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A B S T R A C T

Background: Visceral leishmaniasis (VL) treatment in HIV patients very often fails and is followed by high
relapse and case-fatality rates. Hence, treatment efficacy assessment is imperative but based on invasive
organ aspiration for parasite detection. In the search of a less-invasive alternative and because the host
immune response is pivotal for treatment outcome in immunocompromised VL patients, we studied changes
in the whole blood transcriptional profile of VL-HIV patients during treatment.
Methods: Embedded in a clinical trial in Northwest Ethiopia, RNA-Seq was performed on whole blood sam-
ples of 28 VL-HIV patients before and after completion of a 29-day treatment regimen of AmBisome or AmBi-
some/miltefosine. Pathway analyses were combined with a machine learning approach to establish a
clinically-useful 4-gene set.
Findings: Distinct signatures of differentially expressed genes between D0 and D29 were identified for
patients who failed treatment and were successfully treated. Pathway analyses in the latter highlighted a
downregulation of genes associated with host cellular activity and immunity, and upregulation of antimicro-
bial peptide activity in phagolysosomes. No signs of disease remission nor pathway enrichment were
observed in treatment failure patients. Next, we identified a 4-gene pre-post signature (PRSS33, IL10, SLFN14,
HRH4) that could accurately discriminate treatment outcome at end of treatment (D29), displaying an aver-
age area-under-the-ROC-curve of 0.95 (CI: 0.75�1.00).
Interpretation: A simple blood-based signature thus holds significant promise to facilitate treatment efficacy
monitoring and provide an alternative test-of-cure to guide patient management in VL-HIV patients.
Funding: Project funding was provided by the AfricoLeish project, supported by the European Union Seventh
Framework Programme (EU FP7).

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

Visceral leishmaniasis (VL) is a potentially fatal, yet neglected,
vector-borne disseminated infection caused by protozoans of the
Leishmania donovani spp. complex [1]. Typical symptoms include
fever spikes, substantial weight loss, splenomegaly and alterations of
haematopoiesis. With a global estimate of 90,000 cases annually,
Ethiopia together with Brazil, India, Kenya, Somalia, South Sudan and
Sudan host more than 90% of all VL cases [2].

Compared to varying cure rates of around 90�95% in VL patients,
treatment of patients with a concurrent Human Immunodeficiency
Virus-1 (HIV) infection (referred to herein as ‘VL-HIV patients’) in
endemic regions of East-Africa, Brazil and India frequently fails.
Treatment failure results in extended treatments and case-fatality
rates up to 25% [3,4]. This is particularly true for East Africa where
antileishmanial drugs show lower efficacy rates and HIV prevalence
rates of 10�20% are reported amongst VL patients [3]. Even if
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Research in context

Evidence before this study

Human immunodeficiency virus (HIV) infection has been iden-
tified as a significant challenge facing visceral leishmaniasis
(VL) control. VL treatment in HIV patients very often fails and
results in extended treatment time followed by high relapse
and case-fatality rates. In addition to limited and toxic treat-
ment options, the treatment outcome assessment thus becomes
imperative in VL-HIV patients to guide decisions on treatment
extension, treatment adjustment or secondary prophylaxis ini-
tiation. However, with no alternatives to assess treatment effi-
cacy, repeated invasive and painful aspiration from infected
organs for microscopical detection of the parasite remains the
only approach. Chronic patients thus undergo repeated tissue
aspirates or empirical optimization of treatment regimens.
Hence, the development of a less-invasive alternative to assess
treatment efficacy represents an urgent and important unmet
clinical need to achieve VL control.

Added value of this study

Our study is the first to investigate whole transcriptome
changes in the severely neglected group of visceral leishmania-
sis patients with a concurrent HIV infection, where the host
immune response is largely uncharted but believed to be piv-
otal for treatment outcome. In a translational effort, the find-
ings were biologically interpreted and systemically reduced to
a 4-gene biomarker that could accurately discriminate treat-
ment outcome.

Implications of the all the available evidence

This signature holds significant promise to facilitate treatment
efficacy monitoring in R&D and could provide an alternative
test-of-cure to guide patient management in VL-HIV patients.
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apparent parasitological clearance at end of treatment and viral sup-
pression with ART is achieved, up to 60% of VL-HIV patients will
develop recurrent relapse, typically within 3�6 months after initial
cure (compared to 1�5% in immunocompetent VL patients) [3,5].
Hence, treatment outcome assessment is imperative in VL-HIV
patients to guide decisions on treatment extension, treatment adjust-
ment or secondary prophylaxis initiation.

To date, a repeated invasive and painful aspiration for microscopi-
cal detection of the parasite from infected organs (spleen, bone mar-
row or lymph nodes) remains the only approach for test-of-cure.
Although spleen aspiration shows the highest sensitivity [6], it has a
life-threatening risk of splenic haemorrhage that renders it unsuit-
able in patients with severe thrombocytopenia. In addition, these
techniques require a great level of expertise, training of personnel
and appropriate facilities where blood transfusion and management
of intraabdominal bleeding is possible. Due to these reasons, chronic
patients often undergo repeated tissue aspirates or empirical optimi-
zation of treatment regimens. Hence, the development of a less-inva-
sive alternative to assess treatment efficacy represents an urgent and
important unmet clinical need.

Molecular techniques for parasite detection seem promising, but
could be less suitable as the parasitic load in blood decreases steeply
after two days of treatment and gives no information on the host’s
immunological recovery [7]. In immunocompromised individuals in
particular, host immune response restoration has been shown to be piv-
otal in the efficacy of VL treatment [8]. Therefore, transcriptomic signa-
tures in peripheral blood may reflect immunological responses
underpinning clearance or persistence of parasites. In recent years, gene
signatures derived from blood transcriptomic profiling have shown
great promise in treatment monitoring for a number of infectious dis-
eases [9�11]. With a 5-gene signature, robust prediction of treatment
failure in tuberculosis patients could be achieved after 1 or 4 weeks of
therapy [11]. Similarly, Liu et al. identified and validated a 10-gene sig-
nature that predicted Ebola treatment outcome with an accuracy of 85%
to 92% [9]. Yet, previous studies were often confined to single timepoint
measurements and purely statistical approaches that could be compli-
cated by patient-to-patient variation and little biological relevance of
selected genes, all jeopardizing their generalizability.

To date, two small-scale studies in VL patients described distinct
expression profiles in respectively the blood and the lymph nodes
before and after treatment with amphotericin B [12] or sodium stibo-
gluconate [13]. Likewise, Gardinassi et al. also defined distinct immu-
nological signatures in the blood for active and cured L. infantum
infected patients [14]. Although performed in immunocompetent VL
patients, these findings support the pursuit of a blood-based test-of-
cure. None of the previous studies, however, sought to translate such
knowledge into a clinically useful signature to guide the challenging
clinical management of VL-HIV patients and facilitate the evaluation
in clinical trials of urgently needed novel therapeutics.

Here, to minimize the impact of heterogeneity in gene expression
levels amongst individual VL-HIV patients we studied relative
changes in the gene expression profile during VL treatment. By com-
bining biological insight with a stringent machine learning approach,
we have identified a relevant and robust 4-gene blood signature that
accurately determined treatment outcome in VL-HIV patients.

2. Materials and methods

2.1. Study population and design

In 2014�16, a total of 30 patients recruited at the Leishmaniasis
Research and Treatment Centre (Gondar, Ethiopia) in a randomized
clinical trial (RCT) on combination treatment (NCT02011958, spon-
sored by the Drugs for Neglected Diseases Initiative) were included
in this study for additional whole blood sampling [15]. In short,
AmBisome monotherapy and a combination treatment of AmBisome
and miltefosine were administrated. AmBisome monotherapy dosage
was 40 mg/kg total dose, IV infusion of 5 mg/kg on day 1�5, 10, 17
and 24. In the combination treatment AmBisome dosage was
30 mg/kg total dose, IV infusion of 5 mg/kg on day 1,3,5,7,9 and 11
and miltefosine every day for 28 days (50 mg if patient weight <

25 kg, 100 mg if patient weight is >25 kg). Treatment success was
defined as absence of parasites in spleen aspirate at D29. Treatment
failure at D29 was defined as presence of parasites at the D29 assess-
ment, or no clinical response to treatment requiring rescue medica-
tion on or before D29. Treatment was extended or rescue medication
was provided after D29 based on parasitological examination and
clinical improvement. Once the patients had a negative parasitology
result, they started a follow-up period of one year (up to D390) to
assess long-term relapse-free survival and safety. Rescue therapy
was also given to all patients who had a confirmed VL relapse during
follow-up (for more details, see [16]). After exclusion of 2 patients
due to a technical error in the RNA isolation process, 28 VL-HIV
patients were included in the herein described analyses (Fig. 1).

2.2. Ethics approval and consent to participate

The study protocol was approved by the University of Gondar
Institutional Review Board, the Ethiopian National Research Ethics
Review Committee, the M�edecins Sans Frontiers Ethics Review Board,
the London School of Hygiene and Tropical Medicine Research Ethics
Committee, the Antwerp University Hospital Ethics Committee, the
Prince Leopold Institute of Tropical Medicine Institutional Review
Board and for this specific study by the University of York Biology
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Ethics Committee. All patients provided informed consent and the
study was carried out in accordance with international guidelines
(Helsinki declaration, Good Clinical Practices and local regulations).
2.3. RNA isolation and sequencing

Whole blood was collected and stabilized in 2.5 mL PAXgene
Blood RNA tubes (PreAnalytiX GmbH, Hombrechtikon, Switzerland)
and stored at �80 °C. Isolation and purification of total RNA was per-
formed using the PAXgene blood RNA kit (PreAnalytiX GmbH, Hom-
brechtikon, Switzerland) according to the manufacturer’s
instructions. Next, messenger RNA was enriched by depleting ribo-
somal and globulin RNA (Globin-zero gold removal kit, Illumina Inc,
San Diego, USA). RNA concentrations were measured with NanoDrop
1000 Spectophotometer (NanoDrop Technologies, USA) and RNA
integrity using an Agilent 2100 Bioanalyzer (Nano kit, Agilent, CA,
US). Subsequently, cDNA amplification, adaptor ligation and indexing
were carried out on 1 mg of total RNA by using TruSeq stranded
mRNA library preparation (Illumina Inc, San Diego, USA). Libraries
were sequenced on an Illumina NextSeq500 instrument (single-end,
75 bp) using 1.2 pM and 1.89% PhiX with a total of 4 runs and an aver-
age coverage of 19.3 million reads per sample. 98% of the trimmed
passed-filter reads mapped against the human genome.
Fig. 1. Flow charts of study participants and study design. (a) Flow chart of inclusion and str
and generation of 4-gene signature. LTFU: lost to follow-up, D: Day of treatment, VL-HIV: viscer
2.4. Mechanistic approach

Longitudinal and inclusive DGE analyses (FDR corrected
p-value � 0.05 and a � 1.5 absolute fold difference) between the
timepoints D0 and D29 were performed for both the treatment suc-
cess and failure group, based on a paired generalized linear model
with CLC Genomic Workbench software V12 (Qiagen Bioinformatics).
Next, the pre-ranked feature within Gene Set Enrichment Analysis
(GSEA) software v.3 (BROAD institute, California, USA) was used to
determine enriched gene sets in the treatment groups. The well-defined
hallmark, curated canonical and gene ontology datasets from the Molec-
ular Signature Database (MsigDB) were used for the enrichment analy-
ses. In addition, previously described whole blood transcription modules
(BTMs) were evaluated [17,18]. Gene sets were considered significant if
their false discovery rate (FDR) was less than 25%. Default parameters
were used with 1000 permutations and the conservative classic enrich-
ment statistics was used for calculation of the enrichment score (ES).
Gene sets that did have not a minimum of 10 genes shared with the pre-
ranked gene list were excluded from the analyses, and normalized
enrichment scores were depicted. Leading edge analyses were run on
the GSEA results to identify core group genes.

Non-redundant biological terms were visualized in a functionally
grouped network by means of the ClueGo plug-in v2.5.4 for Cyto-
scape v.3.7.1 [19,20]. Enrichment/depletion analyses were carried
atification by treatment outcomes of study participants (b) Lay-out of the study design
al leishmaniasis-HIV co-infection, DGE: differential gene expression.
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out with a two-sided hypergeometric test for datasets from the EBI-
UniProt GO, KEGG, REACTOME and WikiPathways databases. All
genes were recognised and 45 (11.3%) were not functionally anno-
tated. The applied kappa statistics for connectivity was kept at the
default value of 0.4. GO term fusion was selected to reduce redun-
dancy. In addition, only terms with a p-value of <0.100 were shown,
as well as a GO tree interval level of 3 to 8 (medium to detailed net-
work specificity). The autoannotate plug-in was used for cluster
delineation and naming.

2.5. Discriminatory approach

A cross-sectional and stringent machine learning approach was
designed. The count table was normalized for the ‘per sample’
sequencing depth using the DESEQ2 package in R. Genes that had a
read count of zero in 80% of the samples were removed. The D29/D0
expression values were used as input for the machine learning
approach to correct for patient specific expression patterns. We
adopted a random forest (RF) classification with leave-one-out cross-
validation. Within each cross-validation loop, a feature selection was
first applied on the remaining samples, only selecting the differen-
tially expressed genes between treatment cure and failure based on a
more stringent DGE analyses (FDR corrected p-value � 0.01 and a � 2
absolute fold difference) to target a limited gene set of highly dis-
criminatory genes. These DEGs were then used to construct the RF
classifier. The number of trees, with a maximum depth of 4 and equal
minimal number of samples in each leaf, was limited to 100. The rela-
tive importancies of the genes in the forest decision making were
stored if the left-out sample was correctly predicted. After summing
the classifier importancies for each gene from every successful loop,
the top 20 genes were depicted. The final 4-gene RF classifier was
constructed similarly, but to reduce overfitting on the smaller train-
ing sets during bootstrapping (see ‘Statiscal and visual analyses’), we
applied a maximum tree depth of 3 and a minimal number of 3 sam-
ples in each leaf. All these analyses were carried out using the sklearn
package in Python v3.7.0 [21].

2.6. Reverse transcription quantitative polymerase chain reaction (RT-
qPCR)

Predesigned PrimeTime�qPCR assays (Integrated DNA Technolo-
gies (IDT), Iowa, USA) were used for human gene expression analysis
of HRH4 (Hs.PT.58.4403324), IL10 (Hs.PT.58.2807216), PRSS33 (Hs.
PT.58.3087623), SLFN14 (Hs.PT.58.993231) and the reference gene
TBP (Hs.PT.58v.39858774) (File S2). The recommended assay with the
highest algorithm score was selected for each gene. After read counts
were normalized via DESEQ2, TBP was selected as reference gene
based on lowest maximal deviation between samples, lowest coeffi-
cient of variation, lowest LOG2FC change, commercial availability
and literature review. Previous studies have validated TBP as a reli-
able reference gene for qPCR [22,23] and it was detected in all study
samples.

Samples with sufficient left-over volume to reach an equal
amount of 0.5 mg in every RNA extract were included (Fig. S2). Both,
cDNA synthesis with iScript cDNA synthesis Kit (BioRad laboratories,
California, USA) and qPCR were performed on the QuantStudio 5
real-time PCR system (Applied Biosystems, ThermoFisher, Waltham,
MA USA). The PrimeTime gene expression master mix with low pas-
sive reference dye (IDT) was used. To reduce technical variation, all
samples from 1 patient were run in duplicate for the four genes and
reference gene on one plate simultaneously. As the efficiencies were
almost all ranging between 90�110%, we used the comparative Ct-
value method (DDCt) for relative quantification between the time-
points. Individual LOG2FC between D29 and D0 were calculated
based on CPM values or Ct-values for the RNA sequencing or RT-qPCR
results, respectively.
2.7. Statistical and visual analyses

For patient characteristics (Table 1), continuous data was repre-
sented as medians with interquartile ranges and categorical data as
numbers and frequency. Statistical significance between treatment
success and failure patients was determined with the non-parametric
Mann-Whitney U test for continuous variables and two-sided Fisher’s
exact test for categorical variables. P-values < 0.05 were considered
significant. The ROC curve of the final 4-gene classifier was generated
using the sklearn package in Python. The AUC, sensitivity and speci-
ficity were calculated over 1000 bootstrap iterations. For each itera-
tion, the dataset was split in four parts (sklearn, StratifiedKFold), of
which three parts were used for training and one part for testing.
Principal component analysis (PCA) scatter plots, heatmaps (Euclid-
ean distance, complete linkage), venn diagrams and volcano plots
were created with the CLC Genomic Workbench software V.12 (Qia-
gen Bioinformatics). Violin plots were created with Graphpad Prism
v8.0.1 (GraphPad Software, San Diego, USA).

3. Results

Nested in a clinical trial, 30 VL-HIV patients underwent additional
whole blood sampling. After exclusion of two patients due to techni-
cal error, a total of 28 VL-HIV patients were included in the analyses
(Fig. 1a). Twelve (43%) patients reached parasitological cure after 1
cycle of treatment and 16 required extended or rescue treatment. At
admission, half of the cases had a history of VL and 82% were on anti-
retroviral therapy (ART) (Table 1). In both treatment outcome groups,
a similar CD4 reconstitution of around 110 cells/mL was observed
after 29 days of VL treatment compared to baseline. Except for a
higher percentage of viral controllers in the treatment failure group
(possibly linked to the higher number of people on ART), no signifi-
cant differences in patient characteristics nor treatment regimens
could be observed between the treatment success and failure group.
These findings indicate that HIV-related markers were not associated
with VL treatment outcome and that despite a successful suppression
of the viral load or CD4 T cell recovery, VL treatment failure still
occurred and that vice versa, non-controlled HIV patients were able
to clear the infection.

3.1. Distinct gene expression changes in treatment success and failure
patients

We first used principal component analysis (PCA) to reduce the
dimensionality of the data and determine whether patients could be
clustered. However, after pooling all the samples, the first principal
component only explained 11.9% of the total variance in the dataset
and this was associated with a lower read count in one of the samples
(Fig. S1).

To account for this high variability in transcript abundance
between individual VL-HIV patients, possibly due to diverse HIV or
VL histories, genetic backgrounds, nutritional status and a high pres-
ence of comorbidities (>80%, Table 1), we performed longitudinal
paired analyses of intra-individual changes in gene expression levels
between Day 0 (D0) and D29 (using the mechanistic approach
described in Methods, Fig. 1b). Differential gene expression (DGE)
analyses between D0 and D29 resulted in distinct transcriptomic pat-
terns by treatment outcome, with 397 and 194 unique DEGs for the
treatment success and failure group, respectively (Fig. 2a, File S1 for
complete lists). Only 142 were common DEGs between the groups, of
which only one (CTD-2545M3.6) encoding an uncharacterised protein
was regulated in the opposite direction in the groups. An almost
equal distribution of up- (n = 218/397, 55%) and down- (n = 179/397,
45%) regulated genes was observed during treatment success, while
in the treatment failure group less genes significantly changed in
expression level and their expression was mainly downregulated



Table 1
Patient characteristics before and after treatment, stratified by treatment outcome.

Total (n = 28) Success (n = 12, 43%) Failure (n = 16, 57%) p-value

Demographic characteristics
Age, median (1�99%) 34 (27�45) 33 (28�45) 34 (27�44) 0.815
Men, n (%) 28 (100) 12 (100) 16 (100) 1.000
Clinical characteristics at D0
Treatment regime, n (%) 0.491

AmBisome 9 (32.1) 3 (25) 6 (37.5)
AmBisome + Miltefosine 19 (67.9) 9 (75) 10 (62.5)

Primary VL, n (%) 14 (50) 5 (41.7) 9 (56.3) 0.704
Site of parasite detection, n (%) 0.141

Spleen (+1 to +2) 1 (4) 1 (8) 0 (0)
Spleen (+3 to +6) 26 (92) 11 (92) 15 (94)

Bone marrow 1 (4) 0 (0) 1 (6)
On ART, n (%) 23 (82.1) 8 (66.7) 15 (93.8) 0.133
HIV viral load, n (%) 0.049

Undetectable 8 (29) 1 (8) 7 (44)
>20�10,000 copies/mL 7 (25) 3 (25) 4 (25)

>10,000 copies/mL 13 (46) 8 (67) 5 (31)
CD4 count, median (1�99%) 47 (11�159) 44.5 (11�159) 61.5 (15�152) 0.516
Concomitant diseases, n (%) 23 (82.1) 10 (83.3) 13 (81.3) 1.000
Platelet count (x103/ml), median (1�99%) 100 (47�195) 116 (47�181) 98 (55�195) 0.693
Clinical characteristics at D29
Site of parasite detection, n (%) NA

Spleen (+1 to +2) 6 (21) NA 6 (37.5)
Spleen (+3 to +6) 6 (21) NA 6 (37,5)

Bone marrow 4 (14) NA 4 (25)
CD4 count, median (1�99%) 155 (20�341) 153 (20�285) 171 (42�341) 0.807
Platelet count (x103/ml), median (1�99%) 221 (87�701) 206 (115�464) 235 (87�701) 0.710

VL: visceral leishmaniasis, ART; antiretroviral therapy, HIV: human immunodeficiency virus, D: day of treatment, NA: not
applicable.
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(n = 166/194, 86%) (Fig. 2a). This observation was also reflected in
corresponding unsupervised hierarchical clustering of the expression
data (Fig. 2b&c). In the treatment success group, all samples were dis-
tinctly clustered by timepoint and showed a reversed pattern at D29
(Fig. 2b). In the treatment failure group, no primary clustering by
timepoint could be observed with a more scattered pattern (Fig. 2c),
indicating no mutual delineated impact of VL treatment on host tran-
scriptomic profile. Altogether, these results suggest that significant
changes take place in the abundance of blood transcripts during suc-
cessful VL treatment and that the patterns of gene expression depend
on the treatment efficacy.
3.2. Functional annotation of unique gene transcripts underlying
successful VL treatment

To better understand the ontology and function of the 397 unique
genes that showed significant alterations in their expression levels
during successful VL treatment, we assessed a total of 6161 published
gene sets across 4 different databases for significant enrichment. In
total, 77 biological GO terms, 12 canonical pathways, 8 hallmark gene
sets and 5 B.M. were enriched (Fig. 3). Despite more than 200 upregu-
lated genes in the treatment success cases, enriched gene sets across
the four different databases showed a robust downregulation of path-
ways by D29, in particular those linked to cell cycle, apoptosis, prote-
olysis and adaptive immune response processes. The top 8 most
influential genes that were part of the core enrichment group in
more than 35 gene sets, included different alpha subunits of the pro-
teasome alpha (PSMA6, PSMA2, PSMA3, PSMA4), one subunit of the
proteasome 26 s (PASMD14), cyclin-dependant kinase 1 (CDK1), inter-
feron-g (IFNG) and interleukin 6 (IL6). In contrast, no significant
enrichments could be observed within the 194 unique DEGs from the
failure group, consolidating the observation of no clear delineated
impact of VL treatment on host pathways amongst patients with
treatment failure after one month of treatment.

To obtain insight in the correlations between enriched terms and
define overarching pathways or processes, a functionally grouped
network of enriched categories was generated that showed 2 distinct
clusters (Fig. 4). The main cluster was downregulated and consisted
of cell cycle features (green), including (stem) cell differentiation, cell
division, antigen presentation, cell proliferation and related catabolic
or proteolytic processes. The second cluster was upregulated and
covered features of phagolysosomal activity to kill or stop the growth
of fungal and microbial organisms (purple), including G-protein cou-
pled receptor signalling and vacuolar activity with primary (azuro-
philic) granules loaded with defesins and serine proteases.

These findings were indicative of a clear remission of active dis-
ease in successfully treated patients. The data indicated a distinct and
profound downregulation of the host cellular activity and immunity
and suggested clearance of the parasite by antimicrobial peptides in
phagolysosomes.
3.3. Gene set to accurately distinguish treatment outcome at D29

After having established that the whole blood transcriptome
markedly changed during the course of treatment and reflected rele-
vant biological processes, we investigated whether this transcrip-
tomic change could be used to accurately determine the treatment
outcome at D29. To answer this question, a machine learning
approach was adopted that compared D0/D29 transcript abundance
between treatment success and failure patients (using the discrimi-
natory approach described in the Methods, Fig. 1b). To avoid overfit-
ting, the random forest (RF) classifiers were evaluated by leave-one-
out cross-validation. In total, 70% of the constructed classifiers could
correctly predict the outcome of the left-out patient. The top 20 genes
with the highest summed feature importance in the tree decision
making over all correctly classifying classifiers were kept and
included several pseudogenes and novel transcripts (Table 2, first col-
umn). To increase the biological relevance and robustness of selected
genes, these 20 genes were subsequently compared with the list of
DEGs from the mechanistic approach (D0 vs D29) for overlap
(Table 2). Four genes were found to be shared with the treatment
success group, but none with the failure group.



Fig. 2. Distinct patterns of differentially expressed genes (DEGs) in treatment success and failure patients. (a) Overlap of differentially expressed genes (DEGs) between D0 and D29
for treatment success and failure patients. Venn diagram showing the number, uniqueness and directionality of the DEGs (>1.5 absolute fold change with FDR p-value <0.05 � see
mechanistic approach in materials and methods) between D0 and D29 for treatment success (orange, n = 12) and failure cases (red, n = 16) (b) Unsupervised clustering of differen-
tially expressed genes (DEGs) in treatment success and (c) failure patients. Heat maps showing the z-scores (bottom scale) or extent of up (red) or downregulation (blue) of the
DEGs (Y-axis) at D0 (green samples) and D29 (purple samples) for all individual treatment success patients (n = 12) and all individual treatment failure patients (n = 16). Unsuper-
vised hierarchal clustering of the samples was applied and based on Euclidean distance and complete linkage. D: Day of treatment.
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Fig. 3. Enriched gene sets in the treatment success group (n = 12). Normalized enrichment scores for hallmarks, GO terms and canonical pathways from the MsigDB database and
previously described blood transcriptional modules are depicted in blue (downregulated) or red (upregulated) scale. The size column represents the number of genes from the
respective gene set found in the expression dataset. NES: normalized enrichment score.
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Next, a new RF classifier was built to assess whether the combina-
tion of these 4 genes alone was able to accurately determine the
treatment outcome. Bootstrapping this classifer a 1000 times (each
iteration one quarter of dataset was used for testing) showed a mean
area-under-the-ROC-curve (AUC) of 0.95 (95% CI: 0.75�1.00) - with a
mean sensitivity of 84% (95% CI: 83�85) and specificity of 85% (95%
CI: 83�86) - to correctly distinguish treatment failure from success
cases (Fig. 5). We validated the findings by reverse transcription



Fig. 4. Functionally grouped network analyses of enriched gene sets in the treatment success group (n = 12). Functionally related clusters of enriched gene sets are represented by
different colours and the label of the most significant term per cluster is shown. The node size represents the term enrichment significance and the connectivity by grey lines (kappa
statistics 0.4). Similar terms were fused to reduce redundancy. Bottom tables showed the directionality of significant terms and the frequency of genes from the respective terms
detected in the expression dataset. The exact number of genes detected is indicated behind each bar.
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quantitative polymerase chain reaction (RT-qPCR) and showed simi-
lar distribution patterns in log2(foldchange) (LOG2FC) changes for all
4 genes (Fig. S2 and File S2). Due to the lack of follow-up samples in
the 16 treatment failure patients, we could not investigate whether
these patients also expressed the 4-gene signature when reaching
parasitological cure after extended treatment (Fig. 1a). We did,
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however, observe that three out of the four genes were also differen-
tially expressed in the 13 VL-HIV patients with long-term cure (cf.
no relapse) at 6 months after treatment end (Fig. S3a), of which eight
were treatment failure cases at D29. In agreement, the four genes
could not be detected in treatment failure patients at D29 with low
parasite burden (1+,2+) in splenic aspirates, indicating a true cure
signature that reflected disease remission after an apparent com-
plete resolution of the parasite.

With regard to long-term cure prediction, distinct patterns at
D29 could be observed in gene expression levels of successfully
treated patients who relapsed in the following year (n = 5, 42%) and
those who did not (Fig. 1). Yet, our 4-gene set was mostly found in
the common DEGs between long-term cured and relapsed patients,
except for SLFN14, indicating little value in relapse prediction (Fig.
S3b). The relapsed patients overlapped for 61% with the failure
group at D29, compared to only 30% with the long-term cured
patients. These findings argue for the investigation of a predictive
signature at D29 to predict relapse development in the next 6�12
months, but patient numbers were too small to perform robust
analyses.

4. Discussion

In this study, we investigated the whole blood transcriptome of 28
well-characterized Ethiopian VL-HIV patients before and after 1
month of VL treatment. We observed a distinctive pattern of disease
remission in successfully cured patients and the complete lack of it in
treatment failure cases. Subsequently, we identified a 4-gene signa-
ture able to discriminate treatment success at D29 with a sensitivity
of 84% and specificity of 85%. Application of this signature as a low-
invasive tool to assess treatment efficacy in VL-HIV patients could
have significant value in guiding patient management and future
R&D.

Due to a possible homoeostatic mechanism to control persistent
infection-induced inflammation in active VL, elevated levels of the
regulatory cytokine IL-10 that significantly decreased following suc-
cessful treatment, have been reported in numerous animal and
human studies [24,25]. This marked downregulation of IL10 tran-
scription in successfully treated patients was strongly recognized in
our 4-gene signature. This is, however, in contrast with the two pre-
vious transcriptomic studies in VL patients that did not find a signifi-
cant regulation of IL10 [12,13]. While we cannot rule out that our
signature is HIV-specific, our longitudinal approach that accounts for
natural variation in gene transcription between patients and the use
of RNAseq instead of microarray, could have contributed to detecting
these associations. Likewise, the other three genes (HRH4, PRSS33
and SLFN14) have not been reported in the previous two studies.

In addition, we could not confirm the IFNG gene as the major regu-
lator gene as reported in previous transcriptome studies of VL patients
[12]. Although the IFNG gene and pathways were also strongly down-
regulated in treated VL cases compared to active cases, we rather
observed a prominent upregulation of vacuolar activity with primary
(azurophilic) granules loaded with defesins and serine proteases.
These genes and terms suggested an enhanced phagocytosis, neutro-
phil involvement and complement activation; and may reflect the
proteolytic degradation responsible for parasite clearance. This pro-
cess was reflected in the 4-gene signature by the marked upregulation
of the amidolytic activity of serine protease 33. Its predominant
expression in peripheral macrophages and highest discriminatory
importance in the classifier supports future studies into the role of
PRSS33 in phagolyosomal degradation of Leishmania parasites.

It has been postulated that the interactions of Leishmania spp.
with eosinophils and mast cells influence the macrophage response to
infection and the development of an adaptive immune response [26].
An important mediator in this process is the histamine receptor H4,
also designated as the ‘immune system histamine receptor’ due to its
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Fig. 5. Receiver operator curves (ROC) for the final random forest classifier based on the 4-gene set. (a) Showing the average AUC value of the 4-gene random forest classifier,
calculated over 1000 bootstrap replicates. (b) Bar chart showing the sum of relative importancies in the classifier over 1000 bootstrap replicates.
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chemotactic properties (eosinophil migration and mast call chemo-
taxis) and involvement in dendritic cell activation and T-cell differenti-
ation. Because histamines have been described to have an assisting
role in vitro clearance of Leishmania infection [26], the observed upre-
gulation of HRH4 in successfully treated patients could indicate clear-
ance of parasites. Nevertheless, due to its importance in the 4-gene
signature, the role of histamine, mast cells and its receptors on treat-
ment efficacy in VL and VL-HIV patients merits further research. In
particular because the H4 receptor is also being explored as a promis-
ing drug target in many chronic inflammatory disorders [27].

Defects in the SLFN14 gene of the signature are associated with
thrombocytopenia and excessive bleeding [28]. Likewise, the platelet
count is known to be altered during VL infection due to splenic
sequestration and often leads to bleeding tendency. Hence, the upre-
gulation in SLFN14 expression may reflect the described return of
platelet counts to normal levels after successful cure. Yet, no clear
correlation could be observed between SLFN14 expression and recov-
ery of platelet count after therapy in our study (Figure S4). It is of
note that the gene was absent in the DEG list at D210 in long-term
cured patients (Figure S4). Therefore, its importance should be vali-
dated as it could have been influenced by a small group of patients
with severe thrombocytopenia. Our top 20 list from the discrimina-
tory approach consisted of many pseudogenes and novel transcripts
that also warrant further research, as they are not yet fully under-
stood but are increasingly acknowledged as key contributors to
immune responses [29].

Unfortunately, we could not study differences in treatment regi-
mens due to sample size restrictions. Therefore, it remains unknown
whether the broad antiproliferative activities of miltefosine contrib-
uted to the strong predominance of the downregulated cell cycle
cluster in the network analyses. This predominance is however
believed to reflect a cessation of the massive proliferation and differ-
entiation of T and B cell clonotypes during the acute adaptive
immune response, as similar results were observed in studies of
immunocompetent VL patients in India and Brazil treated with
amphotericin B (inciting cell wall disruption) and pentavalent anti-
monials (broad macromolecule inhibitor), respectively [12,14]. This
would indicate it is not HIV-specific nor affected by the administered
drugs. Nevertheless, a true mechanistic evaluation of affected organs
with single cell evaluations should be studied to assess the causal
and time relationship with drug modulation and parasite reduction.
It is also to be noted that we could not observe enriched gene sets in
the treatment failure group but noticed a significant decline in
expression of many IgG-related genes (almost 40% of all DEGs). Many
of these genes were also shared at D29 with the seemingly cured
patients who relapsed within the next year (35% of common DEGs).
This finding could suggest the initial presence of hypergammaglobu-
linemia at diagnosis as a risk factor for treatment failure or relapse,
and merits further research.

Despite the high inter-patient variation in gene levels, we were
able to construct a good classifier. We believe our methodology
applied some good general practices that could be incorporated in
future studies. Previous studies targeting limited transcriptomic gene
sets for diagnosis or treatment outcome prediction in VL or even
infectious diseases in general were mostly confined to cross-sectional
comparisons at a single timepoint [9,10,30]. Such studies can be com-
plicated by patient-to-patient variation in transcript abundance and
are highly dependant on the stability of the used housekeeping gene
for quantification in future validation studies with RT-qPCR. There-
fore, we targeted intra-individual and relative changes in transcript
abundance that are likely to enhance its generalizability but require
both pre and post sampling. Additionally, purely statistical
approaches were often adopted to select the best discriminatory
genes. Such approaches can have the inherent danger of identifying
genes with little biological relevance or interpretation, jeopardizing
their validation in other patient cohorts [31]. Correspondingly, our
top 20 list from the discriminatory approach consisted of many pseu-
dogenes and functionally uncharacterized transcripts. By overlaying
the machine learning results with mechanistic insight analyses, we
believe the 4 genes represent relevant but distinct pathways that
reflect underlying biological changes during treatment. When moni-
toring of treatment outcome is envisioned, the specificity of these
pathways or genes to Leishmania infection is also less critical, com-
pared to signature development for diagnosis or disease develop-
ment prediction.

A limitation of this study is that the 4-gene set identified here is
derived from data collected from a single, rather limited cohort of 28
male VL-HIV patients in a single geographic area in East Africa.
Although it will be necessary to further validate this biomarker in
larger cohorts of VL-HIV patients, and to include patients from other
regions/countries, this should not detract from the value of such a
biomarker. Even if restricted to use in East Africa, it would still be of
high interest as the burden of VL-HIV is significant in this area. It will
be of future interest to evaluate performance of this biomarker as the
chemotherapeutic landscape alters, though the combination of AmBi-
some/miltefosine is the most effective treatment of VL-HIV patients
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in East Africa [15] and our data suggested that the identification of
the 4-gene signature was not merely a reflection of drug choice.

In the near future, a composite endpoint consisting of clinical
signs, antigen detection methods and a host 4-gene biomarker could
be a powerful, less-invasive tool for research and drug development
(R&D) in leishmaniasis, both for immunocompetent and VL-HIV
patients. In particular, future studies should assess the predictive
value of the signature at earlier timepoints and evaluate the method-
ology required to develop a more point-of-care detection system.
This may guide early case management, treatment recommendation
and could facilitate early futility analyses and dose-finding studies of
novel compounds. It is also to be noted that its value in similar para-
sitic infections could be studied, as rather general disease remission
signatures were detected. Our results also encourage future investi-
gations in VL relapse prediction by blood-based transcriptomic signa-
tures. Yet other processes are likely to be predictive in parasite
recrudescence and to be reflected in such a signature. However, the
specificity of the signature to Leishmania will also become more rele-
vant. For example, an extensively validated blood-based 3-gene sig-
nature recently satisfied the WHO criteria for a non-sputum-based
triage test for tuberculosis across heterogeneous culture-confirmed
datasets [30].

In conclusion, we have identified an easily accessible 4-gene blood
signature with high discriminatory value to assess treatment efficacy
at the end of treatment in VL-HIV patients. Application of this signa-
ture as a low-invasive tool to assess treatment efficacy in VL-HIV
patients could have significant value in guiding patient management
and future R&D.
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