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ABSTRACT
New integrative approaches are needed to harness the potential of rapidly growing
datasets of protein expression and microbial community composition in colorectal
cancer. Chemical and thermodynamic models offer theoretical tools to describe
populations of biomacromolecules and their relative potential for formation in different
microenvironmental conditions. The average oxidation state of carbon (ZC) can be
calculated as an elemental ratio from the chemical formulas of proteins, and water
demand per residue (nH2O) is computed by writing the overall formation reactions
of proteins from basis species. Using results reported in proteomic studies of clinical
samples, many datasets exhibit higher mean ZC or nH2O of proteins in carcinoma or
adenoma compared to normal tissue. In contrast, average protein compositions in
bacterial genomes often have lower ZC for bacteria enriched in fecal samples from
cancer patients compared to healthy donors. In thermodynamic calculations, the
potential for formation of the cancer-related proteins is energetically favored by changes
in the chemical activity of H2O and fugacity of O2 that reflect the compositional
differences. The compositional analysis suggests that a systematic change in chemical
composition is an essential feature of cancer proteomes, and the thermodynamic
descriptions show that the observed proteomic transformations in host tissue could
be promoted by relatively high microenvironmental oxidation and hydration states.

Subjects Biochemistry, Mathematical Biology, Oncology
Keywords Colorectal cancer, Proteomics, Gut microbiome, Thermodynamics, Chemical
components, Redox potential, Water activity

INTRODUCTION
Datasets for differentially expressed proteins in cancer are often interpreted from a
mechanistic perspective that emphasizes molecular interactions. Alternative approaches
exemplified by recent models that use information theory demonstrate the possibility of
interpreting proteomic expression data in a high-level conceptual framework (Rietman et
al., 2016). These approaches may combine concepts from dynamical systems theory and
thermodynamics, such as the possible association of ‘‘attractor states’’ in landscape models
with low-energy states of a system (Enver et al., 2009;Davies, Demetrius & Tuszynski, 2011).
Despite these advances, energetic functions for differential protein expression have rarely
been formulated in terms of physicochemical variables that reflect the conditions of tumor
microenvironments. The coupling of recent proteomic data with thermodynamic models
using chemical components provides new perspectives on microenvironmental conditions
that are conducive to carcinogenesis or healthy growth.

How to cite this article Dick (2016), Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ 4:e2238; DOI
10.7717/peerj.2238

https://peerj.com
mailto:j3ffdick@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2238


The purpose of the present study is to explore human proteomic and microbial
community data for colorectal cancer within a chemical and thermodynamic framework
using variables that represent oxidation and hydration state. This is carried out first by
comparing chemical compositions of up- and down-expressed proteins along the normal
tissue–adenoma–carcinoma progression. Then, a thermodynamicmodel is used to quantify
the overall energetics of the proteomic transformations in terms of chemical potential
variables. This approach reveals not only common patterns of chemical changes among
many proteomic datasets, but also the possibility that proteomic transformations may be
shaped by energetic constraints associated with the changing tumor microenvironment.

Recent years have seen the appearance of many proteomic datasets for colorectal
cancer (CRC), a very common and extensively studied type of human cancer. Genomic
instability is often considered to be the primary driver of cancer progression (Kinzler &
Vogelstein, 1996). However, not only genetic transformations, but alsomicroenvironmental
dynamics can influence cancer progression (Schedin & Elias, 2004). Many reactions in the
microenvironment, such as those involving hormones or cell–cell signaling interactions,
operate on fast timescales, but local hypoxia in tumors and other microenvironmental
changes can develop and persist over longer timescales. The long timescales of
carcinogenesis may be sufficient for cells to adapt their proteomes to the differential
energetic costs of biomolecular synthesis imposed by changing chemical conditions of the
microenvironment.

One of the characteristic features of tumors is varying degrees of hypoxia (Höckel &
Vaupel, 2001). Hypoxic conditions promote activation of hypoxia-inducible genes by
the HIF-1 transcription factor and intensify the mitochondrial generation of reactive
oxygen species (ROS) (Murphy, 2009), leading to oxidative stress (Höckel & Vaupel, 2001;
Semenza, 2008). It is important to note that there is significant intra-tumor and inter-tumor
heterogeneity of oxygenation levels (Höckel & Vaupel, 2001; DeBerardinis & Cheng, 2010).
Cancer cells can also exhibit changes in oxidation–reduction (redox) state; for example,
redox potential (Eh) monitored in vivo in a fibrosarcoma cell line is altered compared to
normal fibroblasts (Hutter, Till & Greene, 1997).

The hydration states of cancer cells and tissues may also vary considerably from their
healthy counterparts. Microwave detection of differences in dielectric constant resulting
from greater water content in malignant tissue is being developed for medical imaging of
breast cancer (Grzegorczyk et al., 2012). IR and Raman spectroscopic techniques also reveal
a greater hydration state of cancerous breast tissue, resulting from interaction of water
molecules with hydrophilic cellular structures of cancer cells but negligible association
with the triglycerides and other hydrophobic molecules that are more common in normal
tissue (Abramczyk et al., 2014).

Increased hydration levels may be associated with a higher abundance of hyaluronan
found in the extracellular matrix (ECM) of migrating and metastatic cells (Toole,
2002), while a higher subcellular hydration state may alter cell function by acting as a
signal for protein synthesis and cell proliferation (Häussinger, 1996). It has also been
hypothesized that the increased hydration of cancer cells underlies a reversion to a more
embryonic state (McIntyre, 2006). Based on all of these considerations, compositional and
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thermodynamic variables related to redox and hydration state have been selected as the
primary descriptive variables in this study.

As noted by others, it seems paradoxical that hypoxia, i.e., low oxygen partial
pressure, could be a driving force for the generation of oxidative molecules. Possibly,
the mitochondrial generation of ROS is a cellular mechanism for oxygen sensing (Guzy
& Schumacker, 2006). Whether through hypoxia-induced oxidative stress or other
mechanisms, proteins in cancer have been found to have a variety of oxidative post-
translational modifications (PTM), including carbonylation and oxidation of cysteine
residues (Yeh et al., 2010; Yang et al., 2013). Although proteome-level assessments of
oxidative PTM are gaining traction (Yang et al., 2013), existing large-scale proteomic
datasets may carry other signals of oxidation state. One possible ‘‘syn-translational’’
indicator of oxidation state, inherent in the amino acid sequences of proteins, is the
average oxidation state of carbon, which is introduced below. At the outset, it is not clear
whether such a metric of oxidation state would more closely track hypoxia (i.e., relatively
reducing conditions) that may arise in tumors, or a more oxidizing potential connected
with ROS and oxidative PTM.

Density functional theory and other computational methods that yield electron density
maps of proteins with known structure can be used to compute the partial charges, or
oxidation states, of all the atoms. Spectroscopic methods can also be used to determine
oxidation states of atoms in molecules (Gupta et al., 2014). These theoretical and empirical
approaches offer the greatest precision in an oxidation state calculation, but it is difficult
to apply them to the hundreds of proteins, many with undetermined three-dimensional
structures, found to have significantly altered expression in proteomic experiments. Other
methods for estimating the oxidation states of atoms in molecules may be needed to assess
the overall direction of electron flow in a proteomic transformation.

Some textbooks of organic chemistry present the concept of formal oxidation states, in
which the electron pair in a covalent bond is formally assigned to themore electronegative of
the two atoms (e.g., Hendrickson, Cram & Hammond, 1970, ch. 18). This rule is consistent
with the current IUPAC recommendations for calculating oxidation state of atoms in
molecules, but generalizes the IUPAC definitions such that the oxidation states of different
carbon atoms in organic molecules can be distinguished (e.g., Loock, 2011; Gupta et al.,
2014). In the primary structure of a protein, where no metal atoms are present and
heteroatoms are bonded only to carbon and/or hydrogen, the average oxidation state of
carbon (ZC) can be calculated as an elemental ratio, which is easily obtained from the amino
acid composition (Dick, 2014). In a protein with the chemical formula CcHhNnOoSs, the
average oxidation state of carbon (ZC) is

ZC=
3n+2o+2s−h

c
. (1)

This equation is equivalent to others, also written in terms of numbers of the elements C,
H, N, O and S, used for the average oxidation state of carbon in algal biomass (Bohutskyi
et al., 2015), in humic and fulvic acids (Fekete et al., 2012), and for the nominal oxidation
state of carbon in dissolved organic matter (Riedel, Biester & Dittmar, 2012).
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Comparing the average carbon oxidation states in organic molecules is useful for
quantifying the reactions of complex mixtures of organic matter in aerosols (Kroll et al.,
2011), the growth of biomass (Hansen et al., 1994) and the production of biofuels (Borak,
Ort & Burbaum, 2013; Bohutskyi et al., 2015). There is a considerable range of the average
oxidation state of carbon in different amino acids (Masiello et al., 2008; Amend et al.,
2013), with consequences for the energetics of synthesis depending on environmental
conditions (Amend & Shock, 1998). Similarly, the nominal oxidation state of carbon can be
used as a proxy for the standard Gibbs energies of oxidation reactions of various organic
and biochemical molecules (Arndt et al., 2013). The oxidation state concept can be used
as a bookkeeping tool to understand electron flow in metabolic pathways, yet may receive
limited coverage in biochemistry courses (Halkides, 2000). There has been scant attention
in the literature to the differences in carbon oxidation state among proteins or other
biomacromolecules. Nevertheless, the ease of computation makes ZC a useful metric for
rapidly ascertaining the direction andmagnitude of electron flow associated with proteomic
transformations during disease progression.

Comparisons of oxidation states of carbon can be used to rank the energetics of reactions
of organic molecules in particular systems (Amend et al., 2013). However, quantifying the
energetics and mass-balance requirements of chemical transformations requires a more
complete thermodynamic model. Thermodynamic models that are based on chemical
components (or basis species), i.e., a minimum number of independent chemical formula
units that can be combined to form any chemical species in the system, have an established
position in geochemistry (Anderson, 2005; Bethke, 2008). The implications of choosing
different sets of components, called the ‘‘basis’’ (Bethke, 2008), have received relatively
little discussion in biochemistry, although Alberty (2004) in a similar context highlighted
the observation made by Callen (1985) that ‘‘[t]he choice of variables in terms of which a
given system is formulated, while seemingly an innocuous step, is often the most crucial
step in the solution’’. Models built with different choices of components nevertheless yield
equivalent results when consistently parameterized (Morel & Hering, 1993; Ravi Kanth et
al., 2014). Accordingly, components are a type of chemical accounting for reactions in a
system (Morel & Hering, 1993), and do not necessarily constitute mechanistic models for
those reactions.

The structure and dynamics of the hydration shells of proteins have important biological
consequences (Levy & Onuchic, 2006) and can be investigated in molecular simulation
studies (Wedberg, Abildskov & Peters, 2012). Statistical thermodynamics can be used to
assess the effects of preferential hydration of protein surfaces on unfolding or other
conformational changes (Lazaridis & Karplus, 2003). However, there is also a role for
H2O as a chemical component in stoichiometric reactions representing the mass-balance
requirements for formation of proteins with different amino acid sequences.

For example, a system of proteins composed of C, H, N, O and S can be described
using the (non-innocuous) components CO2, NH3, H2S, O2 and H2O. Accordingly,
stoichiometric reactions representing the formation of certain proteins at the expense of
others during a proteomic transformation generally have non-zero coefficients on O2, H2O
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and the other components. These stoichiometric reactions can be written without specific
knowledge of electron density in proteins or hydration by molecular H2O.

It bears repeating that reactions written using chemical components are not mechanistic
representations. Instead, these reactions are specific statements of the requirement for
mass balance that can be used to build thermodynamic models of chemically reacting
systems (Helgeson et al., 2009). Flux-balance models of metabolic networks integrate
stoichiometric constraints (e.g., Hiller & Metallo, 2013), but stoichiometric descriptions
of proteomic transformations are less common, perhaps because of a greater degree of
abstraction away from elementary reactions. Nevertheless, the differentially down- and
up-expressed proteins in a proteomic dataset furnish a quantitative description of a
proteomic transformation and can be viewed as the initial and final states of a chemically
reacting system, which is then amenable to thermodynamic modeling.

The chemical potentials of components can be used to describe the internal state of
a system and, for an open system, its relation to the environment. Oxygen fugacity is
a variable that is related to the chemical potential of O2; it does not necessarily reflect
the concentration of O2, but instead indicates the distribution of species with different
oxidation states (Albarède, 2011). Theoretical calculation of the energetics of reactions
as a function of oxygen fugacity provides a useful reference for the relative stabilities of
organic molecules in different environments (Helgeson et al., 2009; Amend et al., 2013).
However, in a cellular context a multidimensional approach may be required to quantify
possible microenvironmental influences on the potentials for biochemical transformations.
Likely variables include not only oxidation state but also water activity. Scenarios for early
metabolic and cellular evolution (Pace, 1991; Russell & Hall, 1997; Damer & Deamer, 2015)
lend additional support to the choice of water activity as a primary variable of interest.

A thermodynamic model that is formulated in terms of carefully selected basis species
affords a convenient description of a system. As described in the Methods, a basis is
selected that reduces the empirical correlation between average oxidation state of carbon
and the coefficient on H2O in formation reactions of proteins from basis species. The
first part of the Results shows compositional comparisons for human and microbial
proteins (‘Compositional comparisons of human proteins’–‘Compositional comparisons
of microbial proteins’) in 35 datasets from 20 different studies. Many of the comparisons
reveal higher ZC or higher water demand for the formation of proteins up-expressed in
cancer compared to normal tissue. Contrary to the trends observed for human proteins,
the average protein compositions of bacteria enriched in cancer tend to have lower ZC.

To better understand the biochemical context of these differences, calculations reported
in the second part of the Results use chemical affinity (negative Gibbs energy of reaction)
to predict the most stable molecules as a function of oxygen fugacity and water activity
(‘Thermodynamic descriptions: background’–‘Relative stability fields for human proteins’).
Theoretical calculations of the relative stabilities of groups of up- and down-expressed
proteins build on the compositional descriptions as a step toward quantifying the
microenvironmental conditions that may promote or impede the proteomic alterations
associated with the progression of cancer.
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METHODS
Data sources
This section describes the data sources and additional data processing steps applied in
this study. An attempt was made to locate all currently available proteomic studies for
clinical tissue on CRC including, among others, those listed in the ‘‘Tissue’’ and ‘‘Tissue
subproteomes’’ sections of the review paper by De Wit et al. (2013) and in Supporting
Table 3 (‘‘Clinical Samples’’) of the review paper by Martínez-Aguilar et al. (2013). To
make the comparisons more robust, only datasets with at least 30 proteins in each of the
up- and down-regulated groups were considered; however, all datasets from a given study
were included if at least one of the datasets met this criterion. The reference keys for the
selected studies shown below and in Table 1 are derived from the names of the authors and
year of publication.

In comparisons between groups of up- and down-expressed proteins, the convention in
this study is to consider proteins with higher expression in normal tissue or less-advanced
cancer stages as a ‘‘normal’’ group (group 1), with number of proteins n1, while proteins
with higher expression in cancer or more-advanced cancer stages are categorized as a
‘‘cancer’’ group (group 2), with number of proteins n2. For example, in the dataset
of Uzozie et al. (2014) comparing normal mucosa and adenoma, the proteins up-expressed
in adenoma are assigned to group 2, while in the adenoma—carcinoma dataset ofKnol et al.
(2014), the proteinswith higher expression in adenoma are assigned to group 1 (see Table 1).

Names or IDs of genes or proteins given in the sources were searched in UniProt (The
UniProt Consortium, 2015). The corresponding UniProt IDs are provided in the *.csv data
files in Dataset S1. Amino acid sequences of human proteins were taken from the UniProt
reference proteome (files UP000005640_9606.fasta.gz containing canonical, manually
reviewed sequences, and UP000005640_9606_additional.fasta.gz containing isoforms
and unreviewed sequences, dated 2016-04-13, downloaded from ftp://ftp.uniprot.org/
pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/Eukaryota/).
Entire sequences were used; i.e., signal peptides and propeptides were not removed
when calculating the amino acid compositions. However, amino acid compositions were
calculated for particular isoforms, if thesewere identified in the sources. Files human.aa.csv
and human_additional.aa.csv in Dataset S1 contain the amino acid compositions of
the proteins calculated from the UniProt reference proteome. In a few cases, amino
acid compositions of unreviewed or obsolete sequences in UniProt, not available in the
reference proteome, were individually compiled; these are contained in file human2.aa.csv
in Dataset S1.

Reported gene names were converted to UniProt IDs using the UniProt mapping
tool (http://www.uniprot.org/mapping), and IPI accession numbers were converted to
UniProt IDs using the DAVID conversion tool (https://david.ncifcrf.gov/content.jsp?file=
conversion.html). For proteins with no automatically generated matches, manual searches
in UniProt of the protein descriptions, where available, were performed. Proteins with
missing or duplicated identifiers, or those that could not be matched to a UniProt ID, were
omitted from the comparisons here. Therefore, the numbers of proteins actually used in
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Table 1 Summary of compositional comparisons for human proteins.Mean differences (MD), percent values of common language effect size
(ES), and p-values are shown for comparisons between groups of proteins reported to have higher abundance in normal (n1) or cancer (n2) tissue
(or less advanced or more advanced cancer stages, respectively). The textual descriptions are written such that the ordering around the slash (‘‘/’’)
corresponds to n2/n1. References and specific abbreviations used in the descriptions are given in ‘Data sources’.

Reference (Description) n1 n2 ZC n̄H2O

MD ES p-value MD ES p-value

WTK+08 (T/N) 57 70 0.018 55 3e–01 0.006 52 7e–01
AKP+10 (CRC nuclear matrix C/A) 101 28 −0.012 47 7e–01 −0.009 48 8e–01
AKP+10 (CIN nuclear matrix C/A) 87 81 −0.031 40 3e–02 0.006 48 7e–01
AKP+10 (MIN nuclear matrix C/A) 157 76 −0.002 52 7e–01 −0.013 45 3e–01
JKMF10 (serum biomarkers up/down) 43 56 −0.007 46 5e–01 0.056 67 4e–03
XZC+10 (stage I/normal) 48 166 0.009 52 7e–01 0.026 56 2e–01
XZC+10 (stage II/normal) 77 321 0.022 60 6e–03 0.018 54 3e–01
ZYS+10 (microdissected T/N) 60 57 0.019 58 1e–01 0.022 58 1e–01
BPV+11 (adenoma/normal) 71 92 −0.023 40 4e–02 0.004 49 8e–01
BPV+11 (stage I/normal) 109 72 -0.007 47 5e–01 0.005 50 9e–01
BPV+11 (stage II/normal) 164 140 0.031 62 3e–04 0.006 51 7e–01
BPV+11 (stage III/normal) 63 131 0.025 62 9e–03 −0.005 47 5e–01
BPV+11 (stage IV/normal) 42 26 −0.010 44 4e–01 0.005 52 8e–01
JCF+11 (T/N) 72 45 0.032 63 2e–02 −0.003 49 8e–01
MRK+11 (adenoma/normal) 335 288 0.011 54 1e–01 0.058 68 2e–15
MRK+11 (adenocarcinoma/adenoma) 373 257 0.034 65 1e–10 −0.009 47 1e–01
MRK+11 (adenocarcinoma/normal) 351 232 0.034 63 4e–08 0.035 61 8e–06
KKL+12 (poor/good prognosis) 75 61 0.026 64 5e–03 −0.002 48 8e–01
KYK+12 (MSS-type T/N) 73 175 0.024 61 9e–03 0.023 56 1e–01
WOD+12 (T/N) 79 677 0.016 54 2e–01 0.027 58 2e–02
YLZ+12 (conditioned media T/N) 55 68 0.024 61 4e–02 0.009 54 5e–01
MCZ+13 (stromal T/N) 33 37 0.047 74 5e–04 −0.034 42 2e–01
KWA+14 (chromatin-binding C/A) 51 55 −0.039 29 2e–04 −0.010 48 7e–01
UNS+14 (epithelial adenoma/normal) 58 65 0.001 49 8e–01 0.032 61 4e–02
WKP+14 (tissue secretome T/N) 44 210 0.006 53 6e–01 0.057 68 1e–04
STK+15 (membrane enriched T/N) 113 66 0.005 52 6e–01 0.025 55 2e–01
WDO+15 (adenoma/normal) 1,061 1,254 0.030 64 7e–33 0.023 58 7e–11
WDO+15 (carcinoma/adenoma) 772 1,007 −0.013 42 2e–08 −0.003 50 7e–01
WDO+15 (carcinoma/normal) 879 1,281 0.014 57 9e–08 0.024 58 1e–10
LPL+16 (stromal AD/NC) 123 75 −0.039 32 2e–05 0.037 60 2e–02
LPL+16 (stromal CIS/NC) 125 60 −0.007 46 4e–01 −0.001 52 7e–01
LPL+16 (stromal ICC/NC) 99 75 0.001 47 6e–01 −0.021 48 7e–01
PHL+16 (AD/NC) 113 86 0.011 54 4e–01 0.037 60 2e–02
PHL+16 (CIS/NC) 169 138 0.019 59 5e–03 0.001 49 7e–01
PHL+16 (ICC/NC) 129 100 0.016 57 6e–02 −0.007 46 3e–01

Notes.
Abbreviations: T/N, tumor/normal; C/A, carcinoma/adenoma.
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the comparisons (listed in Table 1) may be different from the numbers of proteins reported
by the authors and summarized below.

WTK+08: Watanabe et al. (2008) used 2-nitrobenzenesulfenyl labeling and MS/MS
analysis to identify 128 proteins with differential expression in paired CRC and normal
tissue specimens from 12 patients. The list of proteins used in this study was generated by
combining the lists of up- and down-regulated proteins from Table 1 and Supplementary
Data 1 ofWatanabe et al. (2008) with the Swiss-Prot and UniProt accession numbers from
their Supplementary Data 2.

AKP+10: Albrethsen et al. (2010) used nano-LC-MS/MS to characterize proteins from the
nuclearmatrix fraction in samples from2patients eachwith adenoma (ADE), chromosomal
instability CRC (CIN+) and microsatellite instability CRC (MIN+). Cluster analysis was
used to classify proteins with differential expression between ADE and CIN+, MIN+, or
in both subtypes of carcinoma (CRC). Here, gene names from Supplementary Tables 5–7
of Albrethsen et al. (2010) were converted to UniProt IDs using the UniProt mapping tool.

JKMF10: Jimenez et al. (2010) compiled a list of candidate serum biomarkers from a
meta-analysis of the literature. In the meta-analysis, 99 up- or down-expressed proteins
were identified in at least 2 studies. The list of UniProt IDs used in this study was taken
from Table 4 of Jimenez et al. (2010).

XZC+10: Xie et al. (2010) used a gel-enhanced LC-MS method to analyze proteins in
pooled tissue samples from 13 stage I and 24 stage II CRC patients and pooled normal
colonic tissues from the same patients. Here, IPI accession numbers from Supplemental
Table 4 ofXie et al. (2010) were converted toUniProt IDs using theDAVID conversion tool.

ZYS+10: Zhang et al. (2010) used acetylation stable isotope labeling and LTQ-FT MS to
analyze proteins in pooled microdissected epithelial samples of tumor and normal mucosa
from 20 patients, finding 67 and 70 proteins with increased or decreased expression (ratios
≥2 or≤0.5). Here, IPI accession numbers from Supplemental Table 4 of Zhang et al. (2010)
were converted to UniProt IDs using the DAVID conversion tool.

BPV+11: Besson et al. (2011) analyzed microdissected cancer and normal tissues from
28 patients (4 adenoma samples and 24 CRC samples at different stages) using iTRAQ
labeling and MALDI-TOF/TOF MS to identify 555 proteins with differential expression
between adenoma and stage I, II, III, IV CRC. Here, gene names from supplemental Table
9 of Besson et al. (2011) were converted to UniProt IDs using the UniProt mapping tool.

JCF+11: Jankova et al. (2011) analyzed paired samples from 16 patients using iTRAQ-MS
to identify 118 proteins with >1.3-fold differential expression between CRC tumors and
adjacent normal mucosa. The protein list used in this study was taken from Supplementary
Table 2 of Jankova et al. (2011).

MRK+11: Mikula et al. (2011) used iTRAQ labeling with LC-MS/MS to identify a total
of 1,061 proteins with differential expression (fold change ≥1.5 and false discovery rate
≤0.01) between pooled samples of 4 normal colon (NC), 12 tubular or tubulo-villous
adenoma (AD) and 5 adenocarcinoma (AC) tissues. The list of proteins used in this study
was taken from Table S8 ofMikula et al. (2011).

KKL+12: Kim et al. (2012) used difference in-gel electrophoresis (DIGE) and cleavable
isotope-coded affinity tag (cICAT) labeling followed by mass spectrometry to identify
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175 proteins with more than 2-fold abundance ratios between microdissected and pooled
tumor tissues from stage-IV CRC patients with good outcomes (survived more than five
years; 3 patients) and poor outcomes (died within 25 months; 3 patients). The protein
list used in this study was made by filtering the cICAT data from Supplementary Table 5
of Kim et al. (2012) with an abundance ratio cutoff of >2 or <0.5, giving 147 proteins. IPI
accession numbers were converted to UniProt IDs using the DAVID conversion tool.

KYK+12: Kang et al. (2012) used mTRAQ and cICAT analysis of pooled microsatellite
stable (MSS-type) CRC tissues and pooled matched normal tissues from 3 patients to
identify 1,009 and 478 proteins in cancer tissue with increased or decreased expression
by higher than 2-fold, respectively. Here, the list of proteins from Supplementary Table 4
ofKang et al. (2012) was filtered to include proteins with expression ratio >2 or <0.5 in both
mTRAQ and cICAT analyses, leaving 175 up-expressed and 248 down-expressed proteins
in CRC. Gene names were converted to UniProt IDs using the UniProt mapping tool.

WOD+12: Wiśniewski et al. (2012) used LC-MS/MS to analyze proteins in microdissected
samples of formalin-fixed paraffin-embedded (FFPE) tissue from 8 patients; at P < 0.01,
762 proteins had differential expression between normal mucosa and primary tumors.
The list of proteins used in this study was taken from Supplementary Table 4 ofWiśniewski
et al. (2012).

YLZ+12: Yao et al. (2012) analyzed the conditioned media of paired stage I or IIA CRC
and normal tissues from 9 patients using lectin affinity capture for glycoprotein (secreted
protein) enrichment by nano LC-MS/MS to identify 68 up-regulated and 55 down-
regulated differentially expressed proteins. IPI accession numbers listed in Supplementary
Table 2 ofYao et al. (2012)were converted toUniProt IDs using theDAVID conversion tool.

MCZ+13: Mu et al. (2013) used laser capture microdissection (LCM) to separate stromal
cells from 8 colon adenocarcinoma and 8 non-neoplastic tissue samples, which were pooled
and analyzed by iTRAQ to identify 70 differentially expressed proteins. Here, gi numbers
listed in Table 1 of Mu et al. (2013) were converted to UniProt IDs using the UniProt
mapping tool; FASTA sequences of 31 proteins not found in UniProt were downloaded
from NCBI and amino acid compositions were added to human2.aa.csv.

KWA+14: Knol et al. (2014) used differential biochemical extraction to isolate the
chromatin-binding fraction in frozen samples of colon adenomas (3 patients) and
carcinomas (5 patients), and LC-MS/MS was used for protein identification and label-free
quantification. The results were combined with a database search to generate a list of 106
proteins with nuclear annotations and at least a three-fold expression difference. Here,
gene names from Table 2 of Knol et al. (2014) were converted to UniProt IDs.

UNS+14: Uzozie et al. (2014) analyzed 30 samples of colorectal adenomas and paired
normal mucosa using iTRAQ labeling, OFFGEL electrophoresis and LC-MS/MS. 111 pro-
teins with expression fold changes (log2) at least ±0.5 and statistical significance threshold
q< 0.02 that were also quantified in cell-line experiments were classified as ‘‘epithelial
cell signature proteins’’. UniProt IDs were taken from Table III of Uzozie et al. (2014).

WKP+14: de Wit et al. (2014) analyzed the secretome of paired CRC and normal tissue
from 4 patients, adopting a five-fold enrichment cutoff for identification of candidate
biomarkers. Here, the list of proteins from Supplementary Table 1 of de Wit et al. (2014)
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was filtered to include those with at least five-fold greater or lower abundance in CRC
samples and p< 0.05. Two proteins listed as ‘‘Unmapped by Ingenuity’’ were removed,
and gene names were converted to UniProt IDs using the UniProt mapping tool.

STK+15: Sethi et al. (2015) analyzed the membrane-enriched proteome from tumor
and adjacent normal tissues from 8 patients using label-free nano-LC-MS/MS to identify
184 proteins with a fold change > 1.5 and p-value < 0.05. Here, protein identifiers from
Supporting Table 2 of Sethi et al. (2015) were used to find the corresponding UniProt IDs.

WDO+15: Wiśniewski et al. (2015) analyzed 8 matched formalin-fixed and paraffin-
embedded (FFPE) samples of normal tissue (N) and adenocarcinoma (C) and 16
nonmatched adenoma samples (A) using LC-MS to identify 2300 (N/A), 1780 (A/C)
and 2161 (N/C) up- or down-regulated proteins at p < 0.05. The list of proteins used in this
study includes only those marked as having a significant change in SI Table 3 ofWiśniewski
et al. (2015).

LPL+16: Li et al. (2016) used iTRAQ and 2D LC-MS/MS to analyze pooled samples of
stroma purified by laser capture microdissection (LCM) from 5 cases of non-neoplastic
colonic mucosa (NC), 8 of adenomatous colon polyps (AD), 5 of colon carcinoma
in situ (CIS) and 9 of invasive colonic carcinoma (ICC). A total of 222 differentially
expressed proteins between NC and other stages were identified. Here, gene symbols from
Supplementary Table S3 of Li et al. (2016) were converted to UniProt IDs using the UniProt
mapping tool.

PHL+16: Peng et al. (2016) used iTRAQ 2D LC-MS/MS to analyze pooled samples from 5
cases of normal colonic mucosa (NC), 8 of adenoma (AD), 5 of carcinoma in situ (CIS) and
9 of invasive colorectal cancer (ICC). A total of 326 proteins with differential expression
between two successive stages (and, for CIS and ICC, also differentially expressed with
respect to NC) were detected. The list of proteins used in this study was generated by
converting the gene names in Supplementary Table 4 of Peng et al. (2016) to UniProt IDs
using the UniProt mapping tool.

Basis I
To formulate a thermodynamic description of a chemically reacting system, an important
choice must be made regarding the basis species used to describe the system. The basis
species, like thermodynamic components, are a minimum number of chemical formula
units that can be linearly combined to generate the composition of any chemical species
in the system of interest. Stated differently, any species can be formed by combining the
components, but components can not be used to form other components (VanBriesen &
Rittmann, 1999). Within these constraints, any specific choice of a basis is theoretically
permissible. In making the choice of components, convenience (Gibbs, 1875), ease of
interpretation and relationship with measurable variables, as well as availability of
thermodynamic data (e.g., Helgeson, 1970), and kinetic favorability (May & Murray,
2001) are other useful considerations. Once the basis species are chosen, the stoichiometric
coefficients in the formation reaction for any chemical species are algebraically determined.

Following previous studies (e.g., Dick, 2008), the basis species initially chosen here are
CO2, H2O, NH3, H2S and O2 (Basis I). The reaction representing the overall formation
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from these basis species of a protein having the formula CcHhNnOoSs is

cCO2+nNH3+ sH2S+nH2OH2O+nO2O2→CcHhNnOoSs (R1)

where nH2O= (h−3n−2s)/2 and nO2 =
(
o−2c−nH2O

)
/2. Dividing nH2O by the length of

the protein gives the water demand per residue (nH2O), which is used here because proteins
in the comparisons generally have different sequence lengths.

These or similar sets of inorganic species (such as H2 instead of O2) are often used in
studying reaction energetics in geobiochemistry (e.g., Shock & Canovas, 2010). However,
as seen in Figs. 1A and 1B, there is a high correlation between ZC of protein molecules and
n̄H2O in the reactions to form the proteins from Basis I (note that the choice of basis species
affects only n̄H2O and not ZC). Because of this stoichiometric interdependence, changes in
either redox or hydration potential, while holding the chemical potentials of the remaining
basis species constant, have correlated effects on the energetics of chemical transformations
(see ‘Comparison with inorganic basis species’ below). A different set of basis species can
be chosen that reduces this correlation and affords a more informative description of the
compositional changes in proteomic transformations.

Basis II
In this exploratory study, we restrict attention to at most two variables, with the implication
that the others are held constant. In a subcellular setting, assuming that the chemical
potentials of CO2, NH3 and H2S do not change during a proteomic transformation,
as implied by varying the chemical potentials of O2 and H2O in Basis I, may be less
appropriate than assuming constant chemical potentials of more complex metabolites. In
thermodynamic models for systems of proteins, constant chemical activities of chemical
components having the compositions of amino acids might be a reasonable provision.

Although 1140 3-way combinations can bemade of the 20 commonproteinogenic amino
acids, only 324 of the combinations contain cysteine and/or methionine (one of these is
required to provide sulfur), and of these only 300, when combined with O2 and H2O, are
compositionally nondegenerate. The slope, intercept and R2 of the linear least-squares fits
between ZC and nH2O using each possible basis containing O2, H2O and three amino acids
are listed in file AAbasis.csv in Dataset S1. Many of these combinations have lower R2 and
lower slopes than found for Basis I (Figs. 1A and 1B), indicating a decreased correlation.
From those with a lower correlation, but not the lowest, the basis including cysteine (Cys),
glutamic acid (Glu), glutamine (Gln), O2 and H2O (Basis II) has been selected for use
in this study. The scatterplots and fits between ZC and nH2O using Basis II are shown in
Figs. 1C and 1D.

A secondary consideration in choosing this basis instead of others with even lower R2

is the centrality of glutamine and glutamic acid in many metabolic pathways (e.g., DeBer-
ardinis & Cheng, 2010). Accordingly, these amino acids may be kinetically more reactive
than others in pathways of protein synthesis and degradation. The presence of side chains
derived from cysteine and glutamic acid in the abundant glutathione molecule (GSH),
associated with redox homeostasis, is also suggestive of a central metabolic requirement
for these amino acids. Again, it must be stressed that the current provisional choice of
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Figure 1 Scatterplots of average oxidation state of carbon (ZC) and water demand per residue (nH2O).
Data are plotted for (A, C) individual human proteins and (B,D) mean composition of proteins from mi-
crobial genomes, with nH2O computed using (A, B) Basis I (Reaction (R1)) or (C, D) Basis II (Reaction
(R2)). Linear least-squares fits and R2 values are shown. In (A) and (C), the intensity of shading corre-
sponds to density of points, produced using the smoothScatter() function of R graphics (R Core Team,
2016). The label in plot (A) identifies a particular protein, MUC1, which is used for the example calcula-
tions (see Reactions (R3) and (R4)).

basis species is neither uniquely determined nor necessarily optimal for a thermodynamic
description of any particular system. More experience with thermodynamic modeling
and better biochemical intuition will likely provide reasons to refine these calculations
using a different basis, perhaps including metabolites other than amino acids.

A general formation reaction using Basis II is

nCysC3H7NO2S+nGluC5H9NO4+nGlnC5H10N2O3

+nH2OH2O+nO2O2→CcHhNnOoSs (R2)
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where the reaction coefficients (nCys, nGlu, nGln, nH2O and nO2) can be obtained by solving
3 5 5 0 0
7 9 10 2 0
1 1 2 0 0
2 4 3 1 2
1 0 0 0 0

×

nCys
nGlu
nGln
nH2O

nO2

=

c
h
n
o
s

. (2)

Although the definition of basis species requires that they are themselves compositionally
nondegenerate, the matrix equation emphasizes the interdependence of the stoichiometric
reaction coefficients. A consequence of this multiple dependence is that single variables
such as nO2 and nH2O are not simple variables, but are influenced by both the chemical
composition of the protein and the choice of basis species used to describe the system.

The combination of molecules shown in Reaction (R2) does not represent the actual
mechanism of synthesis of the proteins. Instead, reactions such as this account for mass-
conservation requirements and permit the subsequent generation of thermodynamic
models for the potential for formation of different proteins as a function of system
parameters (i.e., chemical potentials of O2 and H2O).

As an example of a specific calculation, consider the following reaction for MUC1, a
chromatin-binding protein that is highly up-expressed in CRC cells (Knol et al., 2014).

7C3H7NO2S+535.6C5H9NO4+515.2C5H10N2O3

→C5275H8231N1573O1762S7+895.2H2O+522.4O2. (R3)

As with the other reactions shown above, this reaction is not amechanism, but represents
the stoichiometric requirements for the formation from the basis species of one mole of the
protein. Water is released in Reaction (R3), so the water demand (nH2O) is negative. The
length of this protein is 1,255 amino acid residues, giving the water demand per residue,
nH2O =−895.2/1,255=−0.71. The average oxidation state of carbon (ZC) in MUC1,
which does not depend on the choice of basis species, is 0.005 (Eq. 1). The value of ZC

indicates that MUC1 is a relatively highly oxidized protein, while its nH2O places it near the
medianwater demand for up-expressed proteins in cancer in this dataset (see Fig. 2Abelow).

Thermodynamic calculations
Standard molal thermodynamic properties of the amino acids and unfolded proteins
estimated using amino acid group additivity were calculated as described by Dick, LaRowe
& Helgeson (2006), taking account of updated values for the methionine sidechain
group (LaRowe & Dick, 2012). In this study, the Gibbs energies of hypothetically non-
ionized proteins were used, and calculations were carried out at 37 ◦C and 1 bar. The
temperature dependence of standard Gibbs energies was calculated using the revised
Helgeson–Kirkham–Flowers (HKF) equations of state (Helgeson, Kirkham & Flowers, 1981;
Tanger IV & Helgeson, 1988). Thermodynamic properties for O2 (gas) were calculated using
data fromWagman et al. (1982) and theMaier–Kelley heat capacity function (Kelley, 1960).
Properties of liquid H2O were calculated using data and extrapolations coded in Fortran
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Figure 2 Average oxidation state of carbon (ZC) and water demand per residue (nH2O) for proteins
in selected datasets. Open red squares represent proteins enriched in tumors or more advanced cancer
stages, and filled blue circles represent proteins enriched in normal tissue or less advanced cancer stages.

subroutines from the SUPCRT92 package (Johnson, Oelkers & Helgeson, 1992), as provided
in the CHNOSZ package (Dick, 2008).

Chemical affinities of reactions were calculated using activities of amino acids in the
basis equal to 10−4, and activities of proteins equal to 1/(protein length) (i.e., unit activity
of amino acid residues). Continuing with the example of Reaction (R3), an estimate of the
standard Gibbs energy (1Go

f ) of the aqueous protein molecule (Dick, LaRowe & Helgeson,
2006; LaRowe & Dick, 2012) at 37 ◦C is −40,974 kcal/mol; combined with the standard
Gibbs energies of the basis species, this give a standard Gibbs energy of reaction (1Go

r )
equal to 66,889 kcal/mol. At logaH2O= 0 and logfO2 =−65, with activities of the amino
acid basis species equal to 10−4 , the overall Gibbs energy (1Gr ) is 24,701 kcal/mol. The
negative of this value is the chemical affinity (A) of the reaction. The per-residue chemical
affinity for formation of protein MUC1 in the stated conditions is −19.7 kcal/mol. (This
calculation can be reproduced using the function reaction() in file plot.R in Dataset S1.)

In a given system, proteins with higher (more positive) chemical affinity are relatively
energetically stabilized, and theoretically have a higher propensity to be formed. Therefore,
the differences in affinities reflect not only the amino acid compositions of the protein
molecules but also the potential for local environmental conditions to influence the relative
abundances of proteins.

Weighted rank difference
The contours on relative stability diagrams for the groups of differentially expressed
proteins (see Fig. 6 below) depict the weighted rank differences of chemical affinities
of formation of proteins. To illustrate this calculation, consider a hypothetical system
composed of 3 proteins with higher expression in cancer (C) and 4 with higher expression
in normal samples (down-expressed in cancer, i.e., having higher expression in a healthy
state) (H). Suppose that under one set of conditions (i.e., specified logaH2O and logfO2),
the per-residue affinities of the proteins give the following ranking in ascending order (I):

C C C H H H H
1 2 3 4 5 6 7
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This gives as the sum of ranks for up-expressed (C) proteins
∑

rC= 6, and for down-
expressed (H) proteins

∑
rH= 22. The difference in sum of ranks is 1rC−H=−16; the

negative value is associated with a higher rank sum for the down-expressed proteins,
indicating that these as a group are more stable than the down-expressed proteins. In a
second set of conditions, we might have (II):

H H H H C C C
1 2 3 4 5 6 7

Here, the difference of rank sums is 1rC−H= 18−10= 8.
For systems where the numbers of proteins in the two groups are equal, the maximum

possible differences in rank sums would have equal absolute values, but that is not the case
in this and other systems having unequal numbers of up- and down-expressed proteins.
To characterize these datasets, the weighted rank-sum difference can be calculated using

1r = 2
(nH
n

∑
rC−

nC
n

∑
rH
)

(3)

where nH, nC and n are the numbers of down-expressed, up-expressed, and total proteins
in the comparison. In the example here, we have nH/n= 4/7 and nC/n= 3/7. Equation (3)
then gives1r =−12 and1r = 12, respectively, for conditions (I) and (II) above, showing
equal weighted rank-sum differences for the two extreme rankings.

We can also consider a situation where the ranks of the proteins are evenly distributed:

H C H C H C H
1 2 3 4 5 6 7

Here the absolute difference of rank sums is 1rC−H = 12−16=−4, but the weighted
rank-sum difference is 1r = 0. The zero value for an even distribution and the opposite
values for the two extremes demonstrate the applicability of this weighting scheme.

Software and data availability
All statistical and thermodynamic calculations were performed using R (R Core Team,
2016). Thermodynamic calculations were carried out using R package CHNOSZ (Dick,
2008). Effect sizes (see below) were calculated using R package orddom (Rogmann, 2013).
Figures were generated using CHNOSZ and graphical functions available in R together
with the R package colorspace (Ihaka et al., 2015) for constructing an HCL-based color
palette (Zeileis, Hornik & Murrell, 2009). With the mentioned packages installed, Table 1
and the figures in this paper can be reproduced using the code (plot.R) and data files
(*.csv) in Dataset S1.

RESULTS
Compositional comparisons of human proteins
Comparisons of proteome composition in terms of average oxidation state of carbon
(ZC) and water demand per residue (n̄H2O) are presented in Fig. 2 and Table 1. Figure 2
shows scatterplots of individual protein compositions for proteomes in three representative
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studies. Each of these exhibits a strongly differential trend in ZC or n̄H2O that can be visually
identified. In Fig. 2A, chromatin-binding proteins highly expressed in carcinoma (Knol et
al., 2014) as a group exhibit a lower ZC than those found to be more abundant in adenoma.
In Fig. 2B, proteins relatively highly expressed in epithelial cells in adenoma (Uzozie et al.,
2014) tend to have higher n̄H2O than the proteins more highly expressed in paired normal
tissues. Differentially expressed proteins between adenoma and normal tissue identified in
a recent deep-proteome analysis (Wiśniewski et al., 2015) are compared in Fig. 2C, showing
that proteins up-expressed in adenoma are relatively oxidized (i.e., have higher ZC).

In order to quantify these differences, Table 1 shows the numbers of proteins in each
comparison (n1 for normal or less advanced cancer stage; n2 for tumor or more advanced
cancer stage), differences of means (MD), common language effect size as percentages
(ES), and p-values calculated using the Wilcoxon rank sum test. This non-parametric test
is suitable for data which may not be normally distributed. For a given experiment, the
common language effect size, or probability of superiority, describes the probability that
ZC or nH2O of a protein is higher in the cancer group than in the normal group. That is,
percent values of the ES greater than (or less than) 50 indicate a greater proportion of
pairwise higher (or lower) ZC or nH2O of proteins in the n2 compared to n1 groups. The
ES and p-value are used here to allow for a subjective assessment of the compositional
differences. ES values ≥60 or ≤40 and p-values < 0.05 are highlighted in the table. The
corresponding mean differences are underlined for p < 0.05, or bolded if ES is also ≥60 or
≤40. These cutoffs highlight datasets with the largest and most significant differences in
ZC and n̄H2O. Mean and median values of ZC and n̄H2O are given in file summary.csv in
Dataset S1.

Counting the underlined and bolded MD values in Table 1, the number of datasets with
a significant difference in ZC (18) is greater than those with a significant difference in n̄H2O

(10). Of the 10 unique studies yielding at least one dataset with a significant difference
in ZC in a comparison with normal tissue, 8 exhibit a higher mean value in adenoma or
carcinoma compared to normal tissue. One of the other studies (Besson et al., 2011) has
datasets with higher mean ZC in proteins up-expressed in adenoma, but lower mean ZC in
proteins up-expressed in stage II and III carcinoma, compared to normal tissue. A second
study, which analyzed proteins in stromal cells (Li et al., 2016), shows a significantly lower
ZC in adenoma compared to normal tissue.

Most of the studies analyzed proteins in whole or microdissected tissue, but two datasets
in studies from the same laboratory represent the nuclear matrix or chromatin-binding
fraction (Albrethsen et al., 2010; Knol et al., 2014). These two datasets give lower mean ZC

of proteins more highly expressed in carcinoma than adenoma. One other dataset has a
lower mean ZC of proteins up-expressed in carcinoma compared to adenoma (Wiśniewski
et al., 2015), and one has a higher mean value (Mikula et al., 2011).

The datasets with a significant difference in n̄H2O all show higher mean values for
proteins in adenoma (5 datasets) or carcinoma (3 datasets) compared to normal tissue,
up- expressed compared to down-expressed serum biomarker candidates (Jimenez et al.,
2010), and secreted proteins of tumor tissue compared to normal tissue (de Wit et al.,

Dick (2016), PeerJ, DOI 10.7717/peerj.2238 16/38

https://peerj.com
http://dx.doi.org/10.7717/peerj.2238/supp-1
http://dx.doi.org/10.7717/peerj.2238


2014). Interestingly, none of the datasets with a significant difference in n̄H2O corresponds
to a carcinoma/adenoma comparison.

Natural variability inherent in the heterogeneity of tumors, as well as differences in
experimental design and technical analysis, may underlie the opposite trends in ZC between
some datasets that compare the same stages of cancer. However, there is a preponderance
of datasets with higher values of ZC and n̄H2O for the proteins up-expressed in adenoma or
carcinoma compared to normal tissue.

Compositional comparisons of microbial proteins
Summary data on microbial populations from four studies were selected for comparison
here. First, in a study of 16S RNA of fecal microbiota, Wang et al. (2012) reported genera
that are significantly increased or decreased in CRC compared to healthy patients. In
order to compare the chemical compositions of the microbial populations, single species
with sequenced genomes were chosen to represent each of these genera (see Table 2).
Where possible, the species selected are those mentioned by Wang et al. (2012) as being
significantly altered, or are species reported in other studies to be present in healthy or
cancer states (see Table 2).

In the second study considered (Zeller et al., 2014), changes in the metagenomic
abundance of fecal microbiota associated with CRC were analyzed for their potential
as a biosignature for cancer detection. The species shown in Fig. 1A of Zeller et al. (2014)
with a log odds ratio greater than 0.15 were selected for comparison, and are listed
in Table 3. Zeller et al. (2014) found a strong enrichment of Fusobacterium in cancer,
consistent with previous reports (Kostic et al., 2012; Castellarin et al., 2012). In a third
study, Candela et al. (2014) reported the findings of a network analysis that identified
5 microbial ‘‘co-abundance groups’’ at the genus level. As before, single representative
species were selected in this study, and are listed in Table 2. Except for the presence of
Fusobacterium, the co-abundance groups show little genus-level overlap with community
profiles derived from the previous two studies.

Finally, Table 4 lists the ‘‘best aligned strain’’ from Supplementary Dataset 5 of Feng et
al. (2015) for all species shown there with negative enrichment in cancer, and for selected
species with positive enrichment in cancer. Although every uniquely named strain given
by Feng et al. (2015) was used in the comparisons below (n= 44; see Fig. 3D below), for
clarity only the up-enriched species that appear in the calculated stability diagram (see
Fig. 4D below) are listed in Table 4 and labeled in Fig. 3D. File microbes.csv in Dataset
S1 contains the complete list of Bioproject IDs and calculated ZC and n̄H2O for all the
microbial species considered here.

For each of the microbial species listed in Tables 2–4, a mean protein composition
was calculated by combining amino acid sequences of all proteins downloaded from
the NCBI genome page associated with the Bioproject IDs shown in the Tables (see file
microbial.aa.csv in Dataset S1). This method does not account for actual protein
abundances in organisms, and excludes any post-translational modifications. Calculation
of themean amino acid composition of proteins in this way is not an exact representation of
the cellular protein composition, but provides a starting point for identifying environmental
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Table 2 Microbial species selected as models for genera and co-abundance groups that differ between
CRC and healthy patients.

Phylum Species Abbrv. Bioproject Refs.

Model species for genera significantly higher in healthy patientsa

Bacteroidetes Bacteroides vulgatus ATCC 8482 Bvu PRJNA13378 c

Bacteroidetes Bacteroides uniformis ATCC 8492 Bun PRJNA18195 c

Firmicutes Roseburia intestinalis L1-82 (DSM 14610) Rin PRJNA30005 d

Bacteroidetes Alistipes indistinctus YIT 12060 Ain PRJNA46373 c

Firmicutes Eubacterium rectale ATCC 33656 Ere PRJNA29071 e

Proteobacteria Parasutterella excrementihominis YIT 11859 Pex PRJNA48497 f

Model species for genera significantly higher in CRC patientsa

Bacteroidetes Porphyromonas gingivalisW83 Pgi PRJNA48 g

Proteobacteria Escherichia coli NC101 Eco PRJNA47121 c,h

Firmicutes Enterococcus faecalis V583 Efa PRJNA57669 c

Firmicutes Streptococcus infantarius ATCC BAA-102 Sin PRJNA20527 i

Firmicutes Peptostreptococcus stomatis DSM 17678 Pst PRJNA34073 j

Bacteroidetes Bacteroides fragilis YCH46 Bfr PRJNA58195 g

Model species for protective co-abundance groupsb

Actinobacteria Bifidobacterium longum NCC2705 Blo PRJNA57939 g,k

Firmicutes Faecalibacterium prausnitzii SL3/3 Fpr PRJNA39151 e,l

Model species for pro-carcinogenic co-abundance groupsb

Fusobacteria Fusobacterium nucleatum ATCC 23726 Fnu PRJNA49043 m,n

Bacteroidetes Prevotella copri DSM 18205 Pco PRJNA30025 k,o

Firmicutes Coprobacillus sp. D7 Csp PRJNA32495 h

Notes.
aGenus identification from Table 2 ofWang et al. (2012). Based on comments inWang et al. (2012), Bacteroides is represented
here by two species (B. vulgatus and B. uniformis) in healthy patients, and one species (B. fragilis) in CRC patients.

bGenus-level definition of co-abundance groups from Candela et al. (2014).
cWang et al. (2012); species closely related to 16S rRNA-derived operational taxonomic units (OTUs; Fig. 2 ofWang et al.,
2012) or otherwise mentioned by those authors (E. faecalis).

dDuncan et al. (2002).
eLouis & Flint (2007).
fNagai et al. (2009).
gChen et al. (2012).
hCandela et al. (2014).
iBiarc et al. (2004).
jZeller et al. (2014).
kWeir et al. (2013).
lSokol et al. (2008).

mCastellarin et al. (2012).
nKostic et al. (2012).
ocf. Chen et al. (2012) and Candela et al. (2014) (more abundant in CRC patients);Weir et al. (2013) (more abundant in healthy
subjects).

signals in protein composition. Mean amino acid compositions or amino acid frequencies
deduced from microbial genomes, calculated without weighting for actual protein
abundance, have been used in many studies making evolutionary and/or environmental
comparisons (e.g., Tekaia & Yeramian, 2006; Zeldovich, Berezovsky & Shakhnovich, 2007;
Brbić et al., 2015). In the future, more refined calculations may be possible by using
genome-wide estimates of protein expression levels based on codon usage patterns (e.g.,
Moura, Savageau & Alves, 2013; Brbić et al., 2015).
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Table 3 Species from a consensus microbial signature for CRC classification of fecal metagenomes
(Zeller et al., 2014).Only species reported as having a log odds ratio larger than±0.15 are listed here, to-
gether with strains and Bioproject IDs used as models in the present study.

Species Strain Abbrv. Bioproject

Higher in CRC patients
Fusobacterium nucleatum subsp. vincentii ATCC 49256 Fnv PRJNA1419
Fusobacterium nucleatum subsp. animalis D11 Fna PRJNA32501
Peptostreptococcus stomatis DSM 17678 Pst PRJNA34073
Porphyromonas asaccharolytica DSM 20707 Pas PRJNA51745
Clostridium symbiosum ATCC 14940 Csy PRJNA18183
Clostridium hylemonae DSM 15053 Chy PRJNA30369
Lactobacillus salivarius ATCC 11741 Lsa PRJNA31503

Higher in healthy patients
Clostridium scindens ATCC 35704 Csc PRJNA18175
Eubacterium eligens ATCC 27750 Eel PRJNA29073
Methanosphaera stadtmanae DSM 3091 Mst PRJNA15579
Phascolarctobacterium succinatutens YIT 12067 Psu PRJNA48505
unclassified Ruminococcus sp. ATCC 29149(a) Rsp PRJNA18179
Streptococcus salivarius SK126 Ssa PRJNA34091

Notes.
aR. gnavus.

Table 4 Selected microbial species enriched or depleted in stool samples from cancer patients com-
pared to healthy controls (Feng et al., 2015).

Enriched species Abbrv. Depleted species Abbrv.

Bacteroides dorei Bdo Actinomyces viscosus Avi
Bacteroides ovatus Bov Bifidobacterium animalis Ban
butyrate-producing bacterium SS3/4 But Clostridium sp. SS2/1 Csp
Clostridium asparagiforme Cas Ruminococcus sp. 5_1_39BFAA Rsp
Fusobacterium sp. oral taxon 370 Fsp Streptococcus mutans Smu
Lachnospiraceae bacterium 3_1_57FAA_CT1 L57 Streptococcus thermophilus Sth
Paraprevotella clara Pcl
Peptostreptococcus stomatis Pst
Ruminococcaceae bacterium D16 Rba

The water demand per residue (nH2O) vs. oxidation state of carbon (ZC) in the mean
amino acid compositions of proteins from all of the microbial species considered here are
plotted in Figs. 1B and 1D, and for individual datasets in Fig. 3. The groups of proteins
in the microbes enriched in cancer patients have somewhat lower ZC than those enriched
in healthy donors in the same study. The dataset from Feng et al. (2015) (Fig. 3D) shows
a more complex distribution, where the microbes with a relative enrichment in healthy
individuals form two clusters at high and low ZC. The Fusobacterium species identified in
the studies of Zeller et al. (2014), Candela et al. (2014) and Feng et al. (2015) have the lowest
ZC of any microbial species considered here. The mean human protein composition is also
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Figure 3 Average oxidation state of carbon (ZC) and water demand per residue (nH2O) for mean amino
acid compositions of proteins in genomes of normal- and cancer-enrichedmicrobes. Data are shown
for representative species for (A) microbial genera identified in fecal 16s RNA (Wang et al., 2012; Ta-
ble 2 top), (B) microbial signatures in fecal metagenomes (Zeller et al., 2014; Table 3), (C) microbial co-
abundance groups (Candela et al., 2014; Table 2 bottom), and (D) best aligned strains to metagenomic
linkage groups in fecal samples (Feng et al., 2015; Table 4). The mean amino acid composition of proteins
in the Homo sapiens genome (Hsa) is also shown.

plotted in Fig. 3, revealing a higher ZC than any of the mean microbial proteins except
for Actinomyces viscosus and Bifidobacterium animalis, identified in the study of Feng et al.
(2015) (Fig. 3D). The tendency for microbial organisms to be composed of more reduced
biomolecules than the host may reflect the relatively reducing conditions in the gut.

Thermodynamic descriptions: background
Going beyond compositional comparisons, thermodynamic descriptions can account for
stoichiometric and energetic constraints and provide a richer interpretation of proteomic
data in the context of tumor microenvironments.

Dick (2016), PeerJ, DOI 10.7717/peerj.2238 20/38

https://peerj.com
http://dx.doi.org/10.7717/peerj.2238


−75 −70 −65 −60 −55
−10

−5

0

5

10

logfO2(g)

lo
ga

H
2O

(li
q

)

Bvu
Bun

Rin

Ain

Pex

Eco

Efa

Pst

fecal 16S rRNAA

−75 −70 −65 −60 −55
−10

−5

0

5

10

logfO2(g)

lo
ga

H
2O

(li
q

)

Fnv

Fna

Pas

Chy
Eel

Psu

Rsp

fecal metagenome (Table 3)B

−75 −70 −65 −60 −55
−10

−5

0

5

10

logfO2(g)

lo
ga

H
2O

(li
q

)

BloFpr

Fnu

Pco

Csp

co−abundance groupsC

−75 −70 −65 −60 −55
−10

−5

0

5

10

logfO2(g)

lo
ga

H
2O

(li
q

)

Bdo
Bov

But

Cas

Fsp

L57

Pcl

Pst

Rba

Avi

Ban

fecal metagenome (Table 4)D

−75 −70 −65 −60 −55
−10

−5

0

5

10

logfO2(g)

lo
ga

H
2O

(li
q

)

cumulative stability countE

Figure 4 Maximal relative stability diagrams for meanmicrobial protein compositions. Each stabil-
ity field in these diagrams shows the ranges of oxygen fugacity and water activity (in log units: logfO2 and
logaH2O) where the mean protein composition from the labeled microbial species has a higher per-residue
affinity (lower Gibbs energy) of formation than the others. Blue and red shading designate microbes rel-
atively enriched in samples from healthy donors and cancer patients, respectively. Plot (E) is a compos-
ite figure in which the intensity of shading corresponds to the number of overlapping healthy- or cancer-
enriched microbes in the preceding diagrams.

By combining both stoichiometric and energetic variables, a thermodynamic description
of proteomic data reveals possible biochemical constraints that may arise within cells and
in tumor microenvironments. To give an example of how relative stabilities of up- and
down-expressed proteins in a proteomic dataset can be calculated as a function of chemical
potentials, consider Reaction (R3) above written for the formation of one mole of MUC1.
In order to compare proteins of different lengths, the formula of the protein is written per
residue. The corresponding reaction is then

0.006C3H7NO2S+0.427C5H9NO4+0.411C5H10N2O3

→C4.203H8.557N1.253O2.403S0.006+0.714H2O+0.416O2. (R4)

An expression for the chemical affinity (Kondepudi & Prigogine, 1998;Helgeson et al., 2009)
of Reaction (R4) is

A= 2.303RT log(K/Q) (4)

where 2.303 is shorthand for the natural logarithm of 10,R is the gas constant,T is tempera-
ture, log represents the common (decimal) logarithm, and the activity quotientQ is given by

logQ= logaC4.203H8.557N1.253O2.403S0.006+0.714logaH2O+0.416logfO2

−0.006logaC3H7NO2S−0.427logaC5H9NO4−0.411logaC5H10N2O3 . (5)
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The equilibrium constant is given by −2.303RT logK =1Go
r , where 1Go

r is the standard
Gibbs energy of the reaction. As noted above, the standard Gibbs energies of species used
to calculate 1Go

r at T = 37 ◦C are generated using amino acid group additivity for the
proteins and published values for standard thermodynamic properties of the basis species
in the reaction.

To compare the potential for formation of metastable molecules, the per-residue
formulas of the proteins are assigned equal activities (1). Then, Eqs. (4)–(5) show that
the affinity, and hence relative potential for formation of different proteins, is a function
of not only their amino acid composition (which determines the chemical formulas and
standard Gibbs energies of the proteins used here), but also system parameters including
temperature and the chemical potentials of the components. In this study, the chemical
activities of the amino acid basis species are provisionally set to constant values (10−4),
while logfO2 and logaH2O are considered to be adjustable parameters that are used as
exploratory variables. The ranges of these variables shown on the diagrams are selected
in order to encompass the stability boundaries between groups of proteins differentially
enriched in cancer and normal samples.

There are combinations of chemical activities of basis species in Eq. (5) where the
per-residue formation reactions of two proteins have an equal affinity, indicating equal
chemical stability of the proteins. Other combinations of chemical activities of basis
species give the result that one protein-residue formula has a higher affinity than the
other(s), indicating greater stability of this protein. This concept provides an approach
for constructing stability diagrams, which may be called the ‘‘maximum affinity method’’,
that can be used to reproduce published equilibrium and metastable equilibrium diagrams
for many inorganic and organic systems as shown by examples in the CHNOSZ package
(Dick, 2008) and is used below for microbial proteins. Because of the greater numbers of
individual proteins in human proteomic datasets, a new method based on the difference
in weighted sums of ranks of affinities is used here to compare the relative stabilities of
groups of up- and down-expressed proteins in cancer.

Relative stability fields for microbial proteins
Stability diagrams are shown in Figs. 4A–4D for the four sets ofmicrobial proteins described
above. The first diagram, representing significantly changed genera detected in fecal 16S
rRNA (Wang et al., 2012; first part of Table 2), shows maximal stability fields for proteins
from 5 species relatively enriched in healthy patients, and 3 species enriched in CRC
patients. The other 4 proteins in the system are less stable than the others within the range
of logfO2 and logaH2O shown and do not appear on the diagram. The relative positions of the
stability fields in Fig. 4A are roughly aligned with the values of ZC and nH2O of the proteins;
note for example the high-logfO2 positions of the fields for the relatively high-ZC Escherichia
coli and Alistipes indistinctus, and the high-logaH2O position of the field for the high-nH2O

Peptostreptococcus stomatis. Except for E. coli, the proteins from the species enriched in
CRC occupy the lower logfO2 (reducing) and higher logaH2O zones of this diagram.

In thermodynamic calculations for proteins from bacteria detected in fecal metagenomes
(Zeller et al., 2014; Table 3), the mean protein compositions of 3 of 6 healthy-enriched
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microbes and 4 of 7 cancer-enriched microbes exhibit maximal relative stability fields
(Fig. 4B). Here, the cancer-associated proteins occupy the more reducing (Fusobacterium
nucleatum subsp. vincentii and subsp. animalis) or more oxidizing (Clostridium hylemonae,
Porphyromonas asaccharolytica) regions, while the proteins from bacteria more abundant
in healthy individuals are relatively stable at moderate oxidation–reduction conditions.

For the bacterial species representing microbial co-abundance groups (Candela et al.,
2014; second part of Table 2), all of the 5 mean protein compositions are present on the
diagram (Figs. 4C). Here, the proteins from cancer-enriched bacteria are more stable at
reducing conditions and those from healthy-enriched microbes are stabilized by oxidizing
conditions.

A stability diagram for proteins of bacteria identified in a second metagenomic study
(Feng et al., 2015) shows a similar result (Fig. 3D) for the 11 mean protein compositions
with highest stability at some point the diagram. These patterns in relative stability again
reflect the differences in ZC of the proteins, although in this case, a greater proportion of
proteins (33 out of the 44 included in the calculations) are not found to have maximal
stability fields. The resulting stability diagram is therefore a more limited portrayal of the
available data.

Figure 4E is a composite representation of the calculations, in which higher cumulative
counts of maximal stability of proteins from bacteria enriched in normal and cancer
samples in the four studies are represented by deeper blue and red shading, respectively.
According to this diagram, the chemical conditions predicted to be most favorable for
the formation of proteins in many bacteria enriched in CRC are characterized by low
logfO2 . Proteins from bacteria that are abundant in healthy patients tend to be stabilized
by moderate values of logfO2 . Despite the differences in experimental design and microbial
identification between studies, the thermodynamic calculations reveal a shared pattern of
relative stabilities among the four datasets considered here.

Relative stability fields for human proteins
Diagrams like those shown above that portray the maximally stable protein compositions
are inadequate for analysis of larger datasets such as those generated in proteomic studies. It
is apparent in Fig. 5 that only three different proteins up-expressed in cancer, from the 106
proteins in the KWA+14 dataset (chromatin-binding proteins in carcinoma/adenoma), are
maximally stable across a range of logfO2 . However, visual inspection reveals a differential
sensitivity to oxygen fugacity in the whole dataset, with lower logfO2 providing relatively
higher potential for the formation of many of the up-expressed proteins in carcinoma
samples. How can these responses be quantified in order to explore the data in multiple
dimensions, including both logaH2O and logfO2?

In Fig. 5B, the difference in mean values of chemical affinity per residue of carcinoma
and adenoma-associated proteins appears as a straight line as a function of logfO2 . This
linear behavior would translate to evenly spaced isostability (taken as constant mean
affinity difference) contours on a logfO2–logaH2O diagram. The weighted rank difference
of affinities (see Methods), shown by the curved line Fig. 5B, is a summary function that
is more informative of changing chemical conditions. The variable slope is greatest near
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Figure 5 Calculated chemical affinities per residue of proteins in the KWA+14 dataset. Values for indi-
vidual proteins as a function of logfO2 at logaH2O = 0 are shown in plot (A) as deviations from the mean
value for all proteins. Down- and up-expressed proteins in carcinoma compared to adenoma are indi-
cated by solid blue and dashed red lines, respectively. Plot (B) shows the difference in mean value between
down- and up-expressed proteins (straight line and left-hand y-axis) and the weighted difference in sums
of ranks of affinities as a percentage of maximum possible rank-sum difference (Eq. (3); curved line and
right-side y-axis). Positive values of affinity or rank-sum difference in plot (B) correspond to relatively
greater stability of the up-expressed proteins.

the zone of convergence for affinities of individual proteins (Fig. 5A), corresponding to
the transition zone between groups of proteins. The resulting two-dimensional stability
diagrams shown below have curved and diversely spaced isostability (taken as constant
weighted rank difference of affinity) contours.

The diagrams in Fig. 6 portray weighted rank differences of chemical affinities of
formation between groups of up- and down-expressed proteins reported for proteomic
experiments. These combined depictions of stoichiometric and energetic differences
constitute a theoretical prediction of the relative chemical (not conformational) stabilities
of the proteins.

The slopes of the equal-stability lines and the positions of the stability fields reflect the
magnitude and sign of differences in ZC and n̄H2O. Figures 6A–6C show results for datasets
that are dominated by differences in n̄H2O; the nearly horizontal lines show that relative
stabilities are accordingly more sensitive to logaH2O than logfO2 . The second row depicts
relative stabilities in the three datasets fromMikula et al. (2011), which have large changes
in, sequentially, n̄H2O, ZC, then both of these (Table 1). Accordingly, the equal-stability
lines for these datasets are closer to horizontal, closer to vertical, or have a more diagonal
trend (Figs. 6D–6F).

The last row shows results for datasets that are characterized by large changes in ZC;
the relative stabilities depend strongly on logfO2 . According to Fig. 6G, higher oxygen
fugacity increases the relative potential for the formation of proteins up-expressed in
cancer (dataset of Jankova et al., 2011). However, in a dataset for up- and down-expressed
chromatin-binding proteins in carcinoma (Knol et al., 2014), lower logfO2 is predicted to
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Figure 6 Weighted rank-sum comparisons of chemical affinities of formation of human proteins as
a function of logfO2 and logaH2O. The solid lines indicate equal ranking of proteins in the ‘‘normal’’ and
‘‘cancer’’ groups (Table 1), and dotted contours are drawn at 10% increments of the maximum possible
rank-sum difference. Blue and red areas correspond to higher ranking of cancer- and normal-enriched
proteins, respectively, with the intensity of the shading increasing up to 50% the maximum possible rank-
sum difference. (For readers without a color copy: the stability fields for proteins up-expressed in can-
cer lie above (A–D), to the right of (E–G), or to the left of (H) the stability fields for proteins with higher
expression in normal tissue.) Panel (I) shows calculated values of Eh over the same ranges of logfO2 and
logaH2O (cf. Reaction (R5)).

promote formation of the proteins up-expressed in carcinoma. This is the opposite trend to
that found for most of the other datasets with significant differences in ZC. These opposing
trends might be attributed to different biochemical constraints acting at the subcellular
and cellular or tissue levels during carcinogenesis.

The full set of diagrams for all datasets listed in Table 1 is provided in Fig. S1. It is
notable that for the datasets where the relative stabilities are strongly a function of logaH2O

(sub-horizontal lines), the equal-stability lines are within a few log units of 0 (unit activity).
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Equal-stability lines that are diagonal often cross unit activity of H2O at a moderate value
of logfO2 , near −65 to −60 (see Fig. S1). This could be indicative of a tendency for these
proteomic transformations to be partially buffered by other redox reactions in the cell,
and/or by liquid-like H2O with close to unit activity.

Effective values of oxidation–reduction potential (Eh) can be calculated by considering
the water dissociation reaction, i.e.,

H2O

1
2
O2+2H++2e−. (R5)

If one assumes that logaH2O= 0 (unit water activity, as in an infinitely dilute solution), this
reaction can be used to interconvert logfO2 , pH and pe (or, in conjunction with the Nernst
equation, Eh) (e.g., Garrels & Christ, 1965, p. 176; Anderson, 2005, p. 363). However, in
the approach utilized here for assessing the relative stabilities of proteins in a subcellular
context, no such assumptions are made on the operational value of logaH2O. Instead, it is
used as an indicator of the internal state of the system, and is not necessarily buffered by an
aqueous solution. Consequently, the effective Eh is considered to be a function of variable
logfO2 and logaH2O, as shown in Fig. 6I for pH = 7.4 and T = 37 ◦C. This comparison
gives some perspective on operationally reasonable ranges of logfO2 and logaH2O.

The subcellular reduction potential monitored by the reduced glutathione
(GSH)/oxidized glutathione disulfide (GSSG) couple ranges from ca. −260 mV for
proliferating cells to ca. −170 mV for apoptotic cells (Schafer & Buettner, 2001), lying
toward the middle part of the range of conditions shown in Fig. 6. A physiologically
plausible Eh value of −0.2 V, corresponding to logfO2 =−62.8 at unit activity of H2O, is
close to the stability transitions for many of the datasets considered here (see also Fig. S1).

Comparison with inorganic basis species
Figures made using Basis I (inorganic basis species, e.g., Reaction (R1)) are provided in
the Supplemental Information (human proteins: Fig. S2; microbial proteins: Fig. S3). The
stability boundaries in logaH2O–logfO2 diagrams constructed using Basis I cluster around
a common, positive slope, in contrast with the greater diversity of slopes appearing on the
corresponding diagrams constructed using Basis II (Fig. S1).

As noted above, all mathematically possible choices for the basis species of a system
are thermodynamically valid, but it appears that Basis II affords a greater convenience for
interpretation. That is, compared to Basis I, Basis II yields a greater degree of separation of
the effects of changing chemical potentials of H2O and O2 under the assumption that the
activities of the remaining basis species (inorganic species in Basis I, or amino acids in Basis
II) are held constant. However, it is also notable that two of the diagrams constructed using
Basis I (Fig. S2), unlike the others, have nearly horizontal equal-stability lines, showing that
increasing activity of H2O at constant activity of CO2, NH3, H2S and fugacity of O2 gives an
energetic advantage to the formation of potential up-expressed serum biomarkers (dataset
JKMF10; Jimenez et al., 2010) and proteins up-expressed in an ‘‘epithelial cell signature’’ for
adenoma (dataset UNS+14; Uzozie et al., 2014). These datasets are also found to be among
those having significantly differential water demand using Basis II (Table 1; Fig. S1). Based
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on the similar results for these datasets using different choices of chemical components,
it can be suggested that the compositions of the differentially expressed proteins in these
datasets are especially indicative of changes in hydration potential.

DISCUSSION
Among 35 proteomic datasets considered here (Table 1), many have significantly higher
values of average oxidation state of carbon (ZC) in proteins up-expressed in adenoma
or carcinoma compared to normal tissue. While a decrease in oxidation state might be
expected if the differential expression of proteins was to some extent an adaptation to
hypoxic conditions in tumors, the observed increase is more consistent with potentially
oxidizing subcellular conditions that may accompany mitochondrial generation of ROS.

Available data for the adenoma to carcinoma transition are less conclusive: different
datasets have relatively higher (Mikula et al., 2011) or lower (Wiśniewski et al., 2015)
ZC of up-expressed proteins in carcinoma. A trend toward more reduced proteins in
carcinoma compared to adenoma is also apparent in datasets for nuclear matrix fractions
in chromosomal instability (CIN-type) CRC (Albrethsen et al., 2010) and for chromatin-
binding fractions (Knol et al., 2014). It is possible that particular subtypes of cancer and/or
subfractions of cells have patterns of protein expression during carcinogenesis that are
chemically distinct from trends observed at the tissue level.

Some proteomic datasets are also available for stromal cells associated with tumor
tissues. Data from one study (Mu et al., 2013) are consistent with the generally observed
higher ZC of protein in tumors, but data from a pair of recent studies that analyzed
cancer and stromal cells from the same set of tissues (Li et al., 2016; Peng et al., 2016)
show that the proteins up-expressed in stromal cells, but not tumor cells, of adenoma are
reduced compared to normal cells. Also, proteins up-expressed in tumor cells, but not
stromal cells from carcinoma in situ, have a relatively oxidized composition (Table 1). If an
opposing trend in ZC between stromal and epithelial cells is indeed established, it might be
evidence for a proteome-level manifestation of metabolic coupling (Martinez-Outschoorn,
Lisanti & Sotgia, 2014) between tissue compartments in cancer. The ‘‘lactate shuttle’’
between metabolically coupled cells can be characterized in part by the difference between
oxidation states of carbon in lactate (ZC= 0) and pyruvate (ZC= 0.667) (Brooks, 2009).
More work is needed to understand how the fluxes of anabolic precursors and catabolic
products between tissue compartments might contribute to the differential oxidation states
of carbon in proteins observed in cancer.

The datasets available for comparison ofmean protein compositions of bacteria enriched
in healthy subjects and cancer patients are characterized by lower ZC in proteins of bacteria
with higher abundance in cancer patients (Fig. 3), and consequently stabilization of these
proteins by lower oxygen fugacity (logfO2 ; Fig. 4). This trend could be viewed as an
adaptation of microbial communities to minimize the energetic costs of biomass synthesis
in more reducing conditions. The opposite trends in ZC for the human and bacterial
proteins also raises the possibility that their mutual proteomic makeup is partially the
result of a redox balance, or coupling.
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Another major outcome of the compositional comparisons of human proteomes is the
increase in water demand per residue (n̄H2O) apparent in some datasets for CRC tissues
and in a list of candidate biomarkers summarized in a literature review (Jimenez et al.,
2010) (Table 1). Higher hydration levels in breast cancer tissues have been observed
spectroscopically (Abramczyk et al., 2014), and it has been proposed that increased
hydration plays a role in reversion to an embryological mode of growth (McIntyre, 2006).
The thermodynamic calculations used to generate Fig. 6 support the possibility that higher
water activity increases the potential for formation of the proteins up-expressed in cancer
relative to normal tissue.

Although the ranges of logaH2O and logfO2 derived from the model indicate to some
extent the hydration and oxidation states of the system, they can not be interpreted directly
in terms of measurable concentrations of water and oxygen. There are astronomical
differences between theoretical values of oxygen fugacity in thermodynamic models and
actual concentrations or partial pressures of oxygen (e.g., Anderson, 2005, p. 364–365).
Partial pressures of oxygen in human arterial blood are around 90–100 mmHg, and
approximate threshold values for physiological hypoxia include 10 mmHg for energy
metabolism, 0.5 mmHg for mitochondrial oxidative phosphorylation, and 0.02 mmHg
for full oxidation of cytochromes (Höckel & Vaupel, 2001). Assuming ideal mixing, the
equivalent range of oxygen fugacities indicated by these measurements is logfO2 =−4.57
to −0.88, higher by far than the values that delimit the relative stabilities of cancer- and
normal-enriched proteins computed here.

Likewise, the ranges of logaH2O calculated here deviate tremendously from laboratory-
based determination of water activity or hydration levels.Water activity in saturated protein
solutions is not lower than 0.5 (Knezic, Zaccaro & Myerson, 2004), and recent experiments
and extrapolations predict a range of ca. 0.600 to 0.650 for growth of various xerophilic
and halophilic eukaryotes and prokaryotes (Stevenson et al., 2015). In general, cytoplasmic
water activity is probably not greatly different from aqueous growth media, at 0.95 to
1 (Cayley, Guttman & Record, 2000). The theoretically computed transitions in relative
stabilities between proteins from cancer and healthy tissues occur at much lower values
of aH2O (ca. 10−6 ; Fig. 6B) or at values approaching 1, depending on the oxygen fugacity
(Fig. 6; Fig. S1).

Despite the difficulties in a quantitative interpretation, theoretical predictions of
stabilization of cancer-related proteins by an increase in logfO2 (e.g., Figs. 6D–6G) can be
interpreted qualitatively as corresponding with an increase in effective redox potential if
logaH2O is held constant (Fig. 6I). Alternatively, proteins up-expressed in cancer tissues
in each of the datasets shown in Figs. 6A–6G can be relatively stabilized along a trajectory
of increasing both logfO2 and logaH2O at constant effective redox potential near −0.2 V
(Fig. 6I). Under this interpretation, local increases in both oxidation and hydration state
are likely contributors to the proteomic transformations in colorectal cancer.

CONCLUSION
An integrated picture of proteomic remodeling in cancer may benefit from accounting
for the stoichiometric and energetic requirements of protein formation. This study has
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identified a strong shift toward higher average oxidation state of carbon in proteins that are
more highly expressed in colorectal cancer. This pattern is identified across multiple data
sets, increasing confidence in its systematic nature. In some other data sets, a systematic
change can be identified indicating greater water demand for formation of human proteins
in cancer compared to normal tissue.

The proteomic data can be theoretically linked to microenvironmental conditions using
thermodynamic models, which give estimates of the oxidation- and hydration-potential
limits for relative stability of groups of proteins. These calculations outline a path connecting
the dynamic compositions of proteomes to biochemical measurements such as Eh. This
approach can be used in conjunction with other datasets to characterize chemical changes
in proteomes in different types of cancer and in the progression to metastasis.
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