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Introduction 

Permutation testing is a nonparametric randomization procedure that provides a robust 
and powerful method of testing statistical hypotheses. In the original form of the permu-
tation test, the response is shuffled n times, and it is commonly used when the standard 
distributional assumptions are violated. Although this random permutation is an attrac-
tive method in genome-wide association studies (GWAS), there is little guidance to 
achieve calculation efficiency for adjusting p-values via N-permutations using computing 
architecture. 

A GWAS is an approach used in genetics to associate specific genetic variations with a 
particular trait, such as hair color. For example, using a GWAS approach, Ozaki et al. [1] 
discovered that a single nucleotide polymorphism (SNP) associated to myocardial infarc-
tion. With larger data sets in plant breeding, GWAS becomes very powerful in analyzing 
genetic contributions for traits, such as weight of each grain in spring wheat [2]. Howev-
er, control for multiple testing and repeated observation of longitudinal traits are known 
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limitations of GWAS. Although the permutation test can adjust 
type 1 errors of p-values in multiple tests, adaptive permutation 
approaches have been suggested, due to the computational cost of 
permutation, as an alternative solution [3]. Here, we present a 
software to solve this computational burden in GWAS.  

Methods 

This note describes an open-source application, message-passing 
interface (MPI)-GWAS, which was designed for the adjustment of 
p-values of association analysis, such as Fisher’s exact test, of GWAS 
via N-permutation for each locus of the trait of interest. To optimize 
the time cost, a MPI-based work-stealing parallel scheme was ap-
plied, where MPI is a portable message-passing standard designed 
for development of parallel applications leveraging the power of 
manycore architecture at a supercomputer scale. Fig. 1A depicts the 
algorithm of MPI-GWAS. In a work-stealing scheme, each MPI 
process has a queue of computational tasks to perform. Each task 
fits models of variants by dividing by the number of permutations 
sequentially, but during its execution, a task may also spawn new 
tasks that can feasibly be executed in parallel. These new tasks are 
initially put in the queue. When an MPI task finishes work, it looks 
at the queues of the other MPI tasks and steals tasks. In effect, work 
stealing distributes the scheduled work over idle computer central 
processing units (CPUs), and while all CPU resources are being 
computed, scheduling overhead does not occur. Thus, the calcula-
tion time is greatly reduced. Moreover, MPI-GWAS effectively 
conducts permutation using Julia, an open-source project for high 
performance computing (https://julialang.org/). Using Julia, MPI-
GWAS demonstrated a ~2–3-fold decrease in elapsed time of R. 

The definition of the problem can be summarized into the fol-
lowing equations. We model the data of GWAS as follows.  

where gm,k =  genotype of k – th locus in m – th subject (total sub-
ject = M), tm =  trait value of m–th subject 

Using the given observation, the genetic association between the 
k-th locus (i.e., k-th SNP) and Trait T is determined as PT = [p1  ... pk  

... pk ]
T. Pk indicates the original p-value of Fisher’s exact test for the 

k-th locus. In general, the expected scale of G (i.e., number of SNPs) 
would be ~104–10n. When the total number of permutations is N, 
MPI-GWAS shuffled the matrix G and T to generate background 
distributions of genetic diversity across N/b MPI ranks (where b =  

subtasks of shuffling numbers per MPI rank). Using these permu-
tated matrices, each subtask per MPI rank calculates P’T = [p1’ ... 
pk’]

Tas p-values of random distributions (Fig. 1A, blue pseu-
do-code). Thereafter, each MPI rank adds the result value of func-
tion f while looping the number of subtasks, where function f is 
defined as 1 if p’k <  pk, otherwise 0; then, the master MPI rank 
yields the adjusted p-value of the k-th locus (p”k) by reducing the 
result value of other MPI tasks with the sum function and dividing 
by N (Fig. 1A, red pseudo-code). Specifically, p’k <  pk indicates 
that the number of observations where random p-values of the 
k-th locus is less (i.e., more significant) than the calculated p-value 
using real observations. Therefore, the adjusted p-value means a 
probability of type 1 error occurrence for the k-th locus under 
N-time permutated distributions. 

Results 

The strong and weak scaling performance of MPI-GWAS is pre-
sented in Fig. 1B and 1C, respectively. In summary, the strong scale 
(Fig. 1B) indicates that 107 permutations of one locus can be calcu-
lated in 600 s using 2,720 CPU cores, which is 7.2 times faster than 
272 cores. The weak scale (Fig. 1C) indicates that even if the num-
ber of permutations per one locus is increased according to the 
number of computation nodes, it performs well. Two cohorts of ac-
tual data were used to verify the performance of MPI-GWAS: the 
Korean Genome and Epidemiology Study (KoGES) [4] and the 
UK biobank (UKBB) [5]. The repeated observation of longitudi-
nal traits, such as alteration of blood pressures along traced assess-
ments for decades, is a representative example of the violation of 
the normal distribution of phenotypes. Thus, we utilized the traced 
phenotype of type 2 diabetes mellitus (T2DM) in the KoGES and 
UKBB, respectively. The phenotype of T2DM was measured re-
peatedly seven times every 2 years in the KoGES. Likewise, the 
participants of the UKBB have been assessed for the phenotype of 
T2DM up to three times across 10 years. The adjusted p-values via 
107 permutations using the KoGES and UKBB are displayed in 
Fig. 1D. In the case of the KoGES, covering 31,437 loci per assess-
ment, a total computing time with 171,360 CPU cores was ~4 
days using 2,500 nodes (25% of Nurion). With the UKBB data, 
covering 52,858 loci per assessment, the total elapsed time was 
similar. The selection of SNPs for KoGES is based on the traced 
loci using genotype array. To achieve a similar scale of validation, 
we used a subset of loci from the UKBB data. For the selection of 
52,858 loci from the UKBB, we utilized the linkage disequilibrium 
pruning process via the PLINK. As depicted in Fig. 1D, type 1 er-
rors of p-values were adjusted via large-scale N-permutations. In 
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Fig. 1. Algorithm overview and results. (A) Overview of the MPI-GWAS algorithm. (B) Performance of calculation parallelization of MPI-
GWAS in the strong scale. (C) Performance of calculation parallelization of MPI-GWAS in the weak scale. (D) Analysis results of MPI-GWAS 
using the KoGES and the UKBB. MPI, message-passing interface; GWAS, genome-wide association study; CPU, central processing unit; 
KoGES, Korean Genome and Epidemiology Study; UKBB, UK biobank; FP, false-positive; TN, true-negative.

conclusion, MPI-GWAS enables us to feasibly compute the per-
mutation-based GWAS within a reasonable time and to harness 
the power of supercomputing resources. 

Discussion 

The parallel computing of MPI-GWAS solves the computational 
burden in the permutation approach for GWAS on an acceptable 
scale. To our best knowledge, MPI-GWAS is the first attempt for 
an acceleration of GWAS permutation using distributed memory 

system, including the Nurion. Moreover, the MPI is an interface 
standard for distributed memory parallelization. Although the par-
titioned global address space (PGAS) programming model has 
been suggested as the next step of MPI technology, practical usage 
of PGAS is still pending. The computing time of MPI-GWAS is 
mainly depending on the network bandwidth under shared mem-
ory system. For instance, the bandwidth of the Nurion is 100 GB/
sec. Because we released our source code via GitHub for research-
ers (https://github.com/hypaik/proj_MPIGWAS), we expect the 
computing performance can be compared via many users. Howev-
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er, MPI-GWAS displays linearly improved performance with addi-
tional computing nodes. Because it was confirmed that the 
weak-scaling performance of MPI-GWAS comes close to ideal, it 
is predicted that it can perform well on large-scale cluster machines 
for calculations for more loci. 

In addition, the utilized computing infra, Nurion system is a na-
tional supercomputing infra. Many computational research includ-
ing astrophysics, nanoscience and protein docking simulations 
have been utilized this national supercomputing infra for over de-
cades. The detail of web application for the use of the Nurion sys-
tem is available at www.ksc.re.kr. Because we validated the perfor-
mance of MPI-GWAS using the Nurion system, researchers can 
utilize directly to the Nurion system as well as other shared memo-
ry systems. In conclusion, our application could contribute broad-
ly to GWAS globally, using diverse machines, including supercom-
puters. 
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