations, during those days 207 cases of 
heat-related hospitalizations were recorded, accounting for 30% of all 701 cases or 33% of 621 cases occurred dur-
ing the summer-time period. During the first heatwave of the season, that occurred on average on 196.7 ±  17.6 
Julian calendar day, almost two weeks before the average peak in minimum temperature, the daily number 
of hospitalizations were almost 5 times higher as compared to rates at the second and subsequent heatwaves 
(Table 3). The average daily maximum and minimum temperature during heatwave episodes lasted for 3.2 days 
had exceeded 86 °F and 68 °F, respectively. For the first heatwave of the season the average number of hospitaliza-
tion were 4.59 per day for the total of 27 days. For the subsequent heatwaves the mean number of hospitalizations 
per day were 0.99 per day for the total of 84 days.

The effects of heatwaves on HH were estimated using the results of Models 3 and 4, presented in Table 4. After 
adjusting for seasonality and weekday effects, the relative risk of HH associated with a heatwave episode was 
6.89 [95%CI: 4.84–9.8] (Model 3). The relative risk of HH associated with the first heatwave in a summer season 
was the highest for first episode: 13.33 [95%CI: 7.4–24] (Model 4). The risk declined to 3.74 [95%CI: 2.43–5.76] 
for the subsequent heatwave episodes. For the four additional definitions, the relative risks associated with the 
first heatwave and the subsequent heatwaves are presented in Table 4. The first heatwave has consistently higher 
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relative risks than subsequent heatwaves for all alternative definitions. The measures for the quality of fit for dif-
ferent model specifications and heatwave definitions are presented in Table 5.

Discussion
The impact of heat on human health has received significant public attention. The most recent National Climate 
Assessment (United States National Climate Assessment (USNCA) Program 2014) and WHO report on heatwaves 
and health3 emphasizes the need for broad public health actions, especially in the areas of preparedness and pre-
vention, which can do much to protect vulnerable population from the detrimental impacts of extreme weather45. 
The heat related mortality has been extensively studied in relation to various death related causes and adaptation 
scenarios in the context of the current climate and projected climate changes46–50. The heat related morbidity, on 
the other hand, has been less examined yet the cost associated with hospitalizations is quite substantial. The anal-
ysis demonstrates that a heatwave episode results in almost 7-fold increase in heat-related hospitalizations over 
16-year period among the older adults in Boston MSA, a composite of urban and semi-urban communities with 
mild temperate climate, relatively high living standards, and easy access to medical care.

In this study we utilized medical claims, maintained by the US Centers of Medicare and Medicaid Services. 
The significant potential of this data repository for conducting a broad range of investigations in environmental 
epidemiology at the local and nationwide has been widely demonstrated. In our research, we explored CMS 
data to describe the effects of drinking water contamination on vulnerable population51, examined the emerg-
ing trends52,53, seasonal patterns54–56, and nationwide spatio-temporal synchronization in hospitalizations due to 
infectious agents56. This data source also allowed us to estimate immediate direct medical expenses associated 
with hospitalizations directly related to environmental heat exposure. Total charges associated with 41,927 cases 
of heat-related hospitalizations, reported over 16 years resulted in $438,845,346 nationwide, or ~$27 million 
annually. In Boston MSA, HHs contributed $5,714,391 of medical charges, which is almost equivalent to the 
annual state budget allocated to the Supportive Senior Housing of $5.5 million for 2015 (Massachusetts Budget 
and Policy Center (MassBudget) 2013). The overall impact of heat waves on health is not limited to the heat 
related morbidity14,57,58. Thus, the observed increase of heat related hospitalizations based on the selected ICD 
codes is very likely to underestimate the impact of heat waves on health and provides very conservative estimate 
of the effect and associated costs. As we limited the study to only hospitalizations directly related to environmen-
tal heat exposure with well-defined symptoms codes as primary causes, the presented results are likely to be least 
affected by changes in somewhat complex hospitalization coding rules58.

The pattern of hospitalization due to heat varied quite significantly across geographic regions59–63 and the 
reasons for such difference are not yet clear. This study demonstrates that one of the reasons might be a differ-
ent response to heatwaves and its dependence on the timing of heatwaves. While the days defined as heatwave 

Panel A

Panel B

Figure 2. Annual number of heat waves episodes (top row, Panel A) and daily counts of heat-related 
hospitalizations (bottom row, Panel B) and daily maximum temperature: actual and fitted with Model B (°F; 
Panel C) in Boston MSA, 1991–2006.
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represent only 2% out of 5,844 days under observations, one third of heat-related hospitalizations occurred 
during one week of the summer-time period annually. The relative risk of heat strokes associated with the first 
heatwave of a season is 5-fold higher than the risks of the subsequent waves. With the average maximum daily 
temperature of 87.3 °F and average minimum night temperature of 69.3 °F observed during heatwaves, a sudden 

All* 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Proposed Definition

 Number of HW 44 3 1 2 3 5 4 0 3 4 0 2 2 2 3 4 6

 Maximum length 4.64 6 2 4 17 6 2 1 2 3 5 9 1 4 3

 Total days 111 11 2 5 22 13 5 3 5 4 7 10 3 10 11

 Date of the first HW 195 198 241 188 181 195 165 197 186 215 183 204 216 177 178

 Date of the last HW 231 241 242 214 214 228 237 236 251 221 229 224 244 242 213

 HH counts** 207 46 0 35 18 17 0 4 7 11 39 3 1 8 18

 HH per HW day 1.96 4.18 0 7 0.82 1.31 0 1.33 1.4 2.75 5.57 0.3 0.33 0.8 1.64

 HH per non-HW day 0.18 0.16 0.14 0.23 0.25 0.31 0.07 0.17 0.11 0.29 0.09 0.22 0.23 0.05 0.08 0.21 0.25

Definition A

 Number of HW 81 7 1 5 4 6 2 7 3 10 2 8 7 4 2 9 4

 Maximum length 3.75 5 2 5 4 4 1 2 3 5 2 4 9 4 2 6 2

 Total days 165 12 2 11 8 11 2 8 6 21 3 15 25 11 3 20 7

 Date of the first HW 162 179 143 177 169 170 142 162 196 152 129 123 178 177 161 163 170

 Date of the last HW 226 240 144 240 207 229 200 229 237 247 222 222 253 234 243 256 215

 HH counts 314 43 2 39 23 30 1 4 10 31 2 27 58 5 2 14 23

 HH per HW day 1.74 3.58 1 3.55 2.88 2.73 0.5 0.5 1.67 1.48 0.67 1.8 2.32 0.45 0.67 0.7 3.29

 HH per non-HW day 0.14 0.19 0.13 0.21 0.19 0.21 0.06 0.15 0.08 0.14 0.08 0.12 0.11 0.04 0.07 0.18 0.21

Definition B

 Number of HW 34 2 1 2 2 2 0 3 0 4 0 4 6 2 0 4 2

 Maximum length 2.75 4 1 3 2 1 1 3 3 8 2 3 2

 Total days 66 5 1 6 4 2 3 7 6 18 4 7 3

 Date of the first HW 172 179 144 189 169 196 173 159 123 178 177 177 199

 Date of the last HW 209 202 144 240 203 213 199 200 222 253 188 226 215

 HH counts 211 35 1 28 20 6 2 15 20 53 5 8 18

 HH per HW day 3.18 7 1 4.67 5 3 0.67 2.14 3.33 2.94 1.25 1.14 6

 HH per non-HW day 0.17 0.23 0.13 0.28 0.2 0.36 0.07 0.16 0.14 0.24 0.09 0.16 0.14 0.03 0.09 0.2 0.24

Definition C

 Number of HW 46 1 2 3 3 2 1 2 3 5 1 5 4 3 3 4 4

 Maximum length 7.69 6 2 8 14 10 1 3 7 20 4 6 14 11 2 9 6

 Total days 237 6 3 15 30 16 1 6 15 31 4 17 30 25 6 23 9

 Date of the first HW 186 201 195 190 169 205 223 181 199 154 178 169 177 180 204 163 193

 Date of the last HW 226 206 241 244 217 230 223 199 243 252 181 236 235 229 228 226 222

 HH counts 290 43 1 39 26 20 0 4 9 17 1 24 62 4 3 15 22

 HH per HW day 1.35 7.17 0.33 2.6 0.87 1.25 0 0.67 0.6 0.55 0.25 1.41 2.07 0.16 0.5 0.65 2.44

 HH per non-HW day 0.15 0.18 0.14 0.22 0.2 0.3 0.07 0.15 0.09 0.27 0.09 0.14 0.08 0.05 0.07 0.17 0.22

Definition D

 Number of HW 9 1 0 1 1 0 0 0 0 2 0 1 2 0 0 0 1

 Maximum length 1.71 1 2 1 1 2 4 1

 Total days 14 1 2 1 2 2 5 1

 Date of the first HW 200 202 190 203 187 221 185 215

 Date of the last HW 209 202 191 203 200 222 230 215

 HH counts 97 18 24 2 9 9 30 5

 HH per HW day 7.43 18 12 2 4.5 4.5 6 5

 HH per non-HW day 0.22 0.34 0.14 0.3 0.32 0.4 0.07 0.17 0.14 0.27 0.09 0.23 0.29 0.07 0.09 0.25 0.32

Table 2.  Heatwaves for Boston MSA, 1991–2006: total number of HH cases and days associated with 
heatwave definitions with Julian calendar days for the first and last heatwaves. aThe maximum length, date of 
the first and last heatwave, heat-related hospitalizations (HH) per heatwave (HW) and non-HW days across all 
years are shown as averages; Number of HW episodes, total number of days associated with HW and total HH 
counts across all years are shown as sum of all events. bHH counts are estimated over the summer period of 151 
days from May to September.
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Figure 3. Calendar map of night temperature with “◊” marking days of a heatwave in Boston MSA, 1991–2006 
(May through October) based on the proposed definition.

Heatwave 
sequence

Number 
seasons

Number 
of days

Mean (SD) 
Ordinal Day

Number 
of HH HH per day

Max Temp °F 
Mean (SD)

Min Temp °F 
Mean (SD)

HW episode 
RR (CI95%)

1 1 27 196.7 (17.6) 124 4.59 87.4 (6.1) 68.8 (2.5) 15.3 (9.2–25.5)

2 4 39 213.7 (14.0) 42 1.08 87.3 (4.7) 69.1 (2.1) 3.8 (2.1–6.7)

3 4 33 214.3 (13.0) 30 0.91 87.2 (4.6) 68.9 (2.1) 2.7 (1.5–5)

4+ 5 12 226.6 (17.2) 11 0.92 84.0 (5.3) 68.6 (2.3) 7.1 (2.7–18.9)

Table 3.  Descriptive statistics of heatwave episodes occurrence for Boston MSA, 1991–2006: total duration 
and average timing; heat-related hospitalizations (HH); average daytime (Max T) and night time (Min T)  
temperature values during the heatwave episodes and relative risks with CI95% of HH associated with 
heatwave episodes estimated from Model 3.

Figure 4. Comparison of the proposed definition with four alternative definitions. Each row represents 
days from May 1st to Sep 30th; Days assigned to be a HW by a selected definition are marked by color (Proposed 
Definition–red; Definition A–orange; Definition B–yellow, Definition C–green; Definition D–blue). The last 
line represents maximum daily temperature for a given day for each year with the spectrum from green (~30 °F) 
to orange (~90 °F).
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increase in daily hospitalization up to 10–15 cases are plausible14,57,58. These findings suggest that the prevention 
programs should focus their effort on the first heat wave of the season to maximize the public health impact.

We also argue that in the temperate climate of Boston special attention should be paid to daily minimum 
temperature in setting up public health communication. Our data-derived empirical definition of a heatwave 
episode includes both minimum and maximum temperature. A day is defined as heatwave if the night-time 
temperatures is above 65.5 °F (or above 86.5th percentile) for 3 consecutive nights. At this threshold the maximum 
daily temperature is likely to be about 87.3 °F, or at its 86.5th percentile. Minimum daily air temperature is often 
used as a proxy variable to estimate average daily near-surface humidity, especially in non-arid climates64. The 
relative near-surface humidity in temperate climate with relative humidity above 50% can be approximated by 
the conversion formula

≈ − −RH T T100 5( ), (15)DP

where RH is relative humidity, T is an ambient temperature, and TDP is a dew point temperature65. From the 
Eq. (15) follows that the higher dew point temperature indicate higher relative humidity. In Boston MSA, the 
night-time temperature follows very closely the dew point temperature during summer months (correlation coef-
ficient of 0.86, p <  0.001). The average timing of heatwave episodes tends to cluster when dew points are high late 
July and August (Fig. 5). Therefore, our empirical definition more likely selects days with high humidity and tem-
perature above 85th percentile, emphasizing that humid nights with high minimum daily temperature are likely 
to provide little relieve from daily heat.

This study offers a number of methodological innovations for investigating the effects of thermal extremes 
on human health. In order to define a locally-specific definition of a heatwave episode, we designed an approach 
that allows incorporating the steep exponential increase in health outcome as daily temperature within a widely 
accepted linear regression framework and simultaneously select the thresholds for daytime and nighttime tem-
peratures accounting for lag-distributed effects. The use of a threshold assumes that there is a comfort zone, 
exceeding which human thermoregulation fails to respond properly and adverse health outcomes might occur. 

Model 2 Model 3 Model 4

Estimate
Std. 

Error p-value Estimate
Std. 

Error p-value Estimate
Std. 

Error p-value

Proposed Definition

 Intercepta − 2.46 0.20 < 0.001 − 2.76 0.20 < 0.001 − 2.88 0.20 < 0.001

 COS (1st)b − 1.58 0.11 < 0.001 − 1.38 0.10 < 0.001 − 1.38 0.10 < 0.001

 SIN (1st) 0.07 0.12 0.52 0.14 0.11 0.21 0.13 0.11 0.25

 COS (2nd) 0.69 0.09 < 0.001 0.59 0.09 < 0.001 0.56 0.09 < 0.001

 SIN (2nd) 0.46 0.10 < 0.001 0.21 0.10 0.03 0.23 0.09 0.02

 WEEKEND-HDAYc − 0.23 0.12 0.06 − 0.26 0.12 0.03 − 0.29 0.12 0.01

 HW Episode 1.93 0.18 < 0.001

 1st HW 2.59 0.30 < 0.001

 Later HW 1.32 0.22 < 0.001

Definition A

 HW Episode 2.26 0.14 < 0.001

 1st HW 2.48 0.28 < 0.001

 Later HW 2.20 0.15 < 0.001

Definition B

 HW Episode 2.52 0.19 < 0.001

 1st HW 2.63 0.34 < 0.001

 Later HW 2.46 0.22 < 0.001

Definition C

 HW Episode 1.70 0.15 < 0.001

 1st HW 2.20 0.20 < 0.001

 Later HW 1.21 0.19 < 0.001

Definition D

 HW Episode 2.84 0.44 < 0.001

 1st HW 3.01 0.53 < 0.001

 Later HW 2.21 0.77 < 0.001

Table 4.  The results of the sequentially built Negative-Binomial Generalized Linear Models (NB-GLM) 
with harmonic terms for heat-related hospitalizations (HH) for heatwave episodes in Boston MSA,  
1991–2006 based on the proposed definition and four alternative definitions of a heatwave episode. aAll 
models are adjusted for the year effects as described in Method section (data not shown). bThe sin and cos terms 
for the first and second harmonics of seasonal components, respectively. cA term for weekend and holiday 
effects (WEEKEND-HDAY).
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We argue that an “ideal” threshold should be both person- and location- specific. A person with underlying health 
conditions, known to contribute to individual vulnerability16,23,66 might have a temperature threshold lower than 
that of a healthy individual. Temperature thresholds should be also location-specific and may depend on cul-
tural, social and economic adaptation67,68. A better understanding of individual-based and community-based 
thresholds will help to reliably predict an ability to withstand the extreme weather effects and to implement 
location-specific early warning systems. Furthermore, affordable measures for regular hydration and cooling can 
be and should be introduced in a timely manner.

The proposed concept of the lag-distributed effect of exposure, initially introduced by Naumova and MacNeill 
in ref. 55 has been further developed and adapted in this research. The proposed approach accounts for overall 
duration of exposure by estimating an effective duration using distributed lag model for both minimum and 
maximum temperature in one model. Diurnal variations between daytime and nighttime convey valuable infor-
mation on the likelihood of adverse health effects by indicating the potential for heat relief at night after exposure 
to heat through the day. The smaller difference between minimum and maximum temperatures demonstrates a 
longer duration of heat exposure and higher relative humidity. This approach allows us to improve the estima-
tion of relative risk by proper depiction of a complex non-linear nature of relationship between temperature and 
health outcomes and reducing underestimation. In the proposed model each component controls for a biological 
mechanism or behavioral pattern. The year-related component explicitly controls the temporal changes during 
multi-year study, including demographic changes and potential adaptation measures due to changes in the cod-
ing rules for the medical diagnoses in Medicare claim data58. The seasonality-related terms account for sharp 
intra-year changes in hospitalizations due to environmental exposure to heat, markedly different during warm 
and cold seasons. The short-term intra-week periodic changes were controlled to recognize the fact that hospital 
admissions might be influenced by social calendars, so admissions during weekends and holidays are generally 
lower than during the workdays in the middle of the week. Finally, the two terms of primary interest measure the 
effect of the first seasonal heatwave and subsequent heatwaves and test the hypotheses that the impact of the first 
seasonal heat wave differs from the consecutive heatwaves.

Model AIC*
Null Deviance 

(DF = 5833)
Residual Deviance 

(DF) −(Log-Likelihood)

Model 2 3343 2659.3 1580.6 (5813) 3299

Model 3 3221 2772.9 1622.1 (5812) 3175

Model 4

 Proposed Definition 3204 2772.9 1616.3 (5809) 3152

 Definition A 3100 2956.2 1620.0 (5811) 3052

 Definition B 3167 2838.5 1625.1 (5811) 3119

 Definition C 3211 2668.1 1573.4 (5811) 3163

 Definition D 3275 2532.9 1557.2 (5811) 3226

Table 5.  Quality of fit measures for different model specifications and heatwave definitions. *AIC–Akaike 
Information Criterion; DF–degrees of freedom.

Figure 5. Average daily minimum, maximum, and dew point temperature values (solid lines), average 
timing of first, second, third and forth heatwave episodes (shown with green dots), and cumulative heat-
related hospitalization counts (needle plot) during summer months in Boston MSA, in 1991–2006 (May 
through September). 
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As we compared the proposed region-specific data-driven definition of heatwave with four other heatwave 
definitions, we observed the expected overlap of 69 out of 111 days, with many remaining non-overlapping days 
differ by a day or two which indicates a good agreement with existing definition as well as certain amount of a site 
specific localization. The proposed data-driven definition is an improvement over existing schemes as it allows 
dynamic definition adjusted for local climatic variations and levels of social adaptation. It replaces universal rigid 
rules with tailored region-specific guidelines that can be adjusted based on underlying latent regional properties, 
including climate change. This flexibility is important in the context of regional adaptation. The next step is to 
explore how data-driven location-specific definitions vary across climatic zones and to determine a set of rules for 
selecting definitions with high predictive ability for specific health conditions and subpopulations.

We strongly advocate for better timing and targeting public health announcements, increasing the awareness 
of detrimental health effects of heat exposure in older adults and for the need of systematic improvement of living 
conditions, infrastructure and medical support for most vulnerable population to ensure their wellbeing and 
reduce the cost of health care. The disproportionally strong impact of the first heatwave highlights the impor-
tance of surveillance and early warning systems. The systematic seasonal pattern in heat-related hospitalizations 
calls for better planning hospital workload in the summer months. It also supports the assertion of the high 
return of investing in improving early warning notifications of vulnerable population and the urban infrastruc-
ture. Computationally intensive mathematical and statistical modeling applied to routinely and timely collected 
national data should provide strong basis for reliable near-term forecasting and real-time assessment of effective-
ness of intervention strategies.
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