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Multi-task learning for predicting synergistic
drug combinations based on auto-encoding
multi-relational graphs

Wenyu Shan,1 Cong Shen,2 Lingyun Luo,1,3 and Pingjian Ding1,4,*

SUMMARY

Combinatorial drug therapy is a promising approach for treating complex diseases by combining drugs
with synergistic effects. However, predicting effective drug combinations is challenging due to the
complexity of biological systems and the limited understanding of pathophysiological mechanisms and
drug targets. In this paper, we proposed a computational framework called VGAETF (Variational Graph
Autoencoder Tensor Decomposition), which leveraged multi-relational graph to model complex relation-
ships between entities in biological systems and predicted disease-related synergistic drug combinations
in an end-to-end manner. In the computational experiments, VGAETF achieved high performances
(AUROC [the area under receiver operating characteristic] = 0.9767, AUPR [the area under precision-
recall] = 0.9660), outperforming other compared methods. Moreover, case studies further demonstrated
the effectiveness of VGAETF in identifying potential disease-related synergistic drug combinations.

INTRODUCTION

Combinatorial drug therapy involves the simultaneous use of two or more compounds to treat a disease, potentially improving therapeutic

efficacy through synergistic effects. This approach has gained significant attention and is increasingly utilized in the management and treat-

ment of sophisticated diseases such as cancer, HIV/AIDS,1 Hepatitis C,2 and hypertension.3 Combination therapies offer hope for treating

diseases with unmet medical needs. Additionally, drug combinations often involve the use of already approved drugs by the Food and

Drug Administration (FDA), which have well-studied toxic properties and side effects. Therefore, patients can safely use these combinations.4

Experimental identification of drug combinations with synergistic effects is a time-consuming and costly process, made more difficult by the

large amount of potential drug combinations.

Computational methods have emerged as an essential tool for predicting and prioritizing pairs of synergistic drugs. Machine learning al-

gorithms are commonly used to mine potential combination pharmacotherapy from vast amounts of data, providing guidance for clinical tri-

als and reducing costs.5 However, it is challenging to extract disease-specific pathophysiological mechanisms and identify drug targets from

clinical and laboratory data to predict drug combinations.6 To address this issue, researchers have developed innovative approaches that

incorporate diverse biological data. For instance, Jiang et al.7 predicted synergistic drug combinations for anticancer treatment by building

a heterogeneous graph that involves drugs andproteins. Cheng et al.8 predicted forecast disease-drug-drug combinations by quantifying the

correlations between disease proteins and drug targets in protein interactomes. Li et al.9 employed large pre-trained language models, such

as generative pre-trained transformer (GPT), to predict the synergistic effects of drug pairs in a few-shot learning scenario. Zhang et al.10

developed a comprehensive multi-relational graph that incorporates drugs, targets, and enzymes to capture intricate semantic information

from diverse entities and utilized drug and cell line embeddings to predict the synergy score of drug combinations. Wu et al.11 improved the

deep forest-based method that predicts synergistic drug combinations in cancer cell lines. However, existing prediction approaches rely

heavily on pharmacological responses and a thorough comprehension of the genetic and molecular mechanisms of disease, which are often

restrictive.12

Recently, the embedding of multi-relational graphs has been a valuable tool for drug discovery.13 Different from traditional graphs and

networks that contain only one type of relationship, the multi-relational graph provides heterogeneous information that comprises multiple

entities (e.g., proteins, drugs, and targets) and various types of relationships (e.g., drug-drug interactions or drug-target pairs).14 Multi-rela-

tional graphs utilize nodes to represent entities and edges to represent the relationships between them, providing unstructured semantic

relationships between entities.15 As a result, multi-relational graphs are well-suited for modeling the intricate relationships that exist

among entities within biological.16 By representing biomedical entities as nodes and their relationships as edges in a graph structure, the
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multi-relational graph is able to learn lower-order representations of entities and relationships simultaneously. This preserves the inherent

structure of the multi-relational graph.17 The learned vectors are used to generate a score for each triplet by a scoring function that gives

high scores to true triples and low scores to false ones. This way, the model can infer whether triplets are true or not. Multi-relational graph

embedding models include translation-based models like TransE,18 bilinear models like ComplEx,19 CP,20 TuckER,21 neural network-based

models, and graph convolutional networks (GCNs)-basedmodels22 including R-GCN,23 ComplexGCN,24 etc. Translation-basedmodels treat

the relation as a vector thatmoves the head entity close to the tail entity in an embedding space. Themodels then obtain a triplet score based

on the distance. Bilinear models use multiplicative scoring functions to match the latent semantics of entities and relations, while neural

network-based models employ neural network models to learn their interactions. Graph neural networks (GNNs) are used for learning con-

nectivity structure, with the GCN25 acting as a graph encoder.

In this study, we propose VGAETF, an effective framework for predicting disease-related drug combinations by seamlessly integrating

drug-oriented and disease-oriented information usingmulti-relational graph neural networks.We incorporate an auxiliary task of reconstruct-

ing the drug-disease relationship matrix and disease-disease relationship matrix to improve the model’s generalization ability. First, we

construct a network that involves a drug-disease-drug multi-relational graph, a drug-disease association network, and a disease-disease

association network. Second, we then use the variational graph autoencoder to implement a variational inferencemodel that learns the prob-

ability distributions of low-dimensional vector representations of drugs. Third, we employ an inner product decoder to learn the represen-

tation matrix from disease-resembles-disease and drug-disease relationships and calculate the prediction scores of the triplet facts using

tensor decomposition. VGAETF then learns drug and disease features under loss constraints to reveal the underlying structure of drug-dis-

ease-drug triplets. Our experimental results show that VGAETF outperforms other compared computational methods in drug combination

detection. Furthermore, case studies investigating the effectiveness of VGAETF in predicting drug combinations serve as compelling evi-

dence of its predictive prowess.

RESULTS

The framework of VGAETF

We obtained a dataset from Continuous Drug Combination Database (CDCDB),26 a comprehensive drug combination database containing

more than 40,795 drug combinations. We extracted the DrugBank identifiers (IDs) that are related to the FDA Orange Book and the Medical

Subject Headings (MeSH) terms that describe the conditions that are treated in the study from our database. The data schema

ðdrugi;diseasek ;drugjÞ shows that combining drugi and drugj can treat diseasek . Among the labeled "Efficacious" drug pairs for one or

more diseases, there are a total of 1,105 individual drugs, 1,283 diseases, and 4,709 pairs of drugs. We constructed 59,659 positive samples

of drug-disease-drug triplets using this information. In this study, we randomly selected 90% of the positive samples as training data, while

reserving the remaining 10% as testing data. Based on the drugs and diseases obtained from the training data, we obtained 26,425 drug-

disease associations in the association data. We construct a binary matrix to denote known drug-disease associations in which values of 1

and 0 indicate verified associations and unverified associations between drugs and diseases, respectively. We collate 259 disease-disease

associations by Ioannidis, V. et al.27 This dataset contains disease-resembles-disease edges that are based on the co-occurrence of disease

terms in PubMed. We also construct a binary matrix that includes two values 1 and 0, denoting validated and unvalidated associations be-

tween diseases and diseases, respectively. More details can be found in Table 1.

Figure 1 illustrates the structure of VGAETF which follows the popular encoder-decoder framework. We constructed the drug-disease-

drug multi-relational graph, the drug-disease association network, and the disease-disease association network. The VGAETF encoder

comprising an entity encoder uses the variational graph autoencoder28,29 to learn the probability distributions of low-dimensional vector rep-

resentations of drugs. To improve predictive performance, we use an inner product decoder to learn the representation matrix of disease-

disease and drug-disease relationships. Including disease-disease relationships can reduce noise andmissing data in triplets. Specifically, the

learned drug and disease node features are reconstructed into a drug-disease relationship matrix and a disease-disease relationship matrix

through an inner product decoder. Therefore, VGAETF employs multi-task learning to deal with the prediction problem of disease-related

drug combinations as the primary task and the auxiliary task (i.e., learning disease-disease relationships and drug-disease relationships). The

two tasks share the probability distribution of the low-dimensional vector representation learned by the encoder. At this step, VGAETF utilizes

Table 1. Statistics of datasets used in this study

Samples Source Number

Drugs Shtar, G. et al.26 1105

Diseases Shtar, G. et al.26 1283

Training data Shtar, G. et al.26 53694

Testing data Shtar, G. et al.26 5965

Drug-disease-drug triplets Shtar, G. et al.26 59659

Drug-disease associations Shtar, G. et al.26 26425

Disease-disease associations Ioannidis, V. et al.27 259
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the encoder to diffuse the associations and node feature information among the association networks and learn features for drugs and dis-

eases under the constraint of losses.

Experimental setting

Weevaluated theperformanceof theVGAETFmodel using the areaunder the receiveroperating characteristic (ROC) curve (AUC)30 and the area

under theprecision/recall curve (AUPRC).31AUC is abinary classificationevaluationmetric commonly employed inmulti-relational graph linkpre-

diction,measuring the ability of themodel to differentiate between positive and negative samples by computing the area under the curve of the

ROCcurve. The area under precision-recall (AUPR) is another commonly usedevaluationmetric, which is especially useful when the positive class

is rareor imbalanced,measuring the trade-off betweenprecisionand recall bycomputing theAUPRC. Itprovidesamore informativeevaluationof

the model performance in the high-recall regime, which is typically more relevant in the context of link prediction in multi-relational graphs.

We implemented the VGAETF models with PyTorch32 and DGL packages.33 The publicly available source codes were used to implement

all baseline methods. The best or default parameters of each method are used. The implementation of TransE, ComplEx, SimplE, and rela-

tional graph convolutional network (RGCN) models is provided by the Open Graph Benchmark.34 We use the model implementation of

TuckER, ComplexGCN, and knowledge graph embedding-based method for predicting drug combinations (KGE-DC) provided by the

authors.

Hyperparameters selection

In this study, we utilized grid search to determine the optimal parameters for our model. Specifically, we initialized the disease embeddings

using Xavier initialization35 and optimized the training loss using the Adam solver.36 Various hyperparameters were taken into account in our

model. The hyperparameters in the VGAETFmodel, which include the learning rate, the number of units in hidden layer 1 and hidden layer 2,

and the balance factor a, were considered. The hyperparameter a balances the contributions of the representation matrices to learn disease-

disease relationships and drug-disease relationships in the auxiliary task. To prevent overfitting and improve efficiency, early stopping was

implemented during training, and the number of training epochs was fixed at 1,200. The optimal hyperparameters were selected and high-

lighted in bold in Table 2.

Figure 1. Overview of the VGAETF architecture

(A) Construct a drug-disease-drug multi-relational graph, drug-disease association network, and disease-disease association network. For each triplet fact ðdi ;rk ;

djÞ, we get the corresponding embeddings zi and zj of the source node di and target node dj from learned drug features. In addition, we set a trainable diagonal

matrix Mk for each edge type k. VGAETF learns features for drugs and diseases under the constraint of losses.

(B) VGAETF uses a variational graph autoencoder to implement a variational inference model and learn the probability distributions of drugs ZD .

(C) VGAETF employs the inner product as a decoder to reconstruct the drug-disease association network and the disease-disease association network from the

learned latent features and adopts f ðs; r;oÞ to calculate the prediction scores of the triplet facts.
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Embedding visualization

Our multi-relational graph embedding models are capable of automatically learning feature vectors for drugs and diseases. To verify the

effectiveness of our model, we visualized the disease embedding vectors in a two-dimensional space using t-distributed stochastic neighbor

embedding (t-SNE).37 However, due to the potential redundancy and lack of clarity that arises from visualizing and labeling all the nodes, we

randomly selected two hundred disease nodes for visualization. By randomly selecting two hundred nodes, we aimed to maintain the repre-

sentative nature of the dataset. The selection process ensured a diverse sampling from the entire range of diseases, providing an adequate

representation of the overall distribution and characteristics. The resulting visualization, shown in Figure 2, reveals the relationships that exist

between the embedding vectors of diseases. We observed that diseases that are closely embedded often co-occur in drug combinations,

indicating that our model’s learned disease embedding vectors can accurately capture the internal relational structure of diseases within

the multi-relational graph of disease-related drug combinations.

For instance, after dimensionality reduction, we found that the diseases of Lung Neoplasms were closely related to Respiratory Tract Dis-

eases, Thoracic Neoplasms, and Respiratory Tract Neoplasms within the two-dimensional space. These three diseases frequently occur in

drug combinations together with lung tumors through known triplets. For example, the drug combination of Docetaxel and Pemetrexed,

the drug combination of Pembrolizumab and Gemcitabine, and the drug combination of Pemetrexed and Atezolizumab are used to treat

these diseases.38–41 The findings suggest that our model can effectively manage the intricate relationships inherent in the multi-relational

graph of drug combinations related to diseases.

Importance of each component

In this section, a series of studies were conducted to evaluate the contributions of different components to the VGAETF. Specifically, three

variants of the VGAETF were implemented, including VGAETF w/o RR, VGAETF w/o DR, and VGAETF w/o DRR. In the VGAETF w/o RR

variant, the auxiliary task of reconstructing disease-disease relationship networks was removed. In the VGAETF w/o DR variant, the auxiliary

task of reconstructing the drug-disease relationship was removed. Lastly, in the VGAETF w/o DRR variant, both the auxiliary tasks of recon-

structing disease-disease relationships and drug-disease relationships were eliminated. Thesemodifications enabled the investigation of the

effects of each auxiliary task on the VGAETF’s performance. As shown in Figure 3, VGAETF consistently outperformed the three variants. Spe-

cifically, VGAETF w/o RR had slightly higher performance than VGAETF w/o DR with AUPR scores ranging from 0.9626 to 0.9615, while

VGAETF w/o DRR had lower performances than VGAETF w/o RR and VGAETF w/o DR, with AUPR scores ranging from 0.9626 to 0.9601,

and AUC scores ranging from 0.9746 to 0.9742. These results are consistent with our intuition that understanding the associations between

drugs and diseases can provide more comprehensive biological information. Such associations provide valuable information for synergetic

drug combination modeling, enabling more accurate prediction of the efficacy of drugs across different diseases and the discovery of new

opportunities for drug repurposing, ultimately improving the predictive power of the model.

Performance evaluation

Currently, there exist several advanced multi-relational graph embedding techniques for the purpose of predicting triplets in bioinformatics.

It should be noted that these models were not developed specifically for drug-disease-drug association prediction. We only used these al-

gorithms for comparative analysis. The baselines we use for comparative analysis include translational distance-based techniques, semantic

matching-based techniques, and neural network-based techniques. The details of each method are dicussed here. TransE18 is a popular

multi-relational graph embedding model that represents entities and relations as vectors, aiming to find embeddings that satisfy transla-

tion-based scoring functions between head and tail entities. ComplEx19 extends TransE by representing entities and relations as complex

vectors and using the Hermitian dot product to model both symmetric and antisymmetric relations. SimplE42 is a simplified version of

ComplEx that reduces the number of parameters by using diagonal matrices for relation embeddings and enforcing a sparsity constraint

on them. TuckER21 combines the Tucker decomposition43 and bilinear forms tomodel high-order interactions between entities and relations.

R-GCN23 is a GCN that operates on a graph with labeled nodes and relations and utilizes relational graph convolutions to encode node fea-

tures and learn representations of the graph, and RGCN has also been employed to predict drug combinations (drug-cell line-drug triplet).7

ComplexGCN24 extends RGCN by incorporating complex embeddings to handle both real and imaginary parts of relation weights and in-

troduces a novel complex-valued graph convolution operation. KGE-DC10 constructed a multi-relational graph and combined both drug

chemical features and cell line genomic features to learn drug and cell line embeddings to predict the synergy score of drug combinations

for cell lines.

Table 2. Hyperparameters settings considered for VGAETF, where bolded are the hyperparameters chosen for the model

Hyperparameter Values considered

Learning rate 0.01; 0.005; 0.001

The number of units in hidden layer 1 (h1) 64; 128; 192; 256; 320; 384;448; 512

The number of units in hidden layer 2 (h2) 64; 128; 192; 256; 320; 384; 448; 512

Balance factor a 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9
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To assess the predictive capabilities of VGAETF in comparison with the baselines, a 5-fold cross-validation (CV) was conducted on a

randomly selected 90% of the dataset. The remaining 10% of the samples were reserved as an independent test set to prevent overfitting

and ensure a realistic assessment of the model’s predictive accuracy. Both VGAETF and the baselines were evaluated on the independent

test set to ensure unbiased results. Furthermore, an equivalent number of negative instances were randomly selected from themissing triplets

to match the number of positive samples. The entire CV set was used to train all methods, which were subsequently used for predictions on

the independent test set to enable objective evaluation.

We compared our model with the seven baseline methods, as depicted in Figure 4. Notably, the obtained results showed that the best

AUC and AUPR values of 0.9767 and 0.9660 were achieved using VGAETF, outperforming other computational methods. The superior per-

formance of VGAETF can be attributed to its utilization of the encoder-decoder operation of multi-relational embedding techniques, which

incorporates the drug-disease-drug multi-relational graph structure, disease-disease relationship, and drug-disease relationships. The Sim-

plE, KGE-DC, and ComplEx models exhibited remarkable performance, as indicated by their high scores on AUC and the AUPR. Specifically,

the SimplEmodel achieved AUC and AUPR scores of 0.9671 and 0.9557, respectively, highlighting its ability to capture latent representations

across various variables. Similarly, the ComplEx model leveraged complex space embeddings to enhance link prediction performance,

achieving scores of 0.9397 and 0.9282 for AUC and AUPR, respectively. Furthermore, KGE-DC was instantiated through the integration of

a multi-relational graph embedding technique and a neural network and attained an AUC of 0.9717 and an AUPR of 0.9559. These results

underscore the efficacy of representing drug-disease-drug interactions as a multi-relational graph, enabling the acquisition of valuable topo-

logical insights. Overall, the proposed algorithm employing multi-relational graph embedding directly can yield relatively satisfactory results

and exhibit excellent scalability when applied to large-scale datasets.

DISCUSSION

To further validate the reliability of VGAETF, we performed detailed case studies on computationally predicted candidate drugs for new anti-

hypertension that contain hydrochlorothiazide and new anti-breast cancer that contain trastuzumab. The entire set of drug combinations was

used to train the VGAETFmodel for predicting new anti-hypertension drug pairs that contain hydrochlorothiazide and new anti-breast cancer

drug pairs that contain trastuzumab. We masked known triplets of anti-hypertension drug pairs containing hydrochlorothiazide and anti-

breast cancer drug pairs containing trastuzumab in our samples, which did not appear in model training. The drug candidates were ranked

Figure 2. The visualization of disease embedding in VGAETF using the t-SNE package37

From this figure, we can observe that closely embedded diseases often co-occur in drug combinations, suggesting that VGAETF is able to learn disease

interconnections in the multi-relational graph of disease-related drug combinations.
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according to the VGAETF prediction scores for the triplets, and the top 10 scoring candidates are shown in Tables 3 and 4. The rankings of the

triplets are based on the predicted scores calculated by the scoring function on embeddings of drugs and diseases, with higher scores cor-

responding to higher rankings. To indicate the presence of supporting literature, we used the PMID number in PubMed, and "N/A" indicates

a lack of confirmation for the association. The results of case studies indicate that ourmodel is indeed able to predict potential disease-related

drug combinations.

Hydrochlorothiazide, a commonly used antihypertensive drug, is a diuretic that lowers blood pressure by reducing the amount of salt and

water in the body.44 The top 10 predicted candidates for hydrochlorothiazide-containing drug combinations for the treatment of hyperten-

sion are listed in Table 3, where eight candidates were supported by clinical studies, such as spironolactone, lisinopril, labetalol, aliskiren,

carvedilol, valsartan, eplerenone, and amlodipine.

Hydrochlorothiazide-spironolactone is a potent diuretic combination that effectively treats hypertension by reducing water retention

through increased urine output.45 Hydrochlorothiazide-lisinopril can produce a synergistic effect, lowering blood pressure more effectively

than either drug alone, and improving patient adherence.46,47 Hydrochlorothiazide-labetalol can be used in combination to achieve better

blood pressure control, and labetalol is an alpha-beta blocker that can lower blood pressure by reducing the force of the heart’s contractions

and heart rate.48 Hydrochlorothiazide-aliskiren can achieve better blood pressure reduction than using either drug alone, especially in obese

patients with hypertension, and aliskiren is a hormonal pathway that regulates blood pressure and fluid balance.49,50 Hydrochlorothiazide-

carvedilol can be combined to treat hypertension, and carvedilol is a beta-blocker that can lower heart rate and blood pressure.51 The

combination of hydrochlorothiazide-valsartan has been shown to be effective in the treatment of hypertension, and the advantage of this

combination therapy is that it can reduce the dose, thereby reducing adverse reactions.52,53 The combination of hydrochlorothiazide and

eplerenone can produce a synergistic effect, resulting in more effective blood pressure reduction, and eplerenone is an aldosterone receptor

antagonist that lowers systolic and diastolic blood pressure.54 Combining hydrochlorothiazide with amlodipine has been demonstrated to be

effective. Amlodipine, a calcium channel blocker, can lower blood pressure by dilating blood vessels and reducing vascular resistance and

pressure.55,56

To elucidate the mechanism of action of our model in predicting novel drug combinations, we apply GNNExplainer,57 a general tool for

explaining GNN predictions. We selected the top predicted hydrochlorothiazide-containing drug combinations for treating hypertension in

the case study. We used GNNExplainer to identify the most influential nodes in the trained model with respect to the spironolactone central

node and analyzed their roles in the prediction. Figure 5 shows the results of the subgraph centered on spironolactone obtained by

GNNExplainer. We found a combination of hydrochlorothiazide and spironolactone for treating metabolic syndrome. Additionally, lisinopril

with hydrochlorothiazide or spironolactone could be combined to treat cardiovascular diseases (CVDs). Based on the literature on disease

comorbidities, hypertension is a significant risk factor for various CVDs, including stroke and heart failure, with CVD being the complication

of chronic kidney insufficiency (CKI).58 The relationship between hypertension and CKI often coexists in patients, leading to a complex inter-

play between the two conditions.59 Furthermore, the efficacy of hydrochlorothiazide in controlling hypertension has been established.

Considering that metabolic syndrome and hypertension frequently coexist, these complex associations may suggest a potential benefit of

hydrochlorothiazide and spironolactone in the treatment of hypertension.

Figure 3. The VGAETF ablation experiment compared the performance of VGAETF with three different variants

VGAETF w/o RR did not try to reconstruct the auxiliary task of disease-disease relationships. VGAETF w/o DR did not try to reconstruct the auxiliary task of drug-

disease relationships. VGAETF w/o DRR did not do either.
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Table 4 lists the top 10 predicted candidates for trastuzumab-containing drug combinations for breast cancer treatment. Nine of these

candidates are supported by clinical studies, including paclitaxel, pertuzumab, capecitabine, docetaxel, gemcitabine, cyclophosphamide,

doxorubicin, fulvestrant, and olaparib. The combination of trastuzumab and paclitaxel has been shown to significantly improve survival rates

in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer.60 The trastuzumab-pertuzumab combination is safe

and effective in the treatment of HER2-positive early-stage breast cancer.61 The combination therapy of trastuzumab and capecitabine can

produce a synergistic effect in treating breast cancer, resulting in more effective killing of cancer cells.62 The combination of trastuzumab and

docetaxel has been shown to be effective, improving survival and progression-free survival in patients with HER2-positive breast cancer.63 The

trastuzumab-gemcitabine combination shows additive or synergistic antitumor effects in human breast cancer cell lines that overexpress

HER2.64 The combination therapy of trastuzumab and cyclophosphamide is effective as adjuvant therapy in patients with stage I–III breast

cancer.65 The combination of doxorubicin and trastuzumab is used to treat early-stage HER2-positive breast cancer, and doxorubicin is a

chemotherapy drug that can be used after surgery as adjuvant treatment for breast cancers.66 Trastuzumab-fulvestrant demonstrates

Table 3. Top 10 predicted hydrochlorothiazide-containing drug combinations for treating hypertension

Rank Drug Combination (triplets) Evidence Source Evidence type

1 Hydrochlorothiazide-hypertension-

Spironolactone

PMID: 363334 Clinical Trial

2 Hydrochlorothiazide-hypertension-Lisinopril PMID: 27703294 Randomized Controlled Trial

3 Hydrochlorothiazide-hypertension-Labetalol PMID: 2860990 Clinical Trial

4 Hydrochlorothiazide-hypertension-Aliskiren PMID: 21122057 Randomized Controlled Trial

5 Hydrochlorothiazide-hypertension-Carvedilol PMID: 1974505 Clinical Trial

6 Hydrochlorothiazide-hypertension-Valsartan PMID: 11800062 Clinical Trial

7 Hydrochlorothiazide-hypertension-

Eplerenone

PMID: 27651039 Randomized Controlled Trial

8 Hydrochlorothiazide-hypertension-Raltegravir N/A N/A

9 Hydrochlorothiazide-hypertension-

Amlodipine

PMID: 19470877 Randomized Controlled Trial

10 Hydrochlorothiazide-hypertension-Colchicine N/A N/A

Figure 4. Performance of VGAETF as compared with other models

(A) ROC curve and AUC value of the VGAETF model and comparison methods.

(B) Precision/recall curve and AUPRC value of the VGAETF model and comparison methods.
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effectiveness in patients with hormone receptor and HER2-positive metastatic breast cancer, and the combination therapy exhibits moderate

clinical efficacy and does not exhibit significant toxicity following standard anti-HER2 treatment.67 Trastuzumab-olaparib can be combined to

treat HER2-positive breast cancer, primarily by inhibiting the growth and spread of cancer cells through the activity of HER2 and poly (ADP-

ribose) polymerase (PARP) proteins.68

In this study, we propose a novel computational framework, VGAETF, for predicting disease-associated drug combinations. The VGAETF

follows the encoder-decoder framework and employs multi-task learning, where the main task is to predict disease-related drug combina-

tions, while the auxiliary task involves learning the representation matrix of disease-disease and drug-disease relationships. Experimental re-

sults show that VGAETF outperforms baseline methods, and case studies focusing on the prediction of novel drug pairs for the treatment of

hypertension containing hydrochlorothiazide and new drug pairs for breast cancer treatment containing trastuzumab demonstrate the effec-

tiveness of ourmodel. In ourmodel, we construct a drug-disease-drugmulti-relational graph.Multi-relational graphs enable easymodeling of

complex relationships between entities in biological systems by representing drugs and diseases as nodes and their associations as edges.

Moreover, we show that the multi-task learning of our model helps improve the predictive ability of the model by studying the ablation ex-

periments of three variants of VGAETF. In summary, the proposed VGAETF framework provides a promising approach for predicting disease-

related drug combinations, and its effectiveness can be further improved with the incorporation of additional information sources.

Figure 5. Visualization of the subgraph returned by GNNExplainer for explaining the spironolactone central node.

Table 4. Top 10 predicted trastuzumab-containing drug combinations for treating breast cancer

Rank Drug Combination (triplets) Evidence Source Evidence type

1 Trastuzumab-breast cancer-Paclitaxel PMID: 25564897 Clinical Trial

2 Trastuzumab-breast cancer-Pertuzumab PMID: 28581356 Clinical Trial

3 Trastuzumab-breast cancer-Capecitabine PMID: 31825569 Randomized Controlled Trial

4 Trastuzumab-breast cancer-Docetaxel PMID: 32171426 Clinical Trial

5 Trastuzumab-breast cancer-Gemcitabine PMID: 12722022 Clinical Trial

6 Trastuzumab-breast cancer-

Cyclophosphamide

PMID: 16978400 Clinical Trial

7 Trastuzumab-breast cancer-Cisplatin N/A N/A

8 Trastuzumab-breast cancer- Doxorubicin PMID: 30621698 Clinical Trial

9 Trastuzumab-breast cancer- Fulvestrant PMID: 34453206 Clinical Trial

10 Trastuzumab-breast cancer-Olaparib NCT03931551 Clinical trial
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Limitations of the study

While VGAETF demonstrates remarkable prediction performance and interpretability, there are certain limitations to consider. Future

research endeavors can concentrate on refining negative sampling methods to further improve prediction accuracy. Additionally, exploring

transfer learning techniques by pre-trainingmodels on extensive and diverse knowledge bases could be beneficial. This would allow fine-tun-

ing of the models specifically for prediction tasks. Moreover, our plans involve incorporating drug metadata into our model to enhance the

learning process.
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Algorithm 1. The complete procedure of VGAETF

Input: drug-disease-drug multi-relational graph G = ðV; E;RÞ; drug-disease relationship matrix DR; disease-disease relationship matrix RR; train triplets

set T train; test triplets set T test ; maximum training epochs T;

Output: triplets prediction probability f ðs; r;oÞ in T test .

1. Initialize trainable parameters q = fX ;W0;W1;Mrg:
2. t )1;

3. repeat

4. Learn drug embedding features ZD with Equation 5;

5. Calculate the triplets prediction probability f ðs; r;oÞ with Equation 6;

6. Reconstruct the representation matrix of drug-disease DR and disease-disease RR with Equation 7;

7. Update drug features ZD , disease features ZR and the parameters of VGAETF by optimizing Equation 11;

8. util t > T or Equation 11 is converged;

9. return the triplets prediction probability f ðs; r;oÞ in T test with Equation 6.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Pingjian Ding (dpj@usc.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The data reported in this paper is publicly available on GitHub (https://github.com/hhhwy/VGAETF)
� All original code has been deposited at GitHub and is publicly available as of the date of publication. The DOI is listed in the key re-

sources table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request

METHOD DETAILS

Preliminaries

The development of synergistic drug combinations may largely be based on the rationale of the treatment of two closely related

diseases,69 and GNN mostly follows the assumption of learning to assign similar labels to nodes that are closely connected.70 There-

fore, in this study, we developed a GNN-based method on a multi-relational graph, where two drugs represent entities and diseases

represent relationships in the triplets. We explain the disease-related drug combinations prediction task in Figure S1. To predict the

disease-related drug combinations, we incorporate additional known triplets associated with the drugs and diseases to learn the

embedding vectors for them. Subsequently, these learned vectors are used to generate a score for each drug-disease-drug triplet

by the scoring function of tensor decomposition. As shown in Figure S1, in the context of known drug combinations, carvedilol

can be combined with spironolactone or pravastatin to treat cardiomyopathies. In the context of drug indication and disease comor-

bidities, spironolactone and pravastatin can be used for treating high blood pressure and high cholesterol respectively, while hyper-

tension and hyperlipidemia are all risk factors of heart disease. Taken together, spironolactone and pravastatin are intended to

be used in combination to treat or prevent diseases (such as heart disease) closely related to hyperlipidemia hypertension, and

cardiomyopathies.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CDCDB Shtar, G. et al.26 https://doi.org/10.1038/s41597-022-01360-z

DRKG Ioannidis, V. et al.27 https://github.com/gnn4dr/DRKG/

Software and algorithms

VGAETF this study https://github.com/hhhwy/VGAETF

TransE Bordes, A. et al.18 https://github.com/snap-stanford/ogb/tree/

master

CompIEx Trouillon, T. et al.19 https://github.com/snap-stanford/ogb/tree/

master

SimplE Kazemi, S. M. and D. Poole42 https://github.com/snap-stanford/ogb/tree/

master

TuckER Bala�zevi�c, I. et al.21 https://github.com/ibalazevic/TuckER

R-GCN Schlichtkrull, M. et al.23 https://github.com/snap-stanford/ogb/tree/

master

ComplexGCN Zeb, A. et al.24 https://github.com/Aazeb/ComplexGCN

KGE-DC Zhang, P. and S. Tu10 https://github.com/yushenshashen/KGE-DC
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Datasets

We obtained a dataset from CDCDB,26 a comprehensive drug combination database containing more than 40,795 drug combinations. We

extracted the DrugBank identifiers (IDs) that are related to the FDA Orange Book and the Medical Subject Headings (MeSH) terms that

describe the conditions that are treated in the study from our database. The data schema ðdrugi;diseasek ;drugjÞ shows that combining

drugi and drugj can treat diseasek . Among the labeled "Efficacious" drug pairs for one or more diseases, there are a total of 1,105 individual

drugs, 1,283 diseases, and 4,709 pairs of drugs. We constructed 59,659 positive samples of drug-disease-drug triplets using this information.

In this study, we randomly selected 90% of the positive samples as training data, while reserving the remaining 10% as testing data. Based on

the drugs and diseases obtained from the training data, we obtained 26,425 drug-disease associations in the association data.We construct a

binary matrix to denote known drug-disease associations that values of 1 and 0 indicate verified associations and unverified associations be-

tween drugs and targets, respectively. We collate 259 disease-disease associations from DRKG.27 This dataset contains disease-resembles-

disease edges that are based on the co-occurrence of disease terms in PubMed. We also construct a binary matrix that includes two values 1

and 0, denoting validated and unvalidated associations between diseases and diseases, respectively. More details can be found in Table 1.

Description of VGAETF

VGAETF encoder

We follow the encoder approach like VGAE29 to learn the feature representation of the node.We take drug combinations of the drug-disease-

drug triplets as the input data for the VGAE encoder. Finally, we can get the low-dimensional representations of drugs as ZD ˛RN3F where F is

the dimension of the final output of the encoder. The drug input features are X ˛RN3N whereN is the total number of drugs. The VAEmodel

consists of two parts: encoding and decoding.

The VGAE framework leverages the variational auto-encoder to learn graph-structured data by naturally incorporating node features using

GCN. This enables the model to generate interpretable latent representations of undirected graphs based on data distribution. The encoder

takes the adjacency matrix A (every node is connected to itself) and the feature matrix X as inputs and uses two GCN layers to obtain a latent

variable z. The two layers of GCN in VGAE are defined as follows:

GCNðX;AÞ = ~AReLUð~AXW0ÞW1: (Equation 1)

where W0 and W1 are the trainable weight matrices of the first and second layers. ~A = D� 1
2AD� 1

2 is the symmetrically normalized new adja-

cency matrix with A added self-connections, and D is the degree matrix of A. W0 is shared by GCNs and GCNm. Specifically, VGAE employs

two graph neural networks to fit the m and s vectors for each node i:

m = GCNmðX;AÞ: (Equation 2)

log s = GCNsðX;AÞ: (Equation 3)

The latent variable z is then computed as follows:

z = m+ ε,s: (Equation 4)

where ε follows Nð0; 1Þ. The encoder can also be written as follows:

qðzij X;AÞ = N
�
zi
�� mi;diag

�
si

2
��
: (Equation 5)

VGAETF decoder

We follow the same tensor factorizationmethod as R-GCN23 to calculate the prediction scores of triplet facts using the final drug representations

ZD learned from the VGAE encoder and a trainable diagonal matrixMk associated with diseases. Also, we use the inner product as a decoder to

learn the representation matrix of disease comorbidities and drug-disease relationships using the node representations of drugs and diseases.

1. tensor factorization decoder: For the tensor factorization decoder, f assigns to each triplet ðs; r;oÞ a score that represents the valid

probability of a triplet:

f ðs; r ;oÞ = zTs Mrzo: (Equation 6)

where the trainable diagonal matrix Mr is specific to the disease type r, while s and o refer to the drug entity in the triplet.

2. inner product decoder: The decoder computes the reconstructed adjacency matrix by computing the inner product between latent

variables zi and zj of the nodes, and applying the logistic sigmoid function sð,Þ as follows:

4
�
zi ; zj

�
= s

�
zizj

T
�
: (Equation 7)
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Optimization

To account for the lack of negative samples in the known drug-disease-drug triplets, our model generates negative samples during training.

We achieve this by randomly corrupting the subject or object of each positive example. The resulting set of negative samples is combined

with the real triplets to form the total training set T . We then use cross-entropy loss function71 to train themodel, trying to give a higher prob-

ability to seen edges and a lower probability to unseen edges. Our loss function is designed as follows:

L1 = � 1

jSj
X

ðs;r ;o;yÞ˛ T

yloglðf ðs; r ;oÞÞ+ ð1 � yÞlogð1 � lðf ðs; r ;oÞÞÞ: (Equation 8)

where jSj is the number of training triplets. The score f ðs; r;oÞ is normalized between 0 and 1 using the logistic sigmoid function lðxÞ = 1=

ð1 +exp ð�xÞÞ. The indicator variable y is set to 1 for positive triplets and 0 for negative ones.

To predict drug combinations using auxiliary information, we optimize our model using a combination of loss functions. Our optimization

function, denoted asL, includes the loss functionL1,L2 for disease-disease relationships, andL3 for drug-disease relationships. Additionally,

L incorporates the KL divergence72 between qðZj X; EÞ and pðZÞ. KL divergence serves as a regularization term that encourages the learned

latent space to follow a predefined prior distribution and prevents overfitting to the training data.73 Formally, L2 and L3 can be defined as:

L2 = � 1

jRRj
X

ðr1 ;r2Þ˛RR

log
�
j
�
Rr1 ;Rr2

��
(Equation 9)

L3 = � 1

jDRj
X

ðd;rÞ˛DR

logðjðDd ;RrÞÞ (Equation 10)

where RR stands for all disease pairs in the disease-disease relationship and DR stands for all drug-disease pairs in the drug-disease

relationship.

We integrate L to train the model, i.e.,

L = L1 + ð1 � aÞ,L2 +a,L3 � KL
�
qðZjX ;EÞ��pðZÞ� (Equation 11)

where a is a hyperparameter that trades off the two loss functionsL2 andL3 in the auxiliary task. Our model learns embeddings for drugs and

diseases using the Adam optimizer36 to minimize the loss function.

Similar to the calculation process in Chen et al.,74 we analyze the computational complexity for two key components of our model. For the

training and inference time complexity of the two-layerGCN can be boundedbyOðjEjN + jEjF +N3 +N2FÞ, where jEj represents the number

of edges of the undirected graph. For the decoder, the time complexity isOðjT jF + 2FÞ. A complete description of the procedure of VGAETF

is presented in Algorithm 1.

Experiments for performance evaluation

We evaluated the performance of the VGAETFmodel using the area under the receiver operating characteristic (ROC) curve (AUC)30 and the

area under the precision/recall curve (AUPRC).31 We implemented the VGAETF models with PyTorch32 and DGL packages.33 The publicly

available source codes were used to implement all baseline methods. The best or default parameters of each method are used. The imple-

mentation of TransE, ComplEx, SimplE, and RGCNmodels are providedby theOpenGraphBenchmark.34Weuse themodel implementation

of TuckER, KGE-DC, and ComplexGCN provided by the authors. Details are in the key resources table.

In this study, we utilized grid search to determine the optimal parameters for our model. Specifically, we initialized the disease embed-

dings using Xavier initialization35 and optimized the training loss using the Adam solver.36 Various hyperparameters were taken into account

in our model. The hyperparameters in the VGAETF model, which include the learning rate, the number of units in hidden layer 1 and hidden

layer 2, and the balance factor a, were considered. The hyper-parameter a balances the contributions of the representation matrices to learn

disease-disease relationships and drug-disease relationships in the auxiliary task. To prevent overfitting and improve efficiency, early stop-

ping was implemented during training, and the number of training epochs was fixed at 1200. The optimal hyperparameters were selected

and highlighted in bold in Table 2.

ll
OPEN ACCESS

14 iScience 26, 108020, October 20, 2023

iScience
Article


	ISCI108020_proof_v26i10.pdf
	Multi-task learning for predicting synergistic drug combinations based on auto-encoding multi-relational graphs
	Introduction
	Results
	The framework of VGAETF
	Experimental setting
	Hyperparameters selection
	Embedding visualization
	Importance of each component
	Performance evaluation

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Preliminaries
	Datasets
	Description of VGAETF
	VGAETF encoder
	VGAETF decoder

	Optimization
	Experiments for performance evaluation





