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Abstract: Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC)
worldwide. The integration of HBV genomic DNA into the host genome occurs randomly, early after
infection, and is associated with hepatocarcinogenesis in HBV-infected patients. Therefore, it is
important to analyze HBV genome integration. We analyzed HBV genome integration in human
hepatoma PLC/PRF/5 cells by HBV sequence capture-based next-generation sequencing (NGS)
methods. We confirmed the results by using Sanger sequencing methods. We observed that HBV
genotype A is integrated into the genome of PLC/PRF/5 cells. HBV sequence capture-based NGS
is useful for the analysis of HBV genome integrants and their locations in the human genome.
Among the HBV genome integrants, we performed functional analysis and demonstrated the
automatic expression of some HBV proteins encoded by HBV integrants from chromosomes 3 and
11 in Huh7 cells transfected with these DNA sequences. HBV sequence capture-based NGS may
be a useful tool for the assessment of HBV genome integration into the human genome in clinical
samples and suggests new strategies for hepatocarcinogenesis in HBV infection.

Keywords: chromosome; HBV; HCC; hepatocarcinogenesis; Huh7; integration; next-generation
sequencing; PLC/PRF/5; transfection

1. Introduction

Hepatitis B virus (HBV) infection occasionally induces hepatocellular carcinoma (HCC) through
direct and indirect mechanisms and is an important cause of morbidity and mortality worldwide.
HBV is a partially double-stranded DNA hepatotropic virus of ~3.2 kb in length. The HBV DNA
sequence consists of four open reading frames encoding the surface (HBsAg), core (HBcAg), polymerase,
and X (HBx) proteins [1,2].

Soon after HBV infection, HBV DNA is converted into a covalently closed circular DNA molecule
(HBV cccDNA) in the nucleus of HBV-infected cells as a stable episomal template [3]. HBV cccDNA is
responsible for the chronic persistent HBV infection of hepatocytes. On the other hand, the integration of
HBV DNA into the host genome occurs randomly, early after infection, and seems to continue [4–8]. Although
the frequent observation of somatic integration of HBV DNA suggests a possible benefit for HBV
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replication, the mechanism of integration, its functions, and the clinical impact on hepatocarcinogenesis
remain largely unknown [9,10].

Next-generation sequencing (NGS) has been applied in various fields of virology and cancer
research [6,7]. However, the low abundance of viral integration occasionally prevents viral identification.
Specific target-sequence capture-based NGS has been developed as a method for detecting low levels
of virus particles [11]. After fragments with HBV sequence were enriched by a set of HBV probes,
high-throughput sequencing could detect the location of HBV integration breakpoints in the HCC
genome [12]. Capture sequencing methods have higher sensitivity and efficiently detect sequences
with low costs, compared to conventional methods [12,13].

In this report, we analyze HBV genome integration in human hepatoma PLC/PRF/5 cells [14] by
more sensitive HBV sequence capture-based NGS methods. We constructed an HBV genome sequence
and determined the HBV genotype (GT) in human hepatoma PLC/PRF/5 cells. We also focus on the
topical subject of HBV DNA integration, which is linked HCC progression. We reveal HBV DNA
integrants and their locations in the human genome. HBV sequence capture-based NGS is a useful and
powerful tool for the assessment of HBV genome integration.

2. Materials and Methods

2.1. Cell Culture

Human hepatoma PLC/PRF/5 and Huh7 cells were purchased from the Japanese Collection of
Research Bioresources (JCRB) Cell Bank (Osaka, Japan) [14]. The cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal
bovine serum and 100 U/mL penicillin/100 µg/mL streptomycin at 37 ◦C in a 5% CO2 atmosphere.
We used PLC/PRF/5 cells within 5 passages in the present study.

2.2. Cellular DNA Extraction and DNA Fragmentation

Total DNA was isolated using a QIAamp DNA Mini Kit (Qiagen, Tokyo, Japan) according to the
manufacturer’s instructions. A total of 10 µg DNA was fragmented using an E-200 ultrasonicator
(Covaris, Unit H. Woburn, MA, USA) [15], and the size of the resulting DNA fragments was ~300 bp,
which was confirmed by using an Agilent Bioanalyzer 2100 (Agilent Technologies, San Jose, CA, USA).

2.3. Library Preparation and HBV Sequence Capture-Based Next-Generation Sequencing (NGS)

After the generation of blunt-ended fragments, a sequence adapter was added with a TruSeq Nano
DNA Sample Prep Kit (Illumina, San Diego, CA, USA). Target-capture sequencing on the Roche SeqCap
platform was performed across HBV full genomes: GT-A (AP007263), GT-B (AB287327), and GT-C
(AB368296). The DNA libraries from PLC/PRF/5 cells were captured using probes generated from
these 3 HBV sequences by using SeqCap EZ Libraries (Roche NimbleGen, Tokyo, Japan).

HBV DNA-specific fragments were selectively collected with Invitrogen Dynabeads (Invitrogen,
Carlsbad, CA, USA) and used as genome libraries. NGS of these libraries was performed by using
a HiSeq 2000 (Illumina) system with a HiSeq PE Cluster Kit cBot (Invitrogen). Sequence data were
processed using a standard pipeline in CLC Genomics Workbench (Qiagen). We focused on the accumulation
of HBV-integrated sequences/fused/chimeric sequences and analyzed the sequences of the HBV and
human genomes in each read by HBV sequence capture-based NGS. The integrated sequences of the
HBV and human genomes with sequence reads >100 were analyzed.

HBV short genome sequences isolated at NGS were mapped to the reference sequence of HBV
full genome GT-C (AB014378), resulting in the full-length HBV sequence (PLC-HBV) derived from
PLC/PRF/5 cells being obtained.

All sequence reads have been submitted to the DNA Data Bank of Japan (DDBJ; temporary
submission ID: SSUB015333).
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2.4. Confirmation of HBV Genome Integration by Sanger Sequencing Methods

PCR primers were designed at the following locations in the human genome (hg19):
131170441–131170444 and 131172081–131172105, 64808026–64808415 and 64808438–64808453,
and 80063555–80063577 and 80065509–80065534 for HBV integrants in chromosomes 3, 11, and 17,
respectively. PCR primers were also designed at the following locations, the human genome (hg19):
1296892–1296914 on chromosome 5 and 33662450–33662472 for translocation of chromosome (5; 13).
A total of 100 ng DNA was amplified by PCR with KOD FX Neo (KFX-201, Toyobo, Osaka, Japan),
according to the manufacturer’s instructions.

The PCR products were cloned into the pCR-Blunt II-TOPO vector (Invitrogen). Sanger sequencing
was performed with M13 forward and reverse primers using the BigDye Terminator v3.1 Cycle
Sequencing Kit (Thermo Fisher Scientific, Tokyo, Japan) and an ABI 3730xl DNA Genetic Analyzer
(Thermo Fisher Scientific), according to the manufacturer’s instructions.

2.5. Phylogenetic Analysis

GENETYX version 10 (GENETEX Corp., Shibuya, Tokyo, Japan) was used to analyze the nucleotide
sequences and perform phylogenetic tree analysis by neighbor-joining (NJ) methods. The statistical
reliability of the phylogenetic trees was assessed using the bootstrap method on 10,000 times and
the Kimura two-parameter model [16]. The accession numbers of sequences of various HBV GTs are
indicated [17–21].

2.6. Immunofluorescence Study

HBV integrants from chromosomes 3 and 11 were cloned into the pCR-Blunt II-TOPO vector.
Plasmids were transfected into Huh7 cells using Lipofectamine 2000 (Thermo Fisher Scientific).
After 24 h of transfection, the cells were fixed with 4% paraformaldehyde (Gibco, Palo Alto,
CA, USA) and incubated with an HBsAg-specific mouse monoclonal antibody (M3506, Dako,
Carpinteria, CA, USA) at a dilution of 1:50, or HBV polymerase-specific mouse monoclonal antibody
(2C8, sc-81590, Santa Cruz Biotechnology, Dallas, TX, USA) at a dilution of 1:50 for 1 h. The cells
were washed and incubated with anti-mouse Ig conjugated with an Alexa 594 secondary antibody
(Invitrogen) at a dilution of 1:500 for 1 h at room temperature. Finally, the cells were washed and
mounted for fluorescence microscopy (BIOREVIO BZ-9000, Keyence, Osaka, Japan). PLC/PRF/5 cells
were used as control.

3. Results

3.1. HBV DNA Sequence Derived from PLC/PRF/5 Cells

Using HBV sequence capture-based NGS technology, we analyzed PLC/PRF/5 cells to reveal
the HBV signature. HBV genome sequences were found in PLC/PRF/5 cells (1,784,734 reads out of
6,165,629 reads, including the mitochondrial genome; see Table 1). We mapped these sequences onto
a previously reported HBV sequence to obtain the full-length HBV sequence (PLC-HBV) derived from
PLC/PRF/5 cells. PLC-HBV has been deposited in the DNA Data Bank of Japan (https://www.ddbj.nig.
ac.jp/index-e.html; accessed on 28 March 2020 under accession number LC533934).

Table 1. The mapped reads and average coverage of hepatitis B virus (HBV) sequence capture-based
next-generation sequencing in the present study.

Reference
Sequence

Reference
Length

Consensus
Length

Total
Reads

Single
Reads

Reads in
Pairs

Average
Coverage

Chr. 1 2.49 × 108 1,545,531 190,160 18,518 171,642 0.076008
Chr. 2 2.43 × 108 1,344,151 171,652 23,708 147,944 0.06996
Chr. 3 1.98 × 108 985,756 134,430 19,312 115,118 0.067181
Chr. 4 1.91 × 108 763,084 101,024 27,548 73,476 0.051384

https://www.ddbj.nig.ac.jp/index-e.html
https://www.ddbj.nig.ac.jp/index-e.html
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Table 1. Cont.

Reference
Sequence

Reference
Length

Consensus
Length

Total
Reads

Single
Reads

Reads in
Pairs

Average
Coverage

Chr. 5 1.81 × 108 878,501 107,805 12,905 94,900 0.059238
Chr. 6 1.71 × 108 978,370 143,424 13,186 130,238 0.083435
Chr. 7 1.59 × 108 1,044,242 136,171 13,449 122,722 0.085094
Chr. 8 1.46 × 108 762,738 93,417 14,827 78,590 0.063299
Chr. 9 1.41 × 108 599,234 65,741 9779 55,962 0.046138

Chr. 10 1.36 × 108 769,055 110,259 27,795 82,464 0.079924
Chr. 11 1.35 × 108 863,578 2,006,583 126,939 1,879,644 1.488781
Chr. 12 1.34 × 108 736,429 115,138 21,172 93,966 0.084807
Chr. 13 1.15 × 108 412,243 58,815 10,367 48,448 0.050038
Chr. 14 1.07 × 108 455,809 53,252 4762 48,490 0.049338
Chr. 15 1.03 × 108 490,545 348,653 17,775 330,878 0.338605
Chr. 16 90,354,753 563,883 114,919 48,517 66,402 0.122922
Chr. 17 81,195,210 524,407 106,805 25,583 81,222 0.128115
Chr. 18 78,077,248 394,380 52,617 7057 45,560 0.067025
Chr. 19 59,128,983 447,625 53,263 7119 46144 0.089332
Chr. 20 63,025,520 474,048 68,184 5948 62,236 0.107619
Chr. 21 48,129,895 254,738 32,117 4913 27,204 0.0658
Chr. 22 51,304,566 253,101 29,371 3049 26,322 0.05685
Chr. X 1.55 × 108 674,067 73,717 8491 65,226 0.047146
Chr. Y 59,373,566 100,605 8838 8018 820 0.013505

Chr. MT 16,569 14,178 4540 172 4368 27.45869
HBV 3215 3213 1,784,734 448,408 1,336,326 53,732.01

Chr., chromosome (Hg19); MT, mitochondria; HBV, hepatitis B virus (AB014378) showing 90% (2915/3220) homology
to full-length HBV sequence (PLC-HBV).

Phylogenetic tree analysis by the neighbor-joining (NJ) method demonstrated that PLC-HBV
belongs to HBV GT-A (Figure 1), in agreement with the production of subtype adw of HBsAg by
PLC/PRF/5 cells [14,17] and the finding that the HBV genome sequences recovered from PLC/PRF/5 cells
belong to HBV GT-A [18]. PLC-HBV shows nucleotide homology of 94% (3054/3221), 90% (2919/3220),
and 91% (2932/3220) to the HBV sequences used for the generation of HBV capture probes in the present
study (GT-A, HB-JI444AF (AP007263); GT-B, JPN Bj A53 (AB287327); GT-C C2, HBV-CH48-201w
(AB368296), respectively) [22,23].

PLC/PRF/5 cells do not harbor an intracellular free HBV genome or infectious HBV virions in the
conditioned medium [19,24–26]. Although there is one report showing that PLC/PRF/5 cells harbor
full-length HBV genomes [20], the PLC-HBV genome is constructed from multiple partial HBV genome
sequences in PLC/PRF/5 cells. Here, we demonstrate that HBV GT-A is integrated into the genome of
PLC/PRF/5 cells.

3.2. Analysis of HBV Genome Integrants and Their Locations in the Human Genome

We focused on the accumulation of HBV-integrated sequences/fused/chimeric sequences and
analyzed the sequences of the HBV and human genomes in each read by HBV sequence capture-based
NGS. HBV-integrated sequences/fused/chimeric sequences consist of one derived from the host and
the other from HBV. The results of the analysis for the integrated sequences of the HBV and human
genomes with sequence reads >100 are shown in Table 2.

Figure 2 shows the results regarding the integrated sequences of HBV and human genome
chromosomes 3, 11, and 17, confirmed by Sanger sequencing methods. These results were different
to some extent from those of NGS. Figure 2A presents the results for integrated HBV and human
chromosome 3 sequences. Human genome chromosome 3 exhibits a 1637-bp deletion with the insertion
of a partial 2623-bp HBV DNA sequence. The HBV regions included in this integrant are shown
in Figure 2D.
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Figure 1. Phylogenetic tree for the hepatitis B virus (HBV) full-length genome obtained in the
present study as determined by neighbor-joining (NJ) methods. Black circle, PLC-HBV (LC533934);
blue square, reference sequences in the present study. GT-Ae, the original European genotype A;
GT-Aa, the new African/Asian genotype A. The accession numbers of sequences of various HBV
genotypes (GTs) are indicated [21–23,27,28].

Table 2. HBV and human genomes in PLC/PRF/5 cells determined by HBV sequence capture-based
next-generation sequencing.

Human
Chromosome (Chr.)

Human Junction
Nucleotide Position

Gene
Name

HBV Fragment
Start Position

HBV Fragment
End Position

HBV
Genome

Number of
Total Reads *

Chr.3 131170552 NA 1044 1406 P, S, X 3673
Chr.3 131171957 NA 1415 1914 C, P, S, X 3589
Chr.4 181507570 NA 96 432 P, S 1548
Chr.4 181508764 NA 235 387 P, S 4377
Chr.5 1297593 NA 1175 1364 P, S 3680
Chr.8 35304663 UNC5D 2389 2862 C, P, S 4625
Chr.11 64808415 SNX15 1313 1575 P, S, X 5911
Chr.11 64808432 SAC3D1 2575 2851 P, S 6616
Chr.12 110012332 MVK 692 1379 P, S, X 10,130
Chr.13 33662251 NA 1897 2109 C, P, S 4060
Chr.13 33662698 NA 783 1612 P, S, X 1494
Chr.17 80063662 CCDC57 428 2586 P, S 7699
Chr.17 80065497 CCDC57 2062 2420 C, P, S 6918

Chr., chromosome (Hg19); NA, not available; UNC5D, unc-5 netrin receptor D; SNX15, sorting nexin 15;
SAC3D1, SAC3 domain-containing 1; MVK, mevalonate kinase; CCDC57, coiled-coil domain-containing 57;
HBV, hepatitis B virus; C, core; P, polymerase; S, surface antigen; X, HBx; *, confirmed by HBV sequence capture-based
next-generation sequencing.

Figure 2B shows the results regarding integrated HBV and human chromosome 11 sequences.
Human genome chromosome 11 exhibits a 17-bp deletion with the insertion of a partial 1591-bp HBV
DNA sequence. The HBV regions included in this integrant are shown in Figure 2D. The insertion
point of human chromosome 11 is the intron of the SAC3 domain-containing 1 (SAC3D1) region.
The SAC3D1 mRNA is significantly associated with the overall survival of patients with HCC (B Cox
value, +0.540; HR (95% CI), 1.717 (0.179–3.0 0); p < 0.0001). Higher expression of SAC3D1 mRNA
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in HCC is considered a high-risk factor associated with short survival [29]. SAC3D1 is associated
with centrosome abnormalities, and SAC3D1 could be a prognostic marker for HCC recurrence after
surgical treatment [30].

Figure 2C provides the results for integrated HBV and human chromosome 17 sequences.
Human genome chromosome 17 harbors a 1932-bp deletion with the insertion of a partial 1699-bp HBV
DNA sequence. The HBV regions included in this integrant are shown in Figure 2D. The insertion
point of human chromosome 17 is the coiled-coil domain-containing 57 (CCDC57) coding region. It has
been reported that CCDC57 is one of the genes targeted by the integration of human papillomavirus
16 (HPV 16) [31].
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containing 1; NAALADL1, N-acetylated alpha-linked acidic dipeptidase such as 1; CCDC57, coiled-
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Figure 2. Results for integrated sequences of hepatitis B virus (HBV) and human genome chromosomes
(Chrs) 3, 11, and 17 determined by Sanger sequencing. (A) Chr 3, (B) Chr 11, (C) Chr 17, deletion of
human genome sequence including part of an exon, (D) summary of HBV integrants in PLC/PRF/5
cells confirmed by Sanger methods. SNX15, sorting nexin 15; SAC3D1, SAC3 domain-containing 1;
NAALADL1, N-acetylated alpha-linked acidic dipeptidase such as 1; CCDC57, coiled-coil domain-
containing 57; S, surface antigen; C, core; P, polymerase; X, HBx.

3.3. Translocation of Chromosomes (5; 13) with HBV Integrants

We also observed the translocation of chromosomes (5; 13) with HBV genome integrants (Figure 3).
The results confirmed by Sanger sequencing methods demonstrate that the insertion point in human
chromosome 5 is 2409 bp upstream of the telomerase reverse transcriptase (TERT) gene, which is
located near the TERT promoter region. The HBV regions included in this integrant are shown in
Figure 3. The insertion point in human chromosome 13 is also 15021 bp downstream of the StAR-related
lipid transfer domain containing 13 (STARD13) genes (Figure 3).
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were confirmed by Sanger sequencing methods. Chr, chromosome (Hg19); TERT, telomerase reverse
transcriptase; STARD13, StAR-related lipid transfer domain containing 13 genes.

3.4. Automatic Expression of Proteins of HBV Integrants from Chromosomes 3 and 11, from the Vector without
Any Promoter Sequences

To examine the function of HBV integrant DNA from chromosome 3 in Huh7 cells after 24 h
of transfection, we examined the expression of each HBV protein by immunofluorescence analysis.
Compared to the expression of HBV proteins in PLC/PRF/5 (Figure 4A), we observed higher expression
of both HBsAg and HBV polymerase protein in HBV integrant DNA-transfected Huh7 cells (Figure 4B).
We did not observe HBcAg or HBx protein expression in HBV integrant DNA-transfected Huh7 cells
(data not shown).

After 24 h of transfection of the HBV integrant from chromosome 11 into Huh7 cells, we observed
only HBsAg expression (Figure 4C). As the pCR-Blunt II-TOPO vector is a cloning vector and does
not contain any promoters for the expression of coding proteins in mammalian cells, these integrants
should automatically express the HBV-host fusion, HBsAg or HBV polymerase protein. No previous
studies have shown polymerase expression in PLC/PRF/5 cells.
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15q22-q23 and 18q12 [36], and we also found partial HBV genomes in chromosomes other than 11, 
15, and 18 (Table 1). It is possible that our methods are more sensitive and less error-prone. 

HBV genome integration into exons and introns results in truncated proteins and decreased 
protein expression levels, respectively. We found HBV integrants in the intron of chromosome 3 
(Figure 2A) and part of the exon of CCDC57 in chromosome 17 (Figure 2C). We also found HBV 
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Monjardino et al. reported that a defective HBV DNA molecule (approx. 2.8 kilobase pairs) 
appears to be integrated in a head-to-tail tandem arrangement, and they proposed that such defective 
molecules may be involved in the induction of hepatocarcinogenesis by HBV [26]. 

Figure 4. Automatic expression of proteins of HBV integrants from chromosomes 3 and 11. Representative
images are shown (40×). Fluorescent immunostaining for HBsAg (S) and HBV polymerase (P) in
PLC/PRF/5 cells (A), Huh7 cells transfected with the pCR-Blunt II-TOPO-HBV integrant from
chromosome 3 (B), or Huh7 cells transfected with the pCR-Blunt II-TOPO-HBV integrant from
chromosome 11 (C).
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4. Discussion

We observed that HBV GT-A is a major GT of HBV integrated into PLC/PRF/5 cells. HBV sequence
capture-based NGS is useful for the analysis of HBV genome integrants and their locations in the human
genome. Among these HBV genome integrants, we performed functional analysis and demonstrated
the automatic expression of some HBV proteins of HBV integrants from chromosomes 3 and 11 in
Huh7 cells transfected with these DNA sequences.

The integration of a viral genome could lead to the disruption of the function of the human
genome [32–35]. The deregulation of key cellular genes by HBV integration, which may present a selective
growth advantage to hepatocytes and result in hepatocarcinogenesis, is thought to occur through
several distinctive mechanisms.

PLC/PRF/5 cells can produce HBsAg in the cell culture medium [14,19]. Edman et al. reported that
the PLC/PRF/5 cell line contains at least six (four complete and two incomplete) HBV genomes
integrated into high-molecular-weight host DNA [20]. Northern blot analysis demonstrated the presence
of RNA transcripts specific for the surface antigen sequences of HBV DNA and the absence of
detectable transcripts corresponding to the hepatitis B core antigen, supporting the results of the
immunofluorescence analysis conducted in the present study (Figure 4).

A previous in situ hybridization study with an HBV DNA probe for metaphase chromosomes of
the PLC/PRF/5 cell line followed by statistical analysis identified 3 integration sites, namely, 11q22,
15q22-q23 and 18q12 [36], and we also found partial HBV genomes in chromosomes other than 11, 15,
and 18 (Table 1). It is possible that our methods are more sensitive and less error-prone.

HBV genome integration into exons and introns results in truncated proteins and decreased protein
expression levels, respectively. We found HBV integrants in the intron of chromosome 3 (Figure 2A)
and part of the exon of CCDC57 in chromosome 17 (Figure 2C). We also found HBV integrants in the
exon of SAC3D1 in chromosome 11 (Figure 2B).

Monjardino et al. reported that a defective HBV DNA molecule (approx. 2.8 kilobase pairs) appears to
be integrated in a head-to-tail tandem arrangement, and they proposed that such defective molecules
may be involved in the induction of hepatocarcinogenesis by HBV [26].

HBV genome integration induces aberrant promoter function in the host genome. Figure 3 shows
HBV genome integration in a region close to the TERT promoter. Telomerase activity, which restores
the length of telomere repeat arrays, is frequently observed in various malignancies, including HCC.
As TERT is a protooncogene, the integration of HBV could result in hepatocarcinogenesis through
its amplification and/or overexpression [37]. We also measured TERT mRNA by real-time RT-PCR,
but we did not see any difference in TERT mRNA among PLC/PRF/5, Huh7, and HepG2 cells.

STARD13/Deleted in Liver Cancer (DLC) proteins belong to the RhoGAP family, and this protein
is more abundantly expressed in HCC tissue, in particular, in the association with inflammation
background [38]. STARD13 is related to HCC growth and hepatocarcinogenesis [38–40], although there
is a report that HCC-patients with higher STARD13 or Fas expression levels have longer overall
survival [41]. The consequences of the detected HBV integration sites and the clinical consequences or
integration impact on hepatocarcinogenesis are yet unclear.

Interestingly, the automatic expression of some proteins encoded by HBV integrants from
chromosomes 3 and 11 was observed in Huh7 cells transfected with these DNA sequences. This phenomenon
may be involved in hepatocarcinogenesis in patients infected with HBV. Chromosome 11 HBV integrants
did not code HBV full-length polymerase (Figure 2D). This may be the reason why we did not observe
HBV polymerase protein in Huh7 cells transfected by chromosome 11 HBV integrants (Figure 4C).
Further studies, including the functional analysis of these mechanisms, are needed.

In the present study, we enhanced NGS using HBV-targeted sequence capture. Although metagenomic
shotgun sequencing is an important tool for the characterization of viral populations, metagenomic
shotgun sequencing occasionally lacks sensitivity and may yield insufficient data for detailed analysis [42,43].
A targeted sequence-capture panel enhances metagenomic shotgun sequencing [42,43]. As genetic
libraries must be generated from samples with low concentrations of HBV DNA and a high content of
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nucleic acids from a host in many cases [44], HBV hybridization-based enrichment may be useful for
improving the sensitivity of the detection of HBV genome integration in hepatocytes. However, it is
difficult to demonstrate how many copies of HBV deletion/rearrangements exist per cell, and single-cell
genome sequencing may be helpful in this case [45].

Characteristics of human hepatoma PLC/PRF/5 cells have been reported for 40 years [36,46–48],
and several genome sequences in the present study were not reported in detail. Watanabe et al. extensively
analyzed the characteristics of human hepatoma PLC/PRF/5 cells using other NGS strategies [49].
However, they did not report the translocation of chromosomes (5; 13) with HBV integrants, which the
present study has mentioned, suggesting that the HBV sequence capture-based NGS method is the
more powerful and sensitive tool for the analysis of HBV integrants.

Characteristics of human hepatoma PLC/PRF/5 cells may not reflect those of human HCC samples.
It may be useful to analyze the HBV integrants in human HCC samples by our methods, although there
may be false-positives in their analysis and their impact when real clinical samples that contain high
levels of circulating virus are used. A similar approach has already been used for the identification of
HBV integration in the human genome of clinical samples [12]. Compared to the method reported by
Li et al. [12], our method does not require special computational analysis. The limitation of our study
is that we did not use clinical samples. Further study is needed.

5. Conclusions

The HBV replication mechanism and the mechanism of integration, its functions, and the clinical
impact on hepatocarcinogenesis remain largely unknown. HBV sequence capture-based NGS is a useful
and powerful tool for the assessment of HBV genome integration to explore HBV genome integrants
and their locations in the human genome. Clinical impact on hepatocarcinogenesis and new treatment
strategies can be provided through this method.
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