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Abstract: Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is
considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and
a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients
have distant metastases at the time of diagnosis. However, despite the fact that social and medical
awareness of CRC has increased in recent years and screening programmes have expanded, there is
still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the
currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins
that play an important role in the formation and progression of CRC are being sought. A number of
recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins
are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific
signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs,
particularly the expression of Granzyme A, and inflammation. This paper summarises the role of
GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it
seems that GZMs could become the focus of research into new CRC biomarkers.
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1. Colorectal Cancer—An Urgent Need for Novel Biomarkers

Colorectal cancer (CRC) is the third most common malignancy in men and the second
most common malignancy in women [1]. Notwithstanding the progress made in the
detection and treatment of this type of cancer, CRC remains one of the leading causes of
cancer-related deaths worldwide, with almost two million new cases each year [2,3].

Despite the fact that most many people may develop CRC, some risk factors have re-
cently been identified and linked to tumour development. Those affecting cancer formation
and progression may be divided into two main subgroups: environmental (modifiable)
and genetic (non-modifiable) [4] (Table 1). It has been indicated that the interaction be-
tween environmental risk factors and genetic variations may contribute to increased CRC
risk [2,3].

Table 1. Modifiable and non-modifiable risk factors of CRC.

Non-Modifiable Risk Factors Modifiable Risk Factors

age
sex

ethnicity
family history

personal history of adenomas
polyposis syndromes

inflammatory bowel disease
BRCA gene mutations

red meat consumption
processed meat consumption

smoking tobacco
alcohol abuse
low-fibre diet

overweight and obesity
lack of physical activity
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Depending on the origin of the mutation, CRCs are classified as sporadic, inherited,
and familial [5,6]. Recent studies show that over 70% of CRCs are sporadic and occur in
patients with neither a family history of CRC nor genetic predisposition. The process of
CRC formation seems to lead to an accumulation of genetic changes that can cause the
transformation from normal epithelium to adenomatous polyps, and ultimately to invasive
colon cancer. Genomic profiling has demonstrated significant intra-tumour and inter-
tumour heterogeneity, which is primarily due to the accumulation of a variety of genetic
mutations and chromosomal aberrations during both disease initiation and progression [7].
It is assumed that there are three main mechanisms responsible for sporadic carcinogenesis
in the colon [5,8]. They are chromosomal instability (CIN), microsatellite instability (MSI),
and CpG island methylator phenotype (CIMP), which is a feature of the mutator phenotype.

The CIN mechanism has been found to be responsible for around 70% of sporadic
CRCs. These tumours are mainly characterised by an accumulation of structural and
numerical chromosomal abnormalities, which results in an aneuploid karyotype and
chromosomal rearrangements [9]. This classical model of CRC development assumes
the coexistence of several mutations in suppressor genes, such as APC regulator of WNT
Signaling Pathway (APC) or tumour protein p53 (TP53), and overlapping mutations of
proto-oncogenes, e.g., K-RAS (KRAS proto-oncogene), which activate the critical pathways
that determine further progression [10].

The molecular mechanism of microsatellite instability is not fully understood. How-
ever, it is suggested that the MSI associated with carcinogenesis is due to the malfunction
of proteins involved in DNA repair [11]. Damage to the DNA repair system may be re-
sponsible for the failure to remove the point mutations that arise during the preparation
for cell division and with oncogenic factors during interphase. As a consequence, the
number of mutations increase up to 700 times compared to cells with an efficient DNA
repair system [12,13]. Analysis of selected microsatellite markers is important as it allows
for the molecular classification of CRC, which takes into account such features as tumour
location, tumour growth rate, cell malignancy, and the ability to metastasize. Moreover,
an equally important issue concerns the molecular evaluation of selected microsatellite
markers in inflammatory conditions, which increase the risk of the development of a neo-
plastic process. MSI occurs in hereditary and sporadic neoplasms, although with different
frequency [13,14].

The third mechanism involved in the development of colorectal cancer is that asso-
ciated with epigenetic instability, including DNA methylation. Then, many suppressor
genes such as cyclin-dependent kinase inhibitor 2A (CDKN2A) are silenced by DNA methy-
lation, which leads to disruption of cell division processes and apoptosis [15]. A group
of neoplasms with a high level of methylation of many genes is known as the CpG Islet
Methylator Phenotype (CIMP), which is diagnosed in approximately 15% of colorectal
cancer cases. Thus, it is worth remembering that the mentioned mechanism leading to the
development of colorectal cancer may overlap or occur at different stages of the course of
carcinogenesis [16].

However, not all processes involved in colon carcinogenesis have been fully elucidated.
It has been reported that most CRCs develop slowly, arising from benign lesions called
polyps [17]. Initially, small polyps arise from large intestinal epithelial cells. Some of them
grow excessively, develop dysplasia, and develop either into precancerous changes that
take the form of benign adenomas or become cancerous [18].

Due to the high incidence and mortality rates of CRC, early detection is crucial to
improving outcomes. This malignancy is commonly diagnosed at an advanced stage
based on the following signs and symptoms: a change in bowel habits, cramping and
abdominal pain, unintentional weight loss, rectal bleeding with bright red blood, blood
in the stool, and fatigue [19]. However, the greatest challenge in CRC is its asymptomatic
course since, particularly in the early stages of the disease, most patients do not report any
alarming symptoms [20,21]. Currently, there are many commonly available tools used in
the process of diagnosing CRC such as a comprehensive patient interview and a physical
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examination, as well as more specialistic tests including laboratory and radiological tests
and histopathological examination [22].

Regular CRC screening, which is recommended to begin at age 45 in the case of people
at average risk of colorectal cancer, is crucial for the prevention and detection of this type of
cancer. Screening for CRC (secondary prevention of CRC) involves the use of tests to detect
cancer early, and thus reduce patient mortality [23]. It should be emphasized, however,
that the effectiveness of screening for CRC is dependent not only on the use of a particular
modality but also on the patient’s compliance. There are many colorectal cancer screening
tests available, but each of them has its benefits and limitations. The characteristics of each
test have an impact on the doctor’s decision regarding the selection of the most appropriate
screening option for the patient. The most commonly used tests include stool tests: FOBT
(faecal occult blood test), FIT (faecal immunochemical test) and FIT-DNA (also referred to as
a stool DNA test), flexible sigmoidoscopy, colonoscopy, and computed colonography [24].
The advantages and disadvantages of the selected screening methods are presented on
Figure 1 [25–28].
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Despite the availability of multiple screening modalities, the search for new CRC
biomarkers continues. A growing body of evidence suggests that ion channels are not
only responsible for regulating homeostasis and ion potentials, but are also involved, inter
alia, in cell proliferation and apoptosis [29]. Diseases that develop because of defects in
ion channels caused by either genetic or acquired factors are called channelopathies. New
studies show that ion channels and transporters (ICTs) are one of the factors involved in
carcinogenesis, and their abnormal expression or activity may contribute to the malignant
transformation as well as progression of many gastrointestinal cancers, including CRC [30].
The best-characterised channels are potassium, chloride, calcium, sodium, and zinc. Most
of these channels act as oncogenes in the pathogenesis of CRC (KCNC1, KCNN4, CLIC1,
TRPC1, SCN1A, ZnT5) and some of them can suppress tumour growth (CLCA1, CLCA2,
TRPM6, stim2, SCN8A) [29,31,32].

2. Granzymes—Structure, Function and Apoptosis

T lymphocytes (T cells) and Natural Killer (NK) cells are specialised to track down
cancerous or virus-infected cells in the human body. The trait that defines cytotoxic
lymphocytes relates to the expression and release of potent toxins [33]. They produce the
so-called granzymes—special enzymes of the immune system that are capable of causing



Int. J. Mol. Sci. 2022, 23, 5277 4 of 13

the self-destruction of infected cells [34]. Granule-associated enzymes (GZMs) are members
of the serine proteases family and are structurally related to chymotrypsin. They have
highly conserved residues at positions 1–4 and 9–16, and they also commonly have three
conserved disulphide bridges. The classification of these proteins includes their cleavage
specificity. Five human GZMs have been found: Granzyme A (GZMA), GZMB, GZMH,
GZMK, and GZMM [35], while seven GZMs have been discovered in rats (GZMA-C, GzmI-
K, and GzmM) and ten in mice (GZMA-G, GZMK-M) [36,37]. Although human GZMs
show high homology (40%) in the amino acid sequence, they differ in the specificity of their
primary substrate—the amino acid that is cleaved most preferably by GZMs—which leads
to their specific degradation [38].

GZMs are a key element in the pathogenesis of many diseases, contributing to the
progression of cardiovascular diseases, diabetes, atopic dermatitis, and sepsis [39–41].
Studies have demonstrated that inhibiting GZMB reduces disease severity in autoimmune
blistering diseases. Thus, enhanced GZMs expression is not protective. In fact, GZMs
are involved in a number of pathologies, suggesting that their cytotoxic activity requires
regulation of both the production and release of GZMs. This is crucial for the effective and,
principally, safe functioning of cytotoxic immune cells [42].

It is commonly known that selected GZMs show unique substrate repertoires and
can act both intracellularly and extracellularly. The extracellular presence of granzymes
may be the result of immune synapse leakage during cytotoxic T lymphocyte responses.
Alternatively, another theory suggests that GZMs could be actively secreted during in-
flammation [43]. As for the remaining serine proteases, the catalytic activity of GZMs is
dependent on a serine residue at the active site. Although the ability of GZMs to eliminate
target cells by various mechanisms and types of induced cell death is still considered their
major function, it has become clear that not all granzymes have specific cytotoxic functions.
These proteins, found in extracellular human fluids, contribute to the inflammatory re-
sponse and processes related to the degradation of the extracellular matrix (ECM), as well
as vascular permeability and dysfunction, the release of matrix-sequestering growth factors,
or receptor activation [44,45]. However, elimination of specific target cells seems to be the
key aspect of the efficacy of cancer immunotherapy. Targeting the cytotoxic effects of T
lymphocytes appears to be important for improving treatment efficacy without enhancing
side effects [46].

For a number of years, scientists have tried to determine the mechanism by which
GZMs can penetrate inside infected cells, and two potential models have been proposed [47].
In the first model, GZMs (GZMB) are transported across the cell membrane after attachment
to cell surface heparan sulphate (HS). Although the membrane transport theory has a solid
foundation, it has been observed that HS binding to GZMB causes side effects [48]. Hence,
a suggestion that an alternative mechanism is necessary for the application of GZMB-based
therapies in humans has been put forward.

In the second model, GZMB enters the target cell through unique channels in the
disrupted lipid membrane. Cytotoxic cellular apoptosis is induced via the granular se-
cretion or the death receptor pathway [49]. After recognising the target cell, cytotoxic
cells are able to start releasing the content of certain granules into the immune synapse.
Perforin provides GZMs with access to the cytosol of the target cell, where GZMs cleave
their complex with substrates and begin to promote programmed cell death [50–52]. Since
the pores made of perforin are very small and only permeable for a short time, scientists
have favoured the membrane transport model. However, membrane-transported GZMs
can also damage healthy cells. The creation of the perforin/granzyme tuner is shown in
Figure 2 [53]. Apoptosis is one of the natural biological processes of programmed and
controlled cell death in the body [54]. This mechanism is necessary and has a positive effect
on proper development and homeostasis, and it also prevents excessive proliferation of
harmful cells in the body. Used, damaged, or unnecessary cells are constantly removed,
and new ones are created in their place [55]. Initiation of apoptosis can occur extrinsically
or intrinsically and it leads to a number of biochemical and morphological changes in the
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cell. During this process, the cell shrinks and the cell membrane is bubbled. Nuclear DNA
fragmentation and nucleus condensation also occur. As a result, the integrity of the cell
membrane in the early phase of apoptosis is preserved. Then, apoptotic cells are removed
by phagocytes before they become lytic [56–58]. This process is critical to avoid inflam-
mation or autoimmunity, which are undesirable phenomena in the body. Since apoptosis
cannot be stopped or reversed, there must be effective mechanisms to regulate this process.
Caspases and Fas receptors stimulate the process of apoptosis, while Bcl-2 proteins have
an inhibitory effect. Although Granzyme A and Granzyme B represent different apoptotic
pathways, they share a common mechanism for reaching the target cell through the pores
in the cell membrane [59,60].
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GZMB can induce two types of apoptotic cell death: intracellular apoptosis, which
is perforin-dependent, and extracellular perforin-independent apoptosis, called anoikis.
Anoikis is a mechanism activated in certain cell types by the loss of connectivity with
the matrix or with other cells, resulting in apoptotic cell death. It plays a role in pre-
venting inappropriate translocation of cells and allows for the elimination of detached
cells, thus maintaining tissue homeostasis [61–63]. On the other hand, GZMA activates
the caspase-independent cell death pathway with morphological features of apoptosis.
Nevertheless, it has unique substrates and mediators. After entering the cytosol of target
cells, GZMA is transported into the mitochondria via the translocase of the inner membrane
(Tim)/translocase of the outer membrane (Tom)/protein-associated motor (Pam) import
pathway [64].

3. GZMs in Inflammation

Inflammation is a multi-step process that is a physiological response to infection or
tissue damage. It is essential for survival and has a proven beneficial effect on the neu-
tralisation of any dangerous or harmful factors [65,66]. This process is closely related
to the various anti-inflammatory mechanisms that maintain tissue homeostasis in the
body. Certain circumstances disrupt immune homeostasis, which can lead to acute and
chronic inflammatory states, including cardiovascular, pulmonary, metabolic diseases, and
even cancer [67–70]. Understanding the mechanisms involved in both the development
and progression of pathological states is crucial to finding effective therapies. Although
the function of GZMs as immune regulators was suggested decades ago, they are still
of interest due to discoveries in which certain GZMs were shown to have the influence
on stimulating cytokine expression, thereby promoting inflammation [71,72]. As already
mentioned, it is now known that individual GZMs may act both intracellularly and extra-
cellularly and may contribute to increased vascular permeability and disfunction. Growing
evidence demonstrates that extracellular GZMs are strongly involved in the modulation of
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inflammatory pathways [73] since increased GZMs concentrations have been observed in
the sera or plasma of patients suffering from inflammatory diseases such as rheumatoid
arthritis (GZMA, B), viral infections (GZMA, B, K), sepsis (GZMA, B, K, M), and acute
airway inflammation (GZMK) [74–76]. A recent study found that GZMM is also involved
in the early stages of mucositis as GZMM knockout mice exhibit increased inflammation
in a mouse model of ulcerative colitis. The above observations prompted researchers to
investigate the other functions of these proteases in inflammatory processes. Consequently,
it was proven that particularly GZMA and GZMK, by acting as extracellular proteases,
regulate the inflammatory response independent of their ability to induce cell death [77].
However, the molecular mechanisms by which GZMs directly release pro-inflammatory
cytokines still remain unclear. While GZMK is able to cleave and activate Protease Ac-
tivating Receptor 1 (PAR1), thereby leading to the release of cytokines from fibroblasts,
GZMA can convert pro-IL-1β into bioactive IL-1β in human monocytes [77,78]. In addition,
GZMA is able to mediate the release of proinflammatory cytokines from several cell types
such as monocytes, epithelial cells, and fibroblasts. It has also been observed that GZMs
may interfere with the LPS-TLR4-induced cytokine response during antimicrobial innate
immune responses [79].

4. Inflammation and Carcinogenesis

Inflammation is a predisposing factor to cancer development and plays a role in
promoting all stages of tumour formation. Cancer cells interact with the surrounding
stromal cells and inflammatory cells to create an inflammatory tumour microenvironment
(TME) [80]. The link between inflammation and neoplasms has been originally suggested
based on the observation of inflammatory cells like macrophages in tumour biopsies [81,82].
Macrophages, neutrophils, fibroblasts, and epithelial cells interact through the release of
multiple mediators that support both inflammation and carcinogenesis [83–88]. However,
little is known about the molecular mechanisms that control the production of these pro-
inflammatory factors during both gut inflammation and CRC. Therefore, the regulation of
inflammation by pharmaceuticals is not entirely specific and is associated with serious side
effects in many cases [89,90].

Chronic inflammation is one of the unfavourable prognostic factors for the progression
of solid tumours such as CRC [91]. It is well known that patients with ulcerative colitis (UC)
are at increased risk of developing CRC [92]. Moreover, it has also been demonstrated that
inflammation is involved in both sporadic and hereditary CRC [93]. Pathological analysis
of CRC tissues has revealed infiltration of various cell types such as neutrophils, mast
cells, NK cells, dendritic cells (DCs), and tumour associated macrophages (TAMs) [94]. An
important element is also the participation of these cells in the recruitment and interaction
with other cells involved in various types of immune responses, which in turn leads to a
balance of immune surveillance. This phenomenon helps in the early detection of abnormal
foci and allows for the elimination of potentially abnormal cells [95]. However, it is impor-
tant to remember that chronic inflammation creates a favourable microenvironment that
overwhelms immune surveillance. Some researchers have suggested three main patterns
by which inflammation could be linked to CRC. The first of them—inflammation-associated
tumorigenesis—demonstrates that chronic inflammation may result from infection or dys-
regulated immune response, thus promoting tumorigenesis via, e.g., DNA damage. The
second is when tumour-elicited inflammation initiates the inflammatory response, and the
third is when therapy-induced inflammation may trigger inflammation that promotes tu-
mour development by releasing damage-related molecular patterns (DAMP) from necrotic
cells [96–98].

As inflammation is one of the major risk factors for CRC, it has been suggested that
GZMs, which have pro-inflammatory properties, are involved in the development and
progression of many cancers, including CRC. A better understanding of the mechanisms
involved in the development of CRC may lead to the identification of new targets as well
as improvement in current anti-CRC therapy [99,100].
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5. GZMs in CRC

The immune system has evolved a number of mechanisms that are aimed at protecting
the host organism against pathogens, as well as cancer, while maintaining self-tolerance,
which is prevents the body from having an autoimmune reaction [86]. Among these
mechanisms, both NK and Tc cells are able to recognize and kill target cells. However, an
important element in immune response is control mechanisms, a possible lack of which con-
tributes to the development of the pathology observed, among others, in inflammatory or
autoimmune diseases. This may contribute to both tumour initiation and progression [101].
NK and Tc cells use, inter alia, the granular exocytosis pathway, which occurs through
the coordinated action of perforins, and GZMs. Previously, GZMs were associated with
activating biological functions by inducing cell death. However, research performed over
the past few years and the fact that the expression of GZMs has also been demonstrated on
cells other than NK and Tc indicates that some GZMs, particularly GZMB, may play key
regulatory functions in the development and progression of neoplasms by participating in
inflammation, angiogenesis, and immune homeostasis [102].

A number of investigations conducted in recent years have revealed that both hu-
man and murine GZMs, such as GZMA, GZMM, or GZMK, are also involved in various
processes not related to cytotoxicity—for example, in regulating the inflammatory re-
sponse [71]. Some evidence indicates the influence of selected GZMs on carcinogenesis and
their role in CRC pathogenesis. The association between GZMs and malignant diseases has
been suggested since elevated levels of circulating extracellular GZMA and GZMB have
been related to several inflammatory diseases [72].

GZMA is a member of the serine proteases family, which is commonly recognised as
anti-tumour and anti-infective agents because of its ability to trigger cell death on target cells
in vitro [103,104]. Nevertheless, the direct relationship between this granzyme and colon
carcinogenesis remains unclear. A study by Santiago et al. [105] assessed the importance of
GZMA in promoting CRC. Transcriptome analysis showed a strong correlation between
the expression of GZMA and inflammatory genes found in most CRC molecular subtypes.
Moreover, it was found that GZMA deficiency and its therapeutic inhibition have an effect
on reducing inflammation as well as intestinal permeability. These results may suggest
that GZMA, which acts in the extracellular environment, is responsible for regulating the
inflammatory response and might be a key mediator in the development and progression
of CRC [105]. Additionally, the authors revealed that extracellular active GZMA induces
IL-6 expression in M1 macrophages. High infiltration of macrophages has been correlated
with improved survival among CRC patients. Thus, all these results confirm that GZMA
exerts its pro-inflammatory carcinogenic function from the extracellular space, which is
a key finding in designing therapeutic approaches to block GZMA activity [105]. These
observations may indicate that GZMA might participate in a novel mechanism contributing
to the development of CRC in vivo by regulating inflammatory responses. However, it has
been found that therapeutic inhibition of GZMA extracellular activity reduces inflammation
as well as the incidence of cancer. This makes GZMA the most viable therapeutic option
for preventing or treating cancers, particularly those in which inflammation plays an
important role, such as CRC. Inhibition of GZMA seems to prevail over conventional
cytokine-targeted methods as blocking pro-inflammatory cytokines, such as TNF-alpha
and IL-6, may increase patients’ susceptibility to bacterial, viral, and fungal infections [60].

GZMB is a pro-apoptotic cytotoxin that has the strongest effect on the granular exocyto-
sis pathway of cytotoxic lymphocytes [106]. This protein is localised inside endosomes and
is synthetised as an inactive precursor called zymogen (proGZMB) [106]. It is activated via
cathepsin C (CatC), which is responsible for removing the Gly-Glu N-terminal dipeptide.
In fact, residual GZMB activity has also been observed in mice lacking catepsin C, which
suggests that other zymogen convertases are also present [107].

GZMB is produced and secreted both by immune cells such as monocytes/macrophages,
B and T cell subpopulations, basophils, mast cells, and non-immune cells such as ker-
atinocytes, pneumocytes, chondrocytes, or smooth muscle cells [108]. Moreover, the ex-
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pression of GZMB has also been demonstrated on neoplastic cells, e.g., cancer of the breast,
prostate, pancreas, epithelium of the urinary tract, and colon [41,109–111]. A study by
Pages et al. [112] demonstrated increased GZMB expression in relation to normal mucosa
of the colon. Similar dependences were observed by Salama et al. [113], who revealed that
GZMB expression is higher in tumours with microsatellite instability, dense lymphocyte
infiltration, and proximal colon location, but lower in tumours with, inter alia, vascular
invasion. The authors observed that increased expression of GZMB was associated with
improved survival among CRC patients [113]. One of the most important findings of a
study by Salama et al. [113] was decreased expression of GZMB in patients with pathologi-
cal metastases. Referring to the work of Mulder et al. [114], a reversal of the relationship
between GZMB expression and tumour stage was also observed. The above results suggest
the presence of a special immunological activity of the anti-tumour response, which affects
patient outcomes.

GZMM belongs to a group of serine proteases that are often expressed in NK cells
and, in combination with perforin, induce apoptosis of target cells. Due to the fragmentary
information and incomplete understanding of how it functions, GZMM is sporadically
referred to as one of the ‘orphan granzymes’ [115]. However, due to a lack of a clear
consensus regarding both the substrates and the pathways involved in in vitro processes,
the cytotoxic potential of this molecule is highly controversial. Recent studies suggest
a protumoural role for GZMM in EMT. GZMM expression in human tumour tissue has
been shown to correlate with cells expressing the EMT phenotype. In addition, tumour
cell lines in which GZMM was downregulated induced less distant metastases in murine
models [115]. However, the mechanisms behind the above process are not fully understood.
The authors suggest the activation of STAT3 signalling, but it is still unclear how this
pathway could be activated in the culture of a CRC line where cytokines such as IL-6
should not be present. Although the results in the mouse model have recently been
questioned [116] the findings in humans might be potentially interesting. However, further
experimental evidence is needed to elucidate the role of GZMM in the development and/or
progression of CRC. The role of selected GZMs in CRC is presented in Table 2.

Table 2. The role of selected GZMs in CRC.

Protein Type of Expression Method of
Detection Effect Correlation with

Inflammatory Genes Suggested Role Ref.

Granzyme A mRNA expression RT-PCR
- significantly elevated expression was

observed in CRC and inflammatory
samples in comparison to control group

yes
- promotion of

tumour development
- progression of CRC

[105]

Granzyme B

mRNA expression RT-PCR
- increased levels were associated with
absence of pathological signs of early

metastasis invasion
nd - antitumour activity [114]

protein expression IHC

- low expression was associated with
early signs of metastasis

- high expression was associated with
better survival

nd - prognostic factor [113]

mRNA expression RT-PCR nd no nd [114]

6. Conclusions

Due to global environmental and demographic changes, an increasing trend in the
incidence of CRC has been observed. Reducing CRC incidence and mortality rates is a
major challenge for the healthcare systems worldwide. A novel way to understand the
biological processes involved in CRC will have a profound impact on future diagnosis
and treatment of patients. Hence, the growing incidence of colorectal cancer requires the
dynamic development of innovative methods and diagnostic tests that would allow for
early cancer detection. As the understanding of the importance of GZMs continues to
evolve, it has become clear that both the physiological and pathological roles of these
enzymes are far more complex than previously thought. Several studies suggest that GZMs
play an important role in the pathogenesis of CRC. The ambiguous relationship between
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these molecules and malignancies is intriguing, and the results of studies on the expression
of these proteins in CRC are very promising. GZMs, particularly GZMA, are able to actively
participate in the release of inflammatory mediators including IL-6. Thus, they contribute to
the transformation of epithelial cells and tumour progression. Furthermore, a deficiency of
GZMA was found to be associated with both reduced gut inflammation and arrested CRC
development, which may find application as a therapeutic target. On the other hand, GZMs
may have anti-inflammatory properties and their increased levels might be associated with
a good prognosis. Low expression of GZMB has been related to the presence of metastases,
which suggests its anti-tumour activity. In conclusion, GZMs presented in this review
paper may hold promise for applications as potential diagnostic and prognostic factors
of CRC.
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