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A growing number of gene delivery strategies are being

employed for immunoengineering in applications ranging from

infectious disease prevention to cancer therapy. Viral vectors

tend to have high gene transfer capability but may be

hampered by complications related to their intrinsic

immunogenicity. Non-viral methods of gene delivery, including

polymeric, lipid-based, and inorganic nanoparticles as well as

physical delivery techniques, have also been widely

investigated. By using either ex vivo engineering of immune

cells that are subsequently adoptively transferred or in vivo

transfection of cells for in situ genetic programming,

researchers have developed different approaches to precisely

modulate immune responses. In addition to expressing a gene

of interest through intracellular delivery of plasmid DNA and

mRNA, researchers are also delivering oligonucleotides to

knock down gene expression and immunostimulatory nucleic

acids to tune immune activity. Many of these biotechnologies

are now in clinical trials and have high potential to impact

medicine.
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Introduction
Gene delivery is increasingly being used to engineer the

immune system in the laboratory and the clinic. Various
www.sciencedirect.com 
biotechnologies have been developed for the delivery of

nucleic acids to cells, both in vivo and ex vivo. To over-

come challenges of in vivo manipulation, several ex vivo
cell engineering technologies have advanced to the clinic

[1]; however, delivery vehicles that can be administered

directly to patients with delivery of the cargo efficiently to

target cells in vivo also show great promise.

Various types of nucleic acid have been delivered for

immune applications. Here, we will discuss the delivery

of plasmid DNA (pDNA) and mRNA to overexpress a gene

of interest; oligonucleotides such as small interfering RNA

(siRNA) and micro RNA (miRNA), which can knock down

gene expression; and immunostimulatory nucleic acids that

elicit a specific immune response. Differences in their

physical, chemical, and immunological properties have

been discussed in detail elsewhere [2]. Briefly, pDNA,

the largest of these and generally >2 kb in size, is dou-

ble-stranded and relatively stable to chemical degradation,

but it must enter the nucleus. mRNA, while less chemically

stable than pDNA, is smaller and acts in the cytoplasm,

therefore not requiring nuclear entry. siRNA and miRNAs

are generally only �20 bp and are also active in the cyto-

plasm, while immunostimulatory nucleic acids, which

include CpG sequences in pDNA and double-stranded

RNA structures, may be active in various intracellular

locations, including the cytoplasm or the endosomal com-

partment. Nucleic acids can activate the innate immune

system, such as through sensing by Toll-like receptors

(TLRs), with single-stranded (ss) RNA recognized by

TLR-7 and -8, double-stranded (ds) RNA recognized by

TLR-3, and unmethylated CpG sequences in DNA recog-

nized by TLR-9 [3,4]. Other mechanisms of immune

sensing include the cyclic GMP-AMP synthase (cGAS)-

stimulator of interferon genes (STING) pathway and the

absent in melanoma 2 (AIM2) pathway, which both detect

cytosolic DNA [5], and dsRNA sensors like RIG-I-like

receptors, reviewed here in detail [6]. Examples below will

show that nucleic acids may also be engineered to enhance

or minimize this effect.

As much of the recent progress in the field of gene

delivery for immunotherapy has been for cancer applica-

tions, this review will focus on cancer immunotherapy but

will also cover certain non-oncology applications. Major

strategies that have been explored for cancer immuno-

therapy [7] center on increasing the immunogenicity of

the tumor microenvironment, enhancing the ability of

antigen-presenting cells (APCs) to be activated, improv-

ing the activation of T cells and other lymphocytes in the

context of the tumor while lessening the effect of sup-

pressive immune cells, and vaccinating the patient with a
Current Opinion in Biotechnology 2020, 66:1–10
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2 Tissue, cell and pathway engineering
tumor-specific antigen in order to generate a tumor-tar-

geted immune response (Figure 1). Broadly, an overarch-

ing goal of immunoengineering is often to shift the

balance of the immune response between activation

and suppression, or, more specifically, between the
Figure 1
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ctors, or a combination of various materials. These can be used to

modify tumor cells or immune cells directly in vivo to promote immune

 can be used for tumor immunotherapy are shown here.
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Viral gene delivery strategies for cancer
immunotherapy
Viral vectors have historically been used for delivery of

nucleic acids due to their effectiveness at transferring the

nucleic acid payload to host cells. The most widely used

vectors in recent years are retroviruses, including lenti-

viruses, which insert a gene of interest into the host

genome; adenoviruses, which deliver an episomal, non-

integrating DNA plasmid to cells; and adeno-associated

viruses (AAV), which can only replicate in coordination

with a secondvirus [8�].For instance,Zhu et al. described an

AAV vector for the delivery of the cytokine IL-27, which

inhibits TH17 and TH2 responses [9]. In the B16-F10

murine melanoma model, they found that this strategy

depleted suppressive regulatory T cells (Tregs), including

at the tumor site, and led to enhanced efficacy of a cancer

vaccine and anti-PD-1 checkpoint blockade therapy.

Importantly, however, viral vectors often elicit a strong

immune response. Not only can this have deleterious

effects on the patient, but it may also reduce the efficacy

of viruses, particularly upon repeated administration due

to the formation of neutralizing antibodies. To address

this, engineers have developed methods of coating

viruses with polymers [8�] to prevent exposure of anti-

genic viral epitopes (Figure 2). Jung et al. used a hydrogel

to encapsulate oncolytic adenoviruses, which are engi-

neered to replicate only in tumor cells, and showed that

encapsulation not only sustained the local release of virus

in a hamster pancreatic cancer model but also reduced the

animals’ antiviral immune response, resulting in a >60%

lower tumor burden compared to treatment with the

adenovirus alone [10]. The use of polymer coatings can

also improve viral transduction efficacy and allow co-

delivery of therapeutics: for instance, an adenovirus

encoding the pro-TH1 cytokine IL-12 was coated with

a copolymer of b-cyclodextrin and the cationic polyethy-

lenimine (PEI) to enhance delivery up to 600-fold in vitro
and co-deliver a small molecule inhibitor of the suppres-

sive TGF-b in the B16 model [11].

Non-viral gene delivery strategies for cancer
immunotherapy
Because of concerns about the safety of viral vectors, a

wide range of non-viral delivery vehicles have been

developed. State-of-the-art synthetic materials for gene

delivery are reviewed in detail by Lostalé-Seijo et al. [12].

Lipids

Lipid-based nanoparticles or lipoplexes have been exten-

sively researched for gene delivery, particularly in the

case of mRNA and oligonucleotides. Amphiphilic lipids

can form liposomal structures that encapsulate nucleic

acids within the core; cationic lipids can associate with the

negatively charged nucleic acid to form nanostructures. In

one case, three immune-stimulatory genes encoded in

mRNA were delivered directly to B16-F10 melanoma or
www.sciencedirect.com 
MC38 colorectal tumors in mice using lipid nanoparticles,

which caused tumor regression and long-term immunity to

the tumor [13��]. Engineering the chemical structure of

lipids can improve the efficiency to allow better and more

specific delivery of siRNA and small single-guide RNA

(sgRNA) to cells that are normally hard to transfect, includ-

ing T cells [14]. Specifically, lipids with conformationally

constrained tails were fivefold to 10-fold more effective at

gene delivery than similar lipids with unconstrained tails.

Several researchers have taken advantage of the immune-

stimulatory properties of nucleic acids delivered by lipid

nanoparticles. Among these are cyclic dinucleotides

(CDNs), such as cGAMP agonists of stimulator of inter-

feron genes (STING), which can increase the activity of

APCs at the tumor site but, due to their high negative

charge, require encapsulation to improve cellular inter-

nalization [15]. Some lipid structures, particularly those

with amine-containing cyclic head groups, have also been

found to intrinsically activate STING, and the use of

these immune-stimulatory lipids to deliver tumor anti-

gen-encoding mRNA resulted in effective vaccination

against B16-F10 and ovalbumin-expressing B16 tumors,

as lipids with cyclic head groups inducing nearly twofold

higher antigen-specific cytotoxicity after injection [16�].
On the other hand, excessive activation of interferon type

I (IFN I) via pathways like STING can be damaging if

uncontrolled; therefore, some groups have engineered

mRNA constructs to prevent IFN I induction while using

lipid nanoparticles to co-deliver an adjuvant like mono-

phosphoryl lipid A (MPLA) that triggers IFN I in a more

controlled manner [17].

Polymers

Given the intrinsic immunogenicity of some lipid carriers,

polymers can serve as an alternative for nucleic acid

delivery, though some polymers may also have adjuvant

activity [18]. In addition to mRNA and small nucleic

acids, cationic polymers are also used often for the deliv-

ery of pDNA, usually forming nanoparticles via self-

assembly with nucleic acids. The versatility of polymer

chemical and physical structures provides a wide range of

properties that can be optimized. For instance, ex vivo
transfection of T cells with mRNA and DNA with up to

25% and 18% efficiency, respectively, has been accom-

plished by tuning the branching architecture of the deliv-

ery vehicle, a co-polymer of poly(2-hydroxyethyl meth-

acrylate) (pHEMA) and poly(2-dimethylaminoethyl

methacrylate) (pDMAEMA) [19].

In many cases, in vivo transfection is preferred in order to

avoid ex vivo processing and cell culture steps. Cationic PEI

has been studied for decades for gene delivery purposes,

though modifications are often necessary to improve nano-

particle stability and biodistribution in vivo. For instance, a

poly(ethylene glycol) (PEG)-modified PEI nanoparticle

was complexed with pDNA encoding small hairpin RNA
Current Opinion in Biotechnology 2020, 66:1–10
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Strategies for improving the translatability of viral gene delivery.

Viruses are effective gene delivery agents but must contend with safety challenges as well as their intrinsic immunogenicity. Several methods have

been devised to overcome this, including coating viruses with polymers, blocking neutralization sites using polypeptides, and physically

encapsulating the viruses to isolate them from immune cells. Reprinted with permission from Rajagopal et al., ‘Polymer-coated viral vectors:

hybrid nanosystems for gene delivery’, J Gene Med 20(4):e3011, Copyright 2018, John Wiley and Sons [8�].
(shRNA) to knock down expression of PD-L1 in tumor

cells. Local injection of hyaluronidase into the tumor

improved nanoparticle accumulation after systemic admin-

istrationbyapproximatelytwofold, leadingtoPD-L1knock-

down in the tumor [20]. Polyrotaxanes, consisting of four-

arm PEG threaded with the cationic polysaccharide rings

a-cyclodextrin, can deliver IL-12 pDNA to MC38 tumor

cells after systemic administration by taking advantage of

the stealth properties of PEG to achieve good pharmacoki-

netics [21]. Another PEG-modified material, cationic tri-

methyl chitosan, delivered siRNA against VEGF and PIGF

to macrophages in breast cancer models, utilizing a mannose

ligand to target macrophages and repolarize them to an

immune-stimulatory phenotype [22]. This led to >90%

tumor inhibition due to combination knockdown of both

VEGF and PIGF in vivo. Polymersomes, described as

amphiphilic block co-polymers that self-assemble into lipo-

some-like structures with an aqueous core, were also used to

deliver CDN as a STING agonist and improved survival in a

B16-F10 model after intratumoral injection [23].
Current Opinion in Biotechnology 2020, 66:1–10 
The toxicity of high-molecular-weight PEI is often lim-

iting. Less toxic low-molecular-weight PEI can be cross-

linked with degradable linkages to form a larger polymer

with greater transfection efficacy while preserving the

biocompatibility of the low-molecular-weight form.

When functionalized with galactose to target the liver,

a cross-linked PEI co-polymer was able to deliver IL-15

pDNA to tumor cells with significantly lower polymer-

mediated cytotoxicity and twofold to threefold higher

gene delivery in vitro, leading to improved survival in

an orthotopic murine ML-1 hepatocellular carcinoma

model in vivo [24]. In a similar vein, biodegradable

polymers are commonly used to reduce toxicity. Poly

(beta-amino ester)s (PBAEs) are cationic, hydrolytically

degradable polymers that have been used to deliver CpG

ODNs, agonists of Toll-like receptor 9 (TLR-9), which

upregulates production of proinflammatory cytokines

[25], or CDN as a STING agonist [26] by local intratu-

moral delivery in mouse melanoma models. Another

PBAE was also used to deliver pDNA encoding
www.sciencedirect.com
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immune-stimulatory genes locally to tumors, resulting

in slowed tumor progression and long-term survival in

B16-F10 and MC38 models [27�]. Smith et al. further

modified PBAE/pDNA nanoparticles by coating them

with a targeting ligand, allowtransfection of T cells after

intravenous injection. This led to in situ generation of

leukemia-specific chimeric antigen receptor (CAR) T

cells, with nearly 6% of the circulating T cells CAR+

within days [28��], and the same group showed that a

similar strategy could be used to deliver mRNA to T cells,

inducing a memory phenotype in tumor-specific T cells

as well as demonstrating proof-of-concept in situ gene

editing [29]. Other biodegradable polymers, like charge-

altering releasable transporters, deliver mRNA encoding

the ovalbumin antigen to a mouse along with CpG as an

adjuvant, allowing for successful vaccination of the mouse

against ovalbumin-expressing A20 lymphoma after sub-

cutaneous or intravenous delivery [30], with up to 40% of

mice considered cured of established tumors. The chem-

ical tunability of synthetic polymers provides

many opportunities to optimize their properties for gene

delivery and immune engineering.

Lipid-polymer hybrids

Lipid-based and polymer-based delivery systems can be

combined to take advantage of properties from both

materials. Folate-modified methoxy poly(ethylene gly-

col)-poly(lactide) (MPEG-PLA) and dioleoyl-3-trimethy-

lammonium propane (DOTAP) nanoparticles encapsu-

lating pDNA encoding the CC-motif chemokine ligand

19 (CCL19) were designed to transfect folate receptor-

expressing tumor cells in CT26 colon cancer models and

induce expression of CCL19 to modulate dendritic cell

(DC) and lymphocyte interactions [31]. The authors

describe advantages over certain CAR T therapies, such

as augmenting the favorable anti-tumor immune response

while avoiding the detrimental cytokine release syn-

drome (CRS). A similar hybrid concept has been used

in combination with chemotherapy drugs. In one partic-

ular design, oxaliplatin (OxP) chemotherapy is delivered

systemically to cause immunogenic cell death (ICD) in

parallel with locally delivered DNA encoding a PD-L1

trap fusion protein via lipid-protamine-DNA (LPD)

nanoparticles that function selectively within the tumor,

thus resulting in minimized immune-related adverse

effects, for CT26, B16-F10, and 4T1 tumor models

(Figure 3) [32]. The combination treatment with PD-

L1 trap DNA and OxP was significantly more effective

than either treatment alone, with approximately 20%

increase in median survival in CT26-bearing mice. These

LPD nanoparticles have also been implemented to simul-

taneously silence expression of HMGA1 (high mobility

group protein A1) to increase T lymphocyte infiltration

twofold to fourfold and induce PD-L1 trap expression to

improve checkpoint inhibitor therapy in CT26 and 4T1

models [33].
www.sciencedirect.com 
Alternatively, McKinlay et al. describe the generation of a

combinatorial library to screen for hybrid-lipid charge-

altering releasable transporters [34]. These specific mate-

rials are primarily effective for mRNA transfection in

T-cell lines, primary T cells in vitro, and splenic in
situ. The incorporation of oleyl and nonenyl lipid ele-

ments increased the transfection efficacy of T cells to

1–1.5% and that of B cells to 11%, while minimizing

toxicity-mediated cell death compared to the previously

published polymeric charge-altering releasable transpor-

ters, which have been reported to transfect <1% and

1–7% of T cells and B cells, respectively [34].

Inorganic materials, physical transfection, and other

methods

Inorganic or physical modifications can be applied to

nanoparticles for increased stabilization or improved

uptake by certain targeted cell populations. Calcium

phosphate (CaP) has long been used for gene delivery

due to its ability to encapsulate nucleic acid efficiently

and dissolve intracellularly under the acidic conditions of

the endolysosomal compartment, but it is limited by poor

stability and lack of control in manufacturing, necessitat-

ing use of other materials to improve the properties of

CaP [35]. Lipid-coated calcium phosphate (LCP) nano-

particles functionalized with mannose have been devel-

oped to target delivery of mRNA to dendritic cells (DCs)

draining to the lymph node in triple negative breast

cancer (TNBC) in vivo models as a nanovaccine [36].

The mRNA encodes the tumor-associated antigen mam-

mary type mucin (MUC1). Transfected DCs express

MUC1 and present it to 4T1 TNBC-specific cytotoxic

T cells, which expand and, in combination with anti-

CTLA-4 antibodies, leads to tumor infiltration, tumor

growth inhibition, and memory [36]. LCP NPs have also

been used to deliver mRNA encoding tyrosine related

protein 2 (TRP2) and PD-L1 siRNA to B16-F10 mela-

noma models [37], resulting in transfection of DCs to

induce them to present a tumor antigen while also down-

regulating expression of a checkpoint molecule.

Alternatively, macrophages can be targeted using modified

nanoparticles. CpG oligodeoxynucleotides (ODN) can be

targeted to macrophagesusingmannosylatedcarboxymethyl

chitosan/protamine sulfate/CaCO3/ODN (MCMC/PS/

CaCO3/ODN), a polymer/inorganic nanoparticle hybrid

whosefeaturesaredesignedto improveODNencapsulation,

macrophage uptake, and pH-mediated intracellular release

[38]. CpG delivery to macrophages promotes expression of

CD80, an activating co-stimulatory signal to lymphocytes,

therefore inducing the anti-tumor M1 phenotype in vitro
with RAW264.7 cells [38], measured by approximately

twofold higher secretion of IL-12 and other inflammatory

cytokines compared with macrophages treated with the

common commercial transfection agent Lipofectamine1
2000. Another hybrid, peptide/hyaluronic acid/protamine/

CaCO3/DNA nanoparticles (PHNP), was developed to
Current Opinion in Biotechnology 2020, 66:1–10
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Figure 3
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Hybrid lipid-polymer materials can be used for pDNA delivery for tumor immunotherapy.

The cationic polymer protamine was used to condense pDNA for PD-L1 trap, then coated with PEGylated lipids for stability and targeting (LPD)

(a). These LPDs were injected into tumor-bearing mice along with systemic oxaliplatin (OxP) therapy (b), and the combination of OxP and PD-L1

trap expression significantly inhibited tumor growth (c and d). Adapted from Song et al., ‘Synergistic and low adverse effect cancer

immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap’, Nat Comm 9:2237, Copyright 2018, Springer Nature [32].
target pDNA to J774A.1 macrophages and HeLa tumor cells

in vitro [39]. The fusion protein promotes recognition by Fc

receptors on macrophages internalization by tumor cells,

while the hyaluronic acid (HA) interacts with CD44 found

on both cell types. The pDNA encodes IL-12 to repolarize

macrophages from anti-inflammatory M2 to anti-tumor M1,

in addition to downregulating the CD47 ‘don’t-eat-me’

signal and upregulating co-stimulatory CD80 on tumor cells

in vitro to reverse cancer-induced immunosuppression [39].

Arginine-coated gold nanoparticles (ArgNPs) have also been

used to target macrophages and deliver CRISPR-Cas9 in

order to edit out signal-regulatory protein a (SIRP-a), the

inhibitory receptor for CD47, thus allowing fourfold greater

phagocytosis of human bone osteosarcoma cells in vitro [40].

The cationic arginine allowed binding to the single guide

RNA (sgRNA) for SIRP-a and the Cas9 protein, which was

engineered to include glutamic acid tags at the C-terminus

and nuclear localization signal (NLS) at the N-terminus.

Gene therapy-based immune engineering for
other applications
Although many recent advances related to gene therapy

have been focused on cancer, delivery technologies have
Current Opinion in Biotechnology 2020, 66:1–10 
been developed for other applications as well, including

infection, autoimmune disorders, and allergy. Genetic

vaccines are particularly advantageous when compared

to traditional peptide-based vaccines given the ability to

stimulate at lower quantities, maintain antigen expres-

sion, bypass HLA restriction, and expand to both humoral

and cellular immunity responses [41]. Recent vaccine

developments have incorporated gene delivery using

both polymer and lipid nanoparticles. A Zika virus (ZIKV)

vaccine formulated with the full natural DNA sequence

of ZIKV premembrane and envelope protein (prM-E)

within a tetrafunctional PEO/PPO/ethylene diamine

amphiphilic block copolymer NP has elicited antigen-

specific serum IgG, neutralizing antibodies, and protec-

tion upon intramuscular challenge [42]. Similarly, an

intradermal LNP vaccine contained N(1)-methylpseu-

douridine mRNA encoding viral surface antigens, such

as ZIKV prM-E, influenza virus hemagglutinin (HA), and

HIV-1 envelope (Env) [43]. The vaccine was shown to

establish an antigen-specific CD4+ T-cell response in

addition to an increase in B cells and plasma cells to

generate humoral memory and high affinity neutralizing

antibodies when compared to unmodified mRNA
www.sciencedirect.com
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Table 1

Select clinical nucleic acid delivery programs for immune engineering

Responsible

company/lab

Phase Target application Delivery vehicle Nucleic acid Therapeutic

agent

ClinicalTrials.gov

identifier

ModernaTx., Inc. Phase 1 Solid Tumors Lipid NP mRNA mRNA-4157 &

Pembrolizumab

NCT03313778 [51]

ModernaTx., Inc. Phase 1 Advances/Metastatic

Solid Tumor

Malignancies or

Lymphoma

Lipid NP mRNA mRNA-2416 &

Durvalumab

NCT03323398 [57]

ModernaTx., Inc. Phase 1 Relapsed/Refractory

Solid Tumor

Malignancies or

Lymphoma

Lipid NP mRNA mRNA-2752 &

Durvalumab

NCT03739931 [58]

Henry Ford Health

System

Phase 1 Prostate Cancer Oncolytic

Adenovirus

DNA Ad5-yCD/

mutTKSR39rep-

hIL12 (IL12)

NCT02555397 [59]

University of

Pennsylvania

Phase 1 Pleural malignancies

(metastatic pleural

effusions or pleural

mesothelioma)

Adenovirus DNA Interferon-beta

(BG00001, Ad.

hIFN-b,

interferon-beta

(hIFN-b) gene

NCT00299962 [60]

Arthrogen Phase 1 A Single Dose Clinical

Trial to Study the Safety

of ART-I02 in Patients

With Arthritis

AAV DNA Interferon-beta

(hIFN-b) gene

under NF-kB

control

NCT02727764 [54]

National Institute

of Allergy and

Infectious

Diseases

(NIAID) and

ModernaTx.,

Inc.

Phase 1 SARS-CoV-2

(Coronavirus infection)

Lipid NP mRNA mRNA-1273 NCT04283461 [55]

University of

Pennsylvania

and

Adaptimmune

Phase 1 HIV Infection Lentivirus RNA a/6-gag-TCR

modified T cells;

WT-gag-TCR

modified T cells

NCT00991224 [61]

ModernaTx., Inc. Phase 2 Melanoma Lipid NP mRNA mRNA-4157 &

Pembrolizumab

NCT03897881 [52]

The Methodist

Hospital

System

Phase 2 High-risk Prostate

Cancer

Viral vector

(Herpes simplex

virus)

DNA ADV/HSV-tk NCT03541928 [62]

Roswell Park

Cancer Institute

Phase 2 Adult Solid Neoplasm Retrovirus RNA NY-ESO-1 TCR/

TGFbDNRII-

transduced TILs

NCT02650986 [63]

National Cancer

Institute (NCI)

Phase 2 Glioblastoma

Non-Small Cell Lung

Cancer

Ovarian Cancer

Breast Cancer

Gastrointestinal/

Genitourinary Cancer

Retrovirus RNA Individual Patient

TCR-Transduced

PBL (iTCR)

NCT03412877 [49]

Huazhong

University of

Science and

Technology

Phase 3 Hepatocellular

Carcinoma

Adenovirus DNA ADV-TK NCT03313596 [64]
vaccines. Interestingly, Yan et al. describes a subcutane-

ously injected scaffold loaded with ovalbumin (OVA)

mRNA-lipoplexes constructed from chitosan-alginate

gel [44]. While a more traditional vaccine formulation

consisting of the ovalbumin protein elicited a stronger

short-term humoral immune response, the mRNA-lipo-

plex-based scaffold vaccine elicited greater T-cell
www.sciencedirect.com 
proliferation within secondary lymphoid organs. IFN-g
secretion as a result of the mRNA-lipoplex scaffold was

also greater than that due to protein, naked mRNA, or

mRNA-lipoplex immunizations by two- to threefold

[44]. Additionally, anti-viral vaccines have been engi-

neered with self-amplifying mRNA (SAM) encapsulated

in lipid nanoparticles and show an induced type 1 IFN
Current Opinion in Biotechnology 2020, 66:1–10
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response locally when compared to TLR7 agonists [45�].
These studies have led to interest in exploring the use of

SAM mRNA for nanoparticle-delivered immunothera-

pies [46].

In addition to infectious diseases, gene therapies have

been used to address autoimmune disorders. An AAV

vector (AAV5) has been used for single dose intra-

articular delivery of the human interferon-b (hIFN-b)
gene in patients with inflammatory arthritis, including

rheumatoid arthritis (RA) [47]. This therapy is unique in

that there is local transcriptional control of the hIFN-b
transgene by an NF-kB promoter, therefore causing

transgene expression only during states of flare-up

inflammation. Recently, allergy immunotherapy has

expanded with goals of provoking biased antigen-spe-

cific TH1 responses. Microneedles coated with model

antigen OVA co-formulated with STING agonist as an

adjuvant induced the generation of OVA-specific serum

IgG2a, signifying an enhanced TH1 response [48].

When challenged with OVA, splenocytes produced

higher IL-2 and IFN-g TH1 cytokines when compared

to subcutaneous injections or microneedle delivery of

alum formulations. Although the studies described

above have been designed for viral vaccines and aller-

gies, concepts can be applied to improve future devel-

opments of cancer immunotherapies.

Clinical translation of gene therapy-based
immune engineering
Exciting translational methods and immune stimulation

techniques are being investigated for clinical applica-

tions within the last few years, and some examples are

shown in Table 1. For instance, researchers at the

National Cancer Institute have developed a potential

treatment for heterogeneous metastatic cancer by retro-

virally transduced autologous peripheral blood mononu-

clear cells (PBMCs) to express neoantigen-reactive

TCRs isolated from the patient to target shared onco-

genes and multiple neoantigens with aims to address

tumor escape [49,50]. Additionally, a Phase I trial led by

ModernaTX, Inc. outlines the safety and tolerability of

lipid nanoparticles encapsulating genetic material

encoding tumor neoantigens while inducing neoanti-

gen-specific T cells in 33 patients, whether given as a

monotherapy or in combination with pembrolizumab,

and it subsequently advanced to Phase II [51,52]. On the

other hand, adenoviral-mediated delivery has been

assessed in a completed Phase I clinical trial with

patients with malignant pleural mesothelioma to induce

production of IFN-a in the pleural fluid and serum [53].

Although the results of this heterogeneous pilot study

were variable, disease stability or regression via scans

and serum measurements of soluble mesothelin-related

peptides (SMRP) was noted in five of the nine subjects

described as younger patients with lower tumor burdens.
Current Opinion in Biotechnology 2020, 66:1–10 
For applications outside of cancer immunotherapy, a

Phase I clinical trial is currently ongoing to test AAV5

as a vector to induce NF-kB-regulated hIFN-b expres-

sion in patients with RA [54]. In response to the recent

COVID-19 pandemic, ModernaTX, Inc. in collaboration

with the National Institute of Allergy and Infectious

Diseases (NIAID) are developing a lipid nanoparticle/

mRNA-based vaccine for the novel SARS-CoV-2 corona-

virus infection, currently in Phase I trials in healthy

volunteers [55].

Conclusions
Immune responses can be engineered using gene deliv-

ery techniques to modulate the genetic composition of

cells, enabling innovative cancer immunotherapy meth-

ods. Nucleic acid cargos of varying size can be optimized

for nanoparticle encapsulation to upregulate or down-

regulate gene expression, leading to productive anti-

tumor immune responses. Genetic material can be deliv-

ered via viral or non-viral approaches to immune cells,

such as macrophages and dendritic cells, to activate or

suppress activity. Nanoparticles are diverse in formula-

tion, with each type of delivery material conveying advan-

tages and disadvantages, which may be combined in

hybrid formulations consisting of multiple material types.

In addition, new cargos, such as self-amplifying mRNA,

hold promise for efficient, next-generation vaccines, and

nanostructures like polymersomes can allow for the deliv-

ery of combination immunotherapies. Recent research

has shown the expansive applications of gene therapy to

various immune-related disorders and diseases, including

tumors, infectious diseases, autoimmune disorders, and

allergy. Many of the current trials shown here are in early

stages, but there are exciting developments that potenti-

ate future clinical impact. It is important to note that

gene-based therapies for immune engineering constitute

a set of challenges that require further vetting of these

platforms before entering further clinical stages, such as

reproducibility, instability of genetic materials, produc-

tion scale-up, transient off-target genotoxicity, and vector

immunogenicity [56]. However, with well-funded com-

panies increasingly sponsoring nucleic acid therapeutics

and immune engineering approaches, there is great hope

for the necessary advances that can achieve clinical effi-

cacy while minimizing toxicity.

Conflict of interest statement
Nothing declared.

Acknowledgements

The authors thank the N.I.H. for support (P41EB028239, R01CA228133,
and R01EY031097). SYN (DGE-1746891) thanks the NSF Graduate
Research Fellowship program for support. SYT thanks the American
Autoimmune-Related Diseases Association (AARDA) for support. The
authors are also thankful for support from the Bloomberg�Kimmel Institute
for Cancer Immunotherapy.
www.sciencedirect.com



Gene delivery for immunoengineering Neshat, Tzeng and Green 9
References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M:
Gene therapy comes of age. Science 2018, 359.

2. Tzeng SY, Green JJ: Polymeric nucleic acid delivery for
immunoengineering. Curr Opin Biomed Eng 2018, 7:42-50.

3. Maeda M, Kojima T, Song Y, Takayama S: DNA-based
biomaterials for immunoengineering. Adv Healthc Mater 2019,
8:e1801243.

4. Heil M, Vega-Munoz I: Nucleic acid sensing in mammals and
plants: facts and caveats. Int Rev Cell Mol Biol 2019, 345:225-
285.

5. Motwani M, Pesiridis S, Fitzgerald KA: DNA sensing by the cGAS-
STING pathway in health and disease. Nat Rev Genet 2019,
20:657-674.

6. Hur S: Double-stranded rna sensors and modulators in innate
immunity. Ann Rev Immunol 2019, 37:349-375.

7. Pham T, Roth S, Kong J, Guerra G, Narasimhan V, Pereira L,
Desai J, Heriot A, Ramsay R: An update on immunotherapy for
solid tumors: a review. Ann Surg Oncol 2018, 25:3404-3412.

8.
�

Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J,
Krishnan UM: Polymer-coated viral vectors: hybrid
nanosystems for gene therapy. J Gene Med 2018, 20:e3011

While viral gene delivery is of high interest in the laboratory as well as in
the clinic, it still faces several hurdles, some of which can be solved by
combining viruses with other materials. This review covers many of the
challenges to viral gene therapy as well as methods of overcoming them.

9. Zhu J, Liu JQ, Shi M, Cheng X, Ding M, Zhang JC, Davis JP,
Varikuti S, Satoskar AR, Lu L et al.: Il-27 gene therapy induces
depletion of tregs and enhances the efficacy of cancer
immunotherapy. JCI Insight 2018, 3.

10. Jung BK, Oh E, Hong J, Lee Y, Park KD, Yun CO: A hydrogel
matrix prolongs persistence and promotes specific
localization of an oncolytic adenovirus in a tumor by
restricting nonspecific shedding and an antiviral immune
response. Biomaterials 2017, 147:26-38.

11. Jiang J, Zhang Y, Peng K, Wang Q, Hong X, Li H, Fan G, Zhang Z,
Gong T, Sun X: Combined delivery of a tgf-beta inhibitor and an
adenoviral vector expressing interleukin-12 potentiates
cancer immunotherapy. Acta Biomater 2017, 61:114-123.
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