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ABSTRACT

MetaRanker 2.0 is a web server for prioritization
of common and rare frequency genetic variation
data. Based on heterogeneous data sets including
genetic association data, protein–protein inter-
actions, large-scale text-mining data, copy number
variation data and gene expression experiments,
MetaRanker 2.0 prioritizes the protein-coding part
of the human genome to shortlist candidate genes
for targeted follow-up studies. MetaRanker 2.0 is
made freely available at www.cbs.dtu.dk/services/
MetaRanker-2.0.

INTRODUCTION

Genetic association studies provide near-unbiased screens
of common and rare variants’ association with complex
traits. Genome-wide association (GWA) studies highlight
distinct loci, and thereby reduced, yet sizable, sets of genes
among which to search for likely causal candidates (1).
Complex trait-based exome chip analyses (2) and exome
sequencing studies (3) highlight coding mutations within
specific genes, but generally lack statistical power to es-
tablish significant associations. Therefore, association
studies and rare variant analyses typically rely on down-
stream bioinformatics analysis, to further reduce their
shortlisted candidate genes to numbers that allow in
depth experimental follow-up studies.
Genetic alterations may trigger a downstream cascade

of changes in cellular states (4). Consequently, analyses of
genetic variation data have been augmented by integration
with complementary data sets, among others differential-
or tissue-specific gene expression data (5), protein–
protein interaction data (6) or existing literature-based

knowledge (7). Although there are highly specialized
tools that facilitate gene prioritization in chromosomal
regions [e.g. Endeavour (8), or Prioritizer (9)], or GWA
loci [e.g. GRAIL (10), or DAPPLE (11)], there is only a
limited number of tools that allow researchers to combine
their in-house portfolio of genomics data sets with
relevant publicly available data sets [see (12) for an in-
depth review of existing gene prioritization methods].
One of these approaches is MetaRanker 1.0 (13), our pre-
viously published approach, which augments genetic
analyses by prioritizing the genome in relation to a
specific phenotype of interest through integration of het-
erogeneous and complementary data sources.
MetaRanker facilitates integration of the following data
types:

(i) Single nucleotide polymorphism (SNP) to pheno-
type associations from GWA studies, which repre-
sent a rapidly growing resource of unbiased
common variant associations.

(ii) High-confidence protein–protein interaction networks
centred on proteins encoded by user-defined pheno-
type-related susceptibility genes, which may contrib-
ute with non-obvious pathway-based information.

(iii) Data from linkage studies capturing co-segregation
of chromosomal regions and disease-specific pheno-
types, thereby highlighting chromosomal intervals
likely to harbour causal genes.

(iv) Quantitative data on disease similarities, which may
add information that exploit overlaps in disease
definitions.

(v) Tissue-specific or differential gene expression data
from microarray or sequencing-based studies.

These data sources are treated as evidence layers that can
be used in any combination, and are collapsed into an
integrative meta-layer. We validated MetaRanker 1.0 by
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discovering a novel bipolar disorder susceptibility locus
(rs1049583, near YWHAH), which we replicated through
genotyping in independent cohorts. Another tool that
allows prioritization of disease genes by integration
through various data types is CANDID (14). We bench-
marked MetaRanker successfully against this method.

In this article, we describe MetaRanker 2.0, which
extends our original approach in several significant ways:

(i) Integration of new user-specified data sets, such as
data from next-generation sequencing studies, or
additional gene expression experiments. (User
input: Gene IDs and gene-based scores).

(ii) Integration of copy-number variation data. (User
input: Chromosomal regions),

(iii) Improved gene ranking based on large-scale text-
mining. (User input: Key words).

(iv) Improved GWA data-based scoring of genes.
(v) Improved usability of the web server.

MATERIALS AND METHODS

Below the MetaRanker 2.0 improvements are briefly
described. Please refer to Pers et al. (13) and Figure 1
for a description of the original algorithm and data sets
used by MetaRanker.

Integration of user-specified data sets

MetaRanker 2.0 allows the user to upload lists of genes
and their scores. Scores can denote tissue-specific expres-
sion levels, binary values indicating causality, P-values
from gene-based associations tests, or any other type of
gene-based score. The web server supports upload of
several different gene nomenclatures (Ensembl gene IDs,

Hugo gene symbols, and Entrez gene IDs), and up to five
custom evidence layers.

Integration of copy-number variation data

MetaRanker 1.0 facilitated integration of linkage data by
requiring the user to upload chromosomal bands. Large-
scale genotyping based on high-density SNP arrays,
microarray-based comparative genomic hybridization
and sequencing have superseded traditional linkage
analysis. MetaRanker 2.0 allows upload of chromosomal
regions based on physical coordinates (e.g. chr4:300,123-
404,567) to facilitate both linkage data and copy number
variation data. Genes overlapping with these user-
specified regions are collectively weighted higher than
the rest of the genes in the human genome.

Improved gene ranking based on large-scale text-mining

The text-mining layer in MetaRanker 2.0 quantifies the
association between genes and phenotypes based on
11 620 324 abstracts contained in the PubMed database
MEDLINE (download date 22 November 2011). We
have constructed word vectors for 18 804 genes, and
15 807 phenotypic Medical Subject Headings (MeSH)
terms. Using an approach that resembles the methodology
applied by GRAIL (10), and previous work by us (15), we
first normalize word vectors to adjust for publication
biases, and then use the cosine angle between term
vectors to compute pairwise similarities between genes
and MeSH terms. In this new framework, the user can
rank genes based on combinations of phenotypic terms
by using logical AND, and OR relationships. Compared
with the MetaRanker 1.0 disease similarity layer, which
was based on text-mining of the Genecards database (16),

Figure 1. Overview of MetaRanker 2.0 workflow. The user submits one or several types of data sets (evidence layers), which subsequently are
converted into ranks and integrated to yield a prioritized meta-rank. Genes likely to be associated with the trait—given the evidence layers—will be
ranked at the top of the meta-rank.
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the new layer provides a more flexible and extensive
approach to literature-based gene ranking.

Improved GWA data-based scoring of genes

MetaRanker 1.0 scored genes by (i) mapping SNPs to
genes (based on physical proximity), (ii) assigning P-
values to genes based on the best-associated SNP and
(iii) adjusting gene P-values by the number of independent
SNPs mapped to the given gene (a correlate for gene
length). A recent paper (17) has proposed that in situ-
ations where many SNPs map to the same gene (typically
observed in GWA studies), a method developed by Li and
Ji (18) performs superior compared with the independent
number of SNPs calculation algorithm proposed by
Galwey (19) and implemented in MetaRanker 1.0.
Therefore, we implemented the Li and Ji correction
method in MetaRanker 2.0.

Improved usability

We have improved the usability of MetaRanker by imple-
menting several key features: First, in the new web server,
we have eased user handling by enabling several analyses
simultaneously. Second, since GWA study evidence layer-
based analysis, and/or the text-mining layer-based
analyses, take dozens of minutes to complete, we have
added progress bars for each layer that was included in
the analysis. Third, we have added searching, and column-
specific sorting of results. Finally, we have added inter-
active visualization that displays the 20 best-associated
genes, along with their high-confidence protein–protein
interaction partners. Interaction data originates from the
InWeb database (15), and the user can interactively
explore the network by re-orienting nodes and edges.

EXAMPLES ON METARANKER 2.0 ANALYSES

MetaRanker 2.0 represents a versatile tool that facilitates
integration of several data types. Below, we briefly illus-
trate three ways MetaRanker 2.0 can be used to prioritize
genes for follow-up studies.

Prioritization of genes based on GWA data

MetaRanker 2.0 facilitates prioritization of genes based
on user-specified GWA summary statistics. Summary stat-
istics can be uploaded as text or compressed files (.zip, .tar
or .gz file formats). The user can add any other combin-
ation of the evidence layers. The results consist of a
ranked list of prioritized genes, along with information
on the number of SNPs mapped to each gene, each
gene’s best-associated SNP and the number of independ-
ent tests per gene.

Prioritization of genes based on rare-variant analyses data

Single-marker analyses of rare-variant data often have
sub-optimal power to detect statistically significant asso-
ciations (20). MetaRanker 2.0 facilitates prioritization of
genes based on user-specified rare-variant association data
(e.g. from exome chip analyses or exome sequencing
studies) by integrating gene scores [e.g. sequence kernel

association test P-values (21)] with any other combination
of evidence layers. This can be accomplished by uploading
gene-based scores to a custom layer, and, depending of the
type of gene score, enabling either ascending or descend-
ing sorting (P-values, for instance, should be sorted in
ascending order).

Prioritization of genes based on protein–protein
interaction-based guilt by association scoring

MetaRanker 2.0 is not limited to analyses of GWA data,
or data from exome chip or exome sequencing studies. The
web server can also be used to rank genes based on their
gene products’ propensity to physically interact with a
user-specified set of gene products. Examples on user-
specified gene sets are phenotypic gene sets from the
Online Mendelian Inheritance in Man database (22), or
genes that upon knock-out in model organisms resemble
the phenotype for the trait under investigation [e.g. genes
from the Mouse Genome Database (23)].

BENCHMARKS

In our original article, we successfully used genotyping of
independent bipolar disorder cohorts to show that
MetaRanker 1.0 enabled prediction of likely causal disease
genes. In addition, we showed that MetaRanker 1.0 per-
formed superior to CANDID in benchmark studies of
type 2 diabetes and bipolar disorder. In this work, we con-
ducted additional benchmarks and show that MetaRanker
2.0 enriches for causal human stature genes. We report
Receiver Operating Characteristic (ROC) curves (24) and
Area Under the Curve (AUC) estimates for MetaRanker
1.0, MetaRanker 2.0, and CANDID.

Human stature is for several reasons well suited as a
benchmark: (i) well-powered GWA data are available
(25), (ii) many genes with Mendelian variants that are
known to cause either overgrowth or small stature have
been identified (25), (iii) gene expression data from rodent
growth plates, a highly relevant tissue in relation to
human stature, was recently published, (iv) knock-out
data from mice, phenotyped for well-defined skeletal
phenotypes, is available, and (v) it has previously been
shown that many height genes are well-recorded in the
literature (10). We constructed human stature-specific
evidence layers as shortly outlined below. (All data sets
can be downloaded from www.cbs.dtu.dk/services/
MetaRanker-2.0.)

MetaRanker 2.0 data sets

We downloaded the summary statistics from the well-
powered Lango-Allen et al. human height GWA study
that was based on 183 727 genotyped individuals (http://
www.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files) (25), and uploaded them
to the MetaRanker 2.0 GWA data layer. As input to the
MetaRanker 2.0 protein–protein interaction layer, we
used a list of 241 genes, which in the OMIM database
have been reported to be causal to skeletal growth
disorders [the list was provided in Lango-Allen et al.
Supplementary Table 10 (25) and was compiled
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independently from the GWA study results]. As input to
the MetaRanker 2.0 text-mining layer, we used the terms
‘body height’ and ‘growth disorders’ and enabled the
logical ‘OR’ relationship to rank genes higher if they
were co-mentioned with one or the other of these two
terms. Finally, we retrieved 1002 human homologue
genes from the Mouse Genome Database that upon
knock-out resulted in skeletal growth-related phenotypes,
and uploaded them to the MetaRanker 2.0 custom layer
enabling the option that all other genes in the human
genome should be scored worse than these genes.

CANDID data sets and parameterization

For the literature layer, we used the same input terms as
used in the MetaRanker 2.0 analysis. For the association
layer, we uploaded the Lango-Allen et al. GWA study
SNPs and applied the commonly used genome-wide sig-
nificance threshold of P< 5� 10�8 as the cut-off because
the SNP count exceeded the number of SNPs supported
by CANDID. We included the ‘Interactions’ layer, and
for the custom layer, we uploaded the same Mouse
Genome Database gene set as described above. All
layers were weighed equally, and non-protein coding
genes were excluded.

Benchmark

As positive genes we used a recently published list of 408
genes differentially expressed in rodent growth plate ex-
periments (26). Note, that this data set was published after
the download date of all other data sets used in this
analysis. As negative genes, we used a random sample of
408 genes, and ensured that none of them overlapped with
any of the OMIM and Mouse Genome Database genes.
For ROC curve constructions and AUC calculations, we

confined ourselves to genes scored in both approaches,
and used the rank of positive and negative genes as
scores. We found that MetaRanker 2.0 performed
superior to MetaRanker 1.0, and CANDID (Figure 2).
AUCs were 0.61, 0.54 and 0.58, respectively, and true
positive rates at the 5% cut-off were 0.05, 0.03 and 0.05,
respectively. Compared with CANDID, MetaRanker 2.0
permits the user to upload a larger number of phenotype-
specific data sets—an important advantage that might
have resulted in the increased performance. The increasing
availability of predictive biological data might further
increase the advantage of the MetaRanker 2.0 approach
compared with other approaches that do not allow the
user to upload his own data sets.

CONCLUSIONS

We show that MetaRanker 2.0 provides an easy to use and
flexible platform for gene prioritization based on integra-
tion of multiple heterogeneous data sets. We successfully
benchmarked our tool against CANDID, another tool for
multiple-evidence genomic data integration.

FUNDING

Danish Council for Independent Research Medical
Sciences (FSS) (to T.H.P.); Novo Nordisk Foundation
(to S.B.). Funding for open access charge: Center for
Biological Sequence Analysis, Department of Systems
Biology, Technical University of Denmark.

Conflict of interest statement. None declared.

REFERENCES

1. Hirschhorn,J.N. and Daly,M.J. (2005) Genome-wide association
studies for common diseases and complex traits. Nat. Rev. Genet.,
6, 95–108.

2. Huyghe,J.R., Jackson,A.U., Fogarty,M.P., Buchkovich,M.L.,
Stancakova,A., Stringham,H.M., Sim,X., Yang,L.,
Fuchsberger,C., Cederberg,H. et al. (2013) Exome array analysis
identifies new loci and low-frequency variants influencing insulin
processing and secretion. Nat. Genet., 45, 197–201.

3. Do,R., Kathiresan,S. and Abecasis,G.R. (2012) Exome sequencing
and complex disease: practical aspects of rare variant association
studies. Hum. Mol. Genet., 21, R1–R9.

4. Barabasi,A.L., Gulbahce,N. and Loscalzo,J. (2011) Network
medicine: a network-based approach to human disease. Nat. Rev.
Genet., 12, 56–68.

5. Zou,F., Chai,H.S., Younkin,C.S., Allen,M., Crook,J.,
Pankratz,V.S., Carrasquillo,M.M., Rowley,C.N., Nair,A.A.,
Middha,S. et al. (2012) Brain expression genome-wide association
study (eGWAS) identifies human disease-associated variants.
PLoS Genet., 8, e1002707.

6. Jensen,M.K., Pers,T.H., Dworzynski,P., Girman,C.J., Brunak,S.
and Rimm,E.B. (2011) Protein interaction-based genome-wide
analysis of incident coronary heart disease. Circ. Cardiovasc.
Genet., 4, 549–556.

7. Raychaudhuri,S., Thomson,B.P., Remmers,E.F., Eyre,S.,
Hinks,A., Guiducci,C., Catanese,J.J., Xie,G., Stahl,E.A., Chen,R.
et al. (2009) Genetic variants at CD28, PRDM1 and CD2/CD58
are associated with rheumatoid arthritis risk. Nat. Genet., 41,
1313–1318.

8. Aerts,S., Lambrechts,D., Maity,S., Van Loo,P., Coessens,B., De
Smet,F., Tranchevent,L.C., De Moor,B., Marynen,P., Hassan,B.

Figure 2. ROC curves and AUC estimates for MetaRanker 2.0,
MetaRanker 1.0 and CANDID. MetaRanker 2.0 performs superior
to both MetaRanker 1.0 and CANDID, as illustrated by the higher
AUC obtained by MetaRanker 2.0.

Nucleic Acids Research, 2013, Vol. 41, Web Server issue W107



et al. (2006) Gene prioritization through genomic data fusion.
Nat. Biotechnol., 24, 537–544.

9. Franke,L., van Bakel,H., Fokkens,L., de Jong,E.D., Egmont-
Petersen,M. and Wijmenga,C. (2006) Reconstruction of a functional
human gene network, with an application for prioritizing positional
candidate genes. Am. J. Hum. Genet., 78, 1011–1025.

10. Raychaudhuri,S., Plenge,R.M., Rossin,E.J., Ng,A.C., Purcell,S.M.,
Sklar,P., Scolnick,E.M., Xavier,R.J., Altshuler,D. and Daly,M.J.
(2009) Identifying relationships among genomic disease regions:
predicting genes at pathogenic SNP associations and rare
deletions. PLoS Genet., 5, e1000534.

11. Rossin,E.J., Lage,K., Raychaudhuri,S., Xavier,R.J., Tatar,D.,
Benita,Y., Cotsapas,C. and Daly,M.J. (2011) Proteins encoded in
genomic regions associated with immune-mediated disease
physically interact and suggest underlying biology. PLoS Genet.,
7, e1001273.

12. Moreau,Y. and Tranchevent,L.C. (2012) Computational tools for
prioritizing candidate genes: boosting disease gene discovery. Nat.
Rev. Genet., 13, 523–536.

13. Pers,T.H., Hansen,N.T., Lage,K., Koefoed,P., Dworzynski,P.,
Miller,M.L., Flint,T.J., Mellerup,E., Dam,H., Andreassen,O.A.
et al. (2011) Meta-analysis of heterogeneous data sources for
genome-scale identification of risk genes in complex phenotypes.
Genet. Epidemiol., 35, 318–332.

14. Hutz,J.E., Kraja,A.T., McLeod,H.L. and Province,M.A. (2008)
CANDID: a flexible method for prioritizing candidate genes for
complex human traits. Genet. Epidemiol., 32, 779–790.

15. Lage,K., Karlberg,E.O., Storling,Z.M., Olason,P.I.,
Pedersen,A.G., Rigina,O., Hinsby,A.M., Tumer,Z., Pociot,F.,
Tommerup,N. et al. (2007) A human phenome-interactome
network of protein complexes implicated in genetic disorders.
Nat. Biotechnol., 25, 309–316.

16. Safran,M., Solomon,I., Shmueli,O., Lapidot,M., Shen-Orr,S.,
Adato,A., Ben-Dor,U., Esterman,N., Rosen,N., Peter,I. et al.
(2002) GeneCards 2002: towards a complete, object-oriented,
human gene compendium. Bioinformatics, 18, 1542–1543.

17. Wen,S.H. and Lu,Z.S. (2011) Factors affecting the effective
number of tests in genetic association studies: a comparative
study of three PCA-based methods. J. Hum. Genet., 56, 428–435.

18. Li,J. and Ji,L. (2005) Adjusting multiple testing in multilocus
analyses using the eigenvalues of a correlation matrix. Heredity
(Edinb.), 95, 221–227.

19. Galwey,N.W. (2009) A new measure of the effective number of
tests, a practical tool for comparing families of non-independent
significance tests. Genet. Epidemiol., 33, 559–568.

20. Asimit,J. and Zeggini,E. (2010) Rare variant association
analysis methods for complex traits. Annu. Rev. Genet., 44,
293–308.

21. Wu,M.C., Lee,S., Cai,T., Li,Y., Boehnke,M. and Lin,X. (2011)
Rare-variant association testing for sequencing data with the
sequence kernel association test. Am. J. Hum. Genet., 89, 82–93.

22. Hamosh,A., Scott,A.F., Amberger,J.S., Bocchini,C.A. and
McKusick,V.A. (2005) Online Mendelian Inheritance in Man
(OMIM): a knowledgebase of human genes and genetic disorders.
Nucleic Acids Res., 33, D514–517.

23. Eppig,J.T., Blake,J.A., Bult,C.J., Kadin,J.A. and Richardson,J.E.
(2012) The Mouse Genome Database (MGD): comprehensive
resource for genetics and genomics of the laboratory mouse.
Nucleic Acids Res., 40, D881–D886.

24. Sing,T., Sander,O., Beerenwinkel,N. and Lengauer,T. (2005)
ROCR: visualizing classifier performance in R. Bioinformatics, 21,
3940–3941.

25. Lango Allen,H., Estrada,K., Lettre,G., Berndt,S.I., Weedon,M.N.,
Rivadeneira,F., Willer,C.J., Jackson,A.U., Vedantam,S.,
Raychaudhuri,S. et al. (2010) Hundreds of variants clustered in
genomic loci and biological pathways affect human height.
Nature, 467, 832–838.

26. Lui,J.C., Nilsson,O., Chan,Y., Palmer,C.D., Andrade,A.C.,
Hirschhorn,J.N. and Baron,J. (2012) Synthesizing genome-wide
association studies and expression microarray reveals novel genes
that act in the human growth plate to modulate height. Hum.
Mol. Genet., 21, 5193–5201.

W108 Nucleic Acids Research, 2013, Vol. 41, Web Server issue


