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ABSTRACT
Objective  Meibomian gland dysfunction (MGD) is a 
primary cause of dry eye disease. Analysis of MGD, its 
severity, shapes and variation in the acini of the meibomian 
glands (MGs) is receiving much attention in ophthalmology 
clinics. Existing methods for diagnosing, detection and 
analysing meibomianitis are not capable to quantify the 
irregularities to IR (infrared) images of MG area such as 
light reflection, interglands and intraglands boundaries, 
the improper focus of the light and positioning, and eyelid 
eversion.
Methods and analysis  We proposed a model that 
is based on adversarial learning that is, conditional 
generative adversarial network that can overcome these 
blatant challenges. The generator of the model learns the 
mapping from the IR images of the MG to a confidence 
map specifying the probabilities of being a pixel of MG. 
The discriminative part of the model is responsible to 
penalise the mismatch between the IR images of the MG 
and confidence map. Furthermore, the adversarial learning 
assists the generator to produce a qualitative confidence 
map which is transformed into binary images with the help 
of fixed thresholding to fulfil the segmentation of MG. We 
identified MGs and interglands boundaries from IR images.
Results  This method is evaluated by meiboscoring, 
grading, Pearson correlation and Bland-Altman analysis. 
We also judged the quality of our method through average 
Pompeiu-Hausdorff distance, and Aggregated Jaccard 
Index.
Conclusions  This technique provides a significant 
improvement in the quantification of the irregularities to IR. 
This technique has outperformed the state-of-art results 
for the detection and analysis of the dropout area of MGD.

INTRODUCTION
Meibomian or glandulae tarsales refers to 
particular sebaceous glands along the rims 
of eyelids. There are about 30–40 meibomian 
glands (MGs) in the upper eyelid and 20–30 
in the lower eyelid. These glands secrete oil 
known as meibum over the ocular surface of 
the eye to stabilise the tear film in order to 
keep the surface of the eye wet, comfortable 
and maintain the surface for visual acuity. 
Meibomianitis is the obstruction or alter-
ation in location, morphology of the MGs, 
and meibocyte depletion so that they are 

unable to secrete meibum into tears. This 
attributed waning of quantity and quality of 
their excretion and deficiency in tear’s film 
lipid layer as a result tears get evaporated 
too rapidly which lead to a condition known 
as the evaporative dry eye.1 2 Meibomianitis 
often contributed to dry eye and blepharitis. 
Besides this, it leads to the formation of free 
fatty acid which causes punctate keratopathy. 
Meibomianitis is often observed in women. 
The factors that contribute to this disease are 
age, hormones, allergic conjunctivitis, high 
cholesterol and triglycerides, autoimmune 
diseases like rosacea, lupus and arthritis. 
Healthy glands give a visual appearance like a 
grapes-cluster attached to a central stalk. MG 
is composed of acinar cells with a central duct 
that opens at eyelid margin on to the mucocu-
taneous junction. Illumination of lid margins 
reveals anatomical variations in normal and 
abnormal meibomian gland dysfunction 
(MGD). Healthy individuals show grapes like 
acini clusters that make longer MG. While 
MGD patients possess laxity or enlargement 
of the glands as well as gland dropout and 
atrophied glands.

Accurately diagnosing meibomianitis, its 
severity, and variations in the acini of the MG 
is very significant in the clinical setting. The 
binocular slit-lamp is a non-invasive standard 
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diagnostic procedure that allows a stereoscopic magni-
fied view of the anterior and posterior structure of eyes 
that is, cornea, iris, eyelid, conjunctiva, natural crystalline 
lens and sclera. Typical dyes like fluorescein, rose bengal 
and lissamine green, reveals some features of the ocular 
surface. Topical vital stains are very helpful in deter-
mining the tear and ocular surface abnormalities related 
to MGD. Lipid layer interferometry is a method that is 
used for diagnosing the presence and severity of MGD 
and analyse the tear stability by measuring the thickness 
or depth of the lipid layer and by imaging the surface 
contour of the tear film.

Meibometry is a method for quantifying the meibum 
level at the eyelid margin.3–5 Studies have revealed MGD 
alter the basal meibum level. A meibum’s sample from the 
eyelid margin is transferred to a special tape. The special-
ised tap transparency alters when exposed to meibum. 
The basal meibum level is analysed photometrically by 
measuring the level of variation in the transparency of 
specialised tap. However, this technique is vulnerable to 
inconsistent quantification due to apparent diffuse or 
focal association of MGD in the given eyelid.

Meibography is an in vivo and specialised imaging tech-
nique used for assessing the morphology of MGs.6–9 It 
was first introduced by Tapie in 1977 who used ultraviolet 
wood light to fluoresce meibomian ducts. The meibog-
raphy and posterior eyelid biopsy can directly observe 
the architecture of MG. Meibography is an in vivo, a non-
invasive analysis that allows the microscopic and gross 
analysis of the architecture of MG. In contrast to this, 
a biopsy is ex vivo, an invasive analysis, and patients are 
reluctant to undergo such procedures.

Meibography images are analysed for the quantifica-
tion of the MG architecture. Meibography is divided into 
two types that is, contact and non-contact. The contact 
method involves the application of direct light on to 
the skin for partial lid eversion and transillumination 
of eyelid pursued by imaging with the specific camera.10 
Non-contact meibography is faster, user friendly. It also 
tries to overcome the problem of lid manipulation and 
patient uneasiness.11 This practice provides a greater 
view of the surface area of the eye as compared with the 
everted eyelid. As a result, it needs less number of images 
to merge and create a panoramic view. In Arita et al,12 
the authors introduced an advance mobile pen-shape 
system for meibography. It is capable of taking images 
and videos of MGs by using infrared LED (light emitting 
diode). Advance technologies have already been intro-
duced with the capability to determine the microscopic 
level features of MG that is, optical coherence, infrared 
and laser confocal meibography.

MGs images are created using meibography. Healthy 
and normal MGs appear on infrared meibography as 
hypoilluminescent grapes like clusters, duct and under-
lying tarsus are hyperilluminescent.6 Abnormal glands are 
characterised by a dilated duct, torturous and enlarged 
gland size.13 A thorough examination of meibographic 
images is required for assessment and comparison of 

the eyelid. Grading is done in order to record the treat-
ment and progression in MGs. In infrared meibography, 
meiboscoring and meibograding are done to quantify 
MD morphology. Sirius corneal topographic device 
along with Phoenix-Meibography imaging software is 
used for non-contact meibographic analysis.14 This anal-
ysis provides data for pupillography, anterior chamber 
depth, corneal and lens thickness, elevation, curvature, 
and corneal surface over the diameter of 12 mm. Phoenix 
system provides the data for dropout by percentage and 
group the dropout by a scale within an area highlighted 
by freehand tools.

Accurate gland and intergland segmentation is vital 
for automated diagnosis. Automated assessment needs 
precise detection of glands, interglands and midline 
boundaries. In Prabhu et al,15 the authors performed 
segmentation of MG from IR images based on deep neural 
networks. They enhance the quality of MG IR images by 
CLAHE (contrast limited adaptive histogram equalisa-
tion). They employed the U-net network which uses the 
self-learnt features to differentiate between healthy and 
MGD affected eyes. They evaluate their performance 
against various clinically relevant metrics and concluded 
that the automatic segmentation of MGs is very close 
to the results derived from the ground truth.16 Devel-
oped an algorithm based on the pyramid scene parsing 
network17 to segment the MG atrophy regions and eyelid 
from meibographic images. A dataset composed of 706 
meibography images annotated with atrophy regions and 
eyelid, were used for this study. They reported 95.6% on 
an average meiboscore grading accuracy, surpassed the 
leading clinical investigator and clinical team by 16% and 
40.6%, respectively. Their models achieved an accuracy 
of 95.4% and 97.6% for atrophy and eyelid segmentation. 
Sachiko et al18 experimented with nine different deep 
neural network models (InceptionV3, DenseNet-201, 
DenseNet-169 and VGG16) to automatically classify the 
healthy and obstructive MG from vivo laser confocal 
microscopy images. The DenseNet-201 produced the 
best results. They constructed ensemble deep learning 
models and reported an improvement in the results.

We aimed to employ such algorithms to detect MG 
from IR images, enhance images in such a way that it 
becomes easier to examine the MG structure. In this 
study, we focused to develop a new detection method 
based on applied artificial neural network that is, CGAN 
(conditional generative adversarial neural network) to 
evaluate the MG’s loss in SIRIUS infrared meibographic 
photographs and made a comparison with manual anal-
ysis and automated adopted approaches.

Automatic MG analysis
The IR images of the inner eyelids shown in figure  1 
make automatic detection of the MGs a very challenging 
task due to various features that is, specular reflections, 
wet and smooth surface, low contrast of, among gland 
and non-gland regions, non-uniform illuminations and 
several other ocular surface irregularities. In spite of 
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all these the glandular regions have higher brightness 
and reflectance than the adjacent non-glandular area. 
Because of these irregularities, conventional procedures 
that is, threshold, region based, edge based method and 
so on are inappropriate for segmenting the glandular, 
non-glandular and inner-glandular regions.

Generative adversarial neural network
Ian Goodfellow in 2014 developed a class of artificial 
neural networks that are known as generative adversarial 
networks (GANs). GANs are basically two networks pitting 
against each other (thus the ‘adversarial’). GANs have 
the potential to mimic any data distribution and create 
worlds eerily in any domain that is prose, speech, images, 
music and so on like ours. GANs are a very active area of 
research and there are various implementation of GANs 
that is, CGANs, vanilla GAN, deep convolutional genera-
tive adversarial networks and super resolution GANs and 
so on. GANs can be broken down into two pieces that 
is, generator and the discriminator. Both of them are 
neural networks and run in a competitive fashion during 
the training phase. The generator tries to find the data 
distribution and the discriminator tries to estimate the 
probability of input data. Both generator and discrimi-
nator required training simultaneously, need parameter 
adjustment for generator and discriminator to minimise 

the ﻿‍log (1 − d
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)
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equation 1. We employed supervised a deep conditional 
generative adversarial neural network which is based on 
empirical knowledge from very popular GAN.19

CGAN for detection
The challenging task in MG detection is the segmen-
tation of glands boundaries, and various features that 
is, specular reflections, wet and smooth surface, low 
contrast of, among gland and non-gland regions, non-
uniform illuminations and several other ocular surface 
irregularities. The convolutional neural network tends 
to minimise pixel-wise loss. A misclassified pixel is not so 
significant for the overall loss but leads to various MG 
segmented as one. Contour prediction,20 distance map 
regression21 methods tried to mitigate this problem. In 
order to enforce spatial contiguity, conditional random 
fields (CRFs) are widely used for image segmentation 
problems as a post-processing step.22 A combination of 
CNN (convolutional neural network) and CRFs models 
have been employed to explore context-aware and global 
CNN training but this approach is limited to pair-wise 
CRFs and second-order potential, while higher order 
statistics are very useful in segmentation of images.23 24 
Adversarial training has the capability to incorporate the 
higher-order consistency (not limited to unary or pair-
wise like CRFs). These models have field-of-view which is 
a larger image portion that can incorporate higher-order 
potentials that cannot be enforced by CRF through a pair-
wise term. Adversarial models have the ability to learn 
appropriate loss which can avoid manually engineered 
loss function.25 Adversarial models learn loss functions 
by recognising the output as actual or not while training 
the network to lessen this learnt loss. Usually, the output 
pixel is treated conditionally independent from other 
pixels, while CGAN considers a larger receptive field and 
can learn the context-aware loss.

The proposed CGAN learn mapping M for MG 
segmentation in which M can accept MG images to their 
segmentation masks. For training the CGAN for the 
purpose of MG semantic segmentation with paired data, 
we employed model with objective function comprises loss 
function L

GAN
 and per-pixel loss function L

1
 to castigate 

both the segmentation errors and pixel’s configuration. 
The CGAN’s adversarial loss is similar to cycle GAN in 
which the discriminator network D

m
 and segmentation 

network M play a min–max game in order to maximise 
and minimise the objective, respectively as in equation 2.

	﻿‍ minm maxdmLGAN

(
M, Dm

)
‍� (2)

The loss of the adversarial network can be construed as 
structure loss in which M is criticised if the pixel’s config-
uration is unrealistic in the predicted mask. As the data 
is in the form of pair, discriminator D

m
 can see both the 

MG and predicted mask. The objective of the proposed 
CGAN can be represented by equation 3.

Figure 1  Shows original and processed IR images of inner 
eyelids. IR, infrared.
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An additional loss term L
1
 is employed for stabi-

lising the GAN and to minimise the absolute difference 
between the predicted output and ground truth. Mathe-
matical dynamics are shown in equation 4.

	﻿‍ Li(M) = Em,n∼pdata(m,n)[||(m−M(n)||]‍� (4)
The objective of the proposed model is represented by 

following equation 5.

	﻿‍ arg minM maxDMLGAN(M, Dm) + L1(M)‍� (5)
The discriminator D

m
 works on patch level instead of 

the entire image and castigate the structure at the patch 
level. This method draws the attention of the adversarial 
nets on the parts of the image in which the MGs bound-
aries and edges are likely to be missed. In the case of 
overlapping patches, the same MGs of the image take 
part in the learnt loss many times in various neighbouring 
environments and contexts. We employed spectral 
normalisation26 in order to improve the GAN stability 
which leads to very efficient gradient flow. We used this 
normalisation technique generator. The proposed model 
poses the MG segmentation as an image to image trans-
lation problems (regression) instead of a classification 
problem. This facilitates us to learn the complex loss 
during training between the output and ground truth. 
The proposed CGAN was trained with the help of gradient 
penalty and spectral normalisation for MG segmentation. 
To guide the generator for better prediction we added an 
extra loss term to the objective loss make the prediction 
as close to possible to the ground-truth.

MATERIALS AND METHODS
Dataset and preprocessing
We tested the Proposed Model on the MG dataset 
which is composed of 112 MG images. The training was 
performed using 90 MG-dataset images of size 640×640. 
Images were taken with SIRIUS 3D Rotating Scheimpflug 
Topography system both from lower and upper eyelid 
with proper focus and eyelid eversion. The examination 
of all the patients was conducted at the LRBT eye hospital 
Mansehra. One hundred and twelve patients (46% man 
and 54% woman) with MGD were diagnosed between 
June 2017 and August 2019. Patient’s demographics are 
described in table 1.

We used Wallis filter to the raw MG images to enhance 
the low contrast areas in the image before manual 
and automatic analysis. The Wallis filter is a particular 

adaptive filter that produces an edge crispening and local 
contrast enhancement, by applying an operator which is 
spatially variant. This kind of filter is particularly useful, 
for instance, when images present both bright and 
shadow regions. In order to remove noise, we applied 
the Gaussian filter that enhances the contrast level and 
flattens different exposures to achieve similar brightness. 
We subtracted the resultant MG image from the raw MG 
image and then applied the Gaussian filter again. We 
repeated the same process (ie, Wallis filter followed by 
image subtraction from normalised image) to further 
reduce contrast inconsistency. Resultant IR images after 
the application of Gaussian and Wallis filters are shown 
in figure 1.

Architectural detail
The GAN architecture is composed of a generator and a 
discriminator. The network takes an input (image) and 
generates an estimated output. It is designed with empir-
ical understanding from extensively used CGAN (shown 
in figure  2). The generator is composed of 2 stride-2 
convolutions, 12 residual block, 2 functionally constrained 

convolutions along with stride of ﻿‍
1
2‍. We employed reflec-

tion padding to reduce artefacts. The discriminator is a 
normal (and well understood) classification model which 
is composed of three layers and an output of size 70×70 
with an ambition to recognise whether the overlapping 
patches are actual or not. A patch level discriminator has 
fewer parameters and more comfortably applicable to 
numerous size images. It has been observed that more 
residual block is required for large size images for effi-
cient convergence. Spectral normalisation is employed to 
stabilise the GAN training.

Training detail
To evaluate the performance of proposed CGAN we 
tested the model on MG-dataset, and tasks which include 
vision task that is, segmentation and graphic task that is, 
photo-generation. We first made a comparison between 
the manual and previously adopted automated methods. 
Finally, we applied our CGAN which demonstrates the 
advantages of using CGAN for the said problem. For 
this purpose, we provide annotated MG-dataset images 
to CGAN. The network was trained from scratch. We 
used spectral normalisation26 that provides stability to 
GAN during training. We employed a mini-batch size of 
1, the learning rate is 0.0002 for Adam optimiser set for 
150 epochs and decay to zero for the rest of the epochs 
(400 epochs). The training was performed using 90 
MG-dataset images of size 640×640. Images were taken 
SIRIUS 3D Rotating Scheimpflug Topography system 
both from lower and upper eyelid with proper focus and 
eyelid eversion. We evaluated the model using 22 images 
from MG-dataset. For training, we applied random 
jittering, and to solve the objective loss function we used 
Adam optimiser. The network was trained from scratch 
and Gaussian distribution and SD of mean 0 and 0.02, 
respectively were used for weight initialisation. The 

Table 1  Shows most of the patients (72%) with meibomian 
gland dysfunction were between 40 and 85 years of age, 
2% of the patients were between 1% and 20% years and 
45% between 21 and 40 years

Age 1–20 years 21–40 years 41–60 years 61–85 years

Male 01 12 21 17
Female 01 15 26 19

52% were women and 48% men of the total 112 patients.
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discriminator used randomly selected 64 patches from 
the segmented output and ground-truth. We trained 
the model on GTX 750 Ti GPU (graphical processing 
unit) and used the PyTorch library V.0.4.0 which is 
publically available at Github link https://​github.​com/​
pytorch/​pytorch. Similarly, code for MGD segmentation 
is available in online (https://​github.​com/​zakirk2012/​
cGAN-​MGD-​segmention).

MGs segmentation
For MG segmentation we employed an encoder–decoder 
architecture. We added skip connections following the 
U-net27 general shape, from the encoder to decoder in 
the generator that is, between the ﻿‍ jth‍ and the ﻿‍ n − jth‍ 
layer where n represents numbers of layers and each 
connection simply concatenates the corresponding layers 
in the encoder and decoder for the generator. Convo-
lution is used at the end of the decoder to map output 
segmentation mask pursued by tanh like non-linearities. 
For the decoder, we used rectified linear units (ReLUs) 
and applied leaky-ReLUs (leaky ReLUs) for encoder with 
a slope of 0.2. Markovian discriminator with leaky ReLU 
and slope of 0.2 and output of 70×70 employed for MG 
segmentation.

Evaluation metrics and performance measures
To evaluate the visual quality of our work on MG-dataset 
we employed different techniques. For quantitative 
analysis, we tried to evaluate model using average 
Pompeiu-Hausdorff distance (aHD), Aggregated Jaccard 
Index (AJI) and F1 Score. A criterion for the MG segmen-
tation method should penalise pixel and object level 
errors that is, over segmentation, false detection of MG, 
missed detection of annotated objects. Finally, we objec-
tively performed an analysis of MG-GAN and area of the 
dropout was determined using below mentioned grading 
scheme28 to justify the performance of our method.

Average Pompeiu-Hausdorff distance
aHD determine how far two subsets of a metric space 
are from each other. In the case of MG segmentation, 
it determines the greatest of all the distance from the 
point in the ground-truth and to the nearest point in the 
predicted mask. Mathematical dynamics are represented 
by the following equation.,

	﻿‍ H (a, b) = max(H(c, b), H(b, c))‍� (6)

	﻿‍ And H = maxhmaxy||h − y||‍� (7)

Where﻿‍h ∈ a and y ∈ b‍
The lower values of aHD show that two segmentation 

masks are close to each other. We calculated aHD for 
MGD shown in table 2.

Aggregated Jaccard Index
The Jaccard index also called as Jaccard similarity coef-
ficient is a quantitative analysis employed for evaluating 
the similarity and dissimilarity of sample sets. It extends 
the global Jaccard index that can determine the aggre-
gated union and aggregated intersection cardinality in 
the region of interest (ROI). Mathematically it is repre-
sented as

	﻿‍

Aaji =

l∑
i=1

|Gi∩P∗
j

(
i
)
|

k∑
i=1

|Gi∪P∗
j

(
i
)
|
∑
kϵU

|Pk|
‍�

(8)

Where ﻿‍G = Ui=1,2,...k‍ ﻿‍Gi‍ is the ground truth ﻿‍ P = Ui=1,2,...l‍ 

shows prediction and ﻿‍P
∗
j

(
i
)
‍ represents connected compo-

nents. Higher values of AJI indicate better performance 
of the model. The values estimated for MGD analysis 
represented in table 2.

F1 score
F1 is a function of precision and recall. Mathematical 
dynamics are represented by the following equation

Figure 2  Architecture of proposed conditional generative adversarial network for meibomian gland dysfunction analysis.

Table 2  Provides comparison of the evaluation metric

ANN AJI aHD F1 score

FCN 0.494 8.132 0.701

U-net 0.588 6.243 0.722

GAN 0.600 5.719 0.782

Mask R-CNN 0.601 5.721 0.801

Proposed 0.664 4.611 0.825

aHD, average Pompeiu-Hausdorff distance; AJI, Aggregated 
Jaccard Index; ANN, Artificial Neural Network; FCN, Fully 
Convolutional Network; GAN, generative adversarial network; 
RCNN, Region Based Convolutional Neural Networks.

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/zakirk2012/cGAN-MGD-segmention
https://github.com/zakirk2012/cGAN-MGD-segmention
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	﻿‍ F1 = Recall × Precision
Recall+Precison ‍� (9)

The higher value of the F1 score implies a good inter-
section between the predicted value and ground-truth. 
F1 score for MGD is demonstrated in table 2.

Dropout area and ROI selection
We employed MG-GAN for automatic Selection of the 
ROI consist of MGs and dropout area (DOA) as shown 
in figure  3. For automatic identification of MG and 
DOA, we trained MG-GAN on circumscribed MG images. 
These images have glands and dropout areas isolated and 
demarcated by clinicians through hand tools. MG-GAN 
can extract discriminative features and used these for 
representation learning, editing and synthesising high-
quality images. We generated bounded MGD images and 
performed various comparative and statistical analyses to 
justify our results which are discussed briefly below.

Manual analysis and grading
The manual analysis involves marking the borders of 
tarsus in order to cover at least 90% area of lower and 
upper eyelids and delineate the MGs by placing dots 
around the grapes like clusters. As shown in figure 3, the 
green part represents the area of MGs, and red shows 
the loss area. After circumscription of MGs, the Phoenix 
software system generates the measurement of dropout 
within the area delineated by the freehand tool. Both 
scale and percentage are used for dropout measurement. 
According to grading policy grade 0 is assigned for 0 loss, 
grade I for 1%–25%, grade II for 25%–50%, grade III for 
50%–75% and grade IV for 75% and above loss.11 The 
percentage for loss area and time for analysis for each 
image is recorded.

Table 3 illustrates the distribution of grades achieved 
by auto and manual analysis. It is depicted from the table 
that 45% images from MG-test set belong to grade I and 
45% were for grade II. Ten per cent images belong to III 
and 0% fall in grade IV in manual analysis. As presented 
in table 3 in automatic analysis 25% and 35% images from 

test set fall in grade I, 65%, and 55% images in grade II, 
10% in grade III, and 0 images in grade IV, respectively 
for clinician I and II in the automatic analysis.

Statistical analysis
We performed statistical analysis with SPSS software avail-
able commercially. Mean±SD is used to express data. 
Shapiro-Wilk test29 is used for verification of normal 
variable distribution. We performed a comparison of 
MG-GAN and manual analysis by paired sample t-test. We 
employed Kappa k analysis30 and Bland-Altman31 to eval-
uate the agreements between measurements. Pearson 
correlation analysis32 employed depending on the distri-
bution of variables. Statistically, a p value great than 0.05 
is considered as a significant one.

RESULTS
Our proposed method (MG-GAN) finds the ratio of the 
total MG area relative to the entire analysis area in all 
subjects as shown in table 4.

MGs dropout grading base on kappa (k) analysis
Pearson correlation
Pearson correlation is extensively used in pattern recog-
nition, image processing and statistical analysis.32 We 
performed the Pearson correlation test in order to find 
the correlation or comparison between manual analysis 
and automatic analysis of MGs performed by two clini-
cians, respectively. The test results yields a correlation 

Figure 3  Some meibographic images taken from both upper and lower eyelids and analysed with the four automatic and 
manual detection methods. The green region for manual analysis shows glands region and red represent loss area, while 
in case of automatic analysis methods white region represents gland area and colour regions represent loss area. Results 
revealed that the automatic detection method percentage results are almost on par with the manual analysis. In manual 
analyses, the analyser while putting dots or lines around the glands is more likely to skip some minor regions between the 
glands while the automatic analysis considers this region in the analysis. The cause of this difference is due to scare tissues 
and light reflection on the images and system classify them as meibomian glands area. We can see from figure 3 that MG-
GAN outperformed state of the art detection methods for MG detection. CGAN, conditional adversarial neural network; GAN, 
generative adversarialnetwork; MG-GAN, meibomian gland-generativeadversarial network.

Table 3  Distribution of grades

Grades Auto (clinician I) (%) Auto (clinician II) (%)
Manual 
(%)

I 25 35 45

II 65 55 45

III 10 10 10

IV 0 0 0
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coefficient of r=0.962, p<0.001 between the automatic 
and manual analysis by clinician I as in figure 4A. For the 
clinician II, the test yielded a correlation coefficient of 
r=0.968, p<0.001 as illustrated in figure 4B.

Bland-Altman analysis
We performed the Bland-Altman analysis31 to measure 
the consistency between the suggested method (MG-
GAN) and manual analysis method by constructing a 
limit of the agreement as shown in table 5. We extensively 
evaluated the mean difference or limit of agreement. 
We measured limit of agreement between manual anal-
ysis and MG-GAN by clinician I (see figure  5A) and 
concluded 96% mean difference between above mention 
method found to span from −4.95% to 4.16% with an 
MD of −0.39±2.33 (CCC=0.83) and 95% mean difference 
between manual analysis and clinician II (see figure 5B) 
spans from −3.69% to 5.44% with an MD of 0.87±2.32 
(CCC=0.848). The 95% mean difference between clini-
cian I and clinician II (see figure  5C) was found to 
span from −4.81% to 7.35% with an MD of 1.27%±3.10 
(CCC=0.97) and −2.79% to 12.80% with an MD of 
5%±3.10 (CCC=0.868) for MG-GAN test results obtained 
by clinician I on 2 days consecutive.

DISCUSSION
This study demonstrates the objective analysis and auto-
matic identification of the area of the MGs in non-contrast 
meibographic images. Various studies demonstrated 
subjective analysis of MG area loss.33 34 Therefore, an 
objective analysis of MG loss would be very advantageous 
for the evaluation of sophisticated pathological changes 
of MGs. Current research describes the MG analysis with 
the help of J software35 in which the examiner manu-
ally defines the gland area of each patient which results 
in inter-observer variability. In Pult and Riede-Pult,36 
authors demonstrated an automatic analysis of the area 
of the MGs and identify healthy and unhealthy glands 
but sometimes includes spaces among the neighbouring 
MG and provides such parameter as the central length of 
detected MG which need not be part of the MGD.

Our analysis method automatically defines the measure-
ment area and analyse the contours of each MG. This 
is very useful for the identification of local and subtle 
variations in MG. It is based on an adversarial pipeline 
which has a field of view that represents a larger portion 
of the image rather than just super-pixel or neighbouring 
pixels. Due to the larger receptive field, it catches more 
global information. It can capture higher-order statis-
tical consistency that is neither enforced in pixel-wise 
loss nor measured in CRF using pairwise loss. This makes 
the model context-aware so that the results are best. The 
adversarial loss in the CGAN is similar to cycle-GAN. The 
generator and discriminator component of the proposed 

Table 4  Provides manual and automatic analysis of MG 
using paired-sample t-test

Method Mean loss area (%) Mean time

Manual analysis 28.55±12.75 15±3.4 min

MG-GAN analysis 30.1±12.64 Less than a minute

Mask R-CNN 30.6±12.33 Less than a minute

GAN 30.8±12.21 Less than a minute

U-net analysis 30.9±12.13 Less than a minute

FCN analysis 31.6±11.90 Less than a minute

Adaptive 
thresholding

33.91±10.50 Less than a minute

FCN, Fully Convolutional Network; MG-GAN, meibomian 
gland-generative adversarial network; RCNN, Region Based 
Convolutional Neural Networks.

Figure 4  (A) Manual versus meibomian gland-generative adversarial network (MG-GAN) (clinician I) (B) Manual versus MG-
GAN (clinician II) (C) clinician I versus clinician I.

Table 5  Demonstrate the Bland-Altman analysis value of k 
and relative strength of agreement is interpreted as <0.20: 
poor, 0.21–0.40: fair, 0.41–0.60: moderate, 0.61–0.80: good, 
>0.81 very good

Method k P value Agreement

Manual vs MG -GAN 
(clinician I)

0.7081 0.0019 Good

Manual vs MG -GAN 
(clinician II)

0.5521 0.0199 Moderate

Clinician I vs clinician II 0.8549 <0.001 Good

Two MG-GAN 
measurement of clinician I

0.8665 <0.001 Very good
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model play a minimax game in order to minimise the 
objective as describes in equation 3. The additional loss 
term (see equation 4) brings the output closer to ground 
truth and stabilises the model during training. During the 
training of the discriminator, the gradient loss is propa-
gated back to the generator to update the parameters. 
The generator and discriminator are trained alternatively 
until the discriminator is not able to easily distinguish 
between ground truth and predicted masks.

Our results indicate that the ratio of the area of the MGs 
to the entire area decreases substantially as the meibo-
score increases. Analysis indicates a profound correlation 
between the objective measurement and subjective 
grading of the MG area. Robin et al19 demonstrate the 
MGD severity and coexistence of many pathological 
changes, distortion, shorting, narrowing, enlargement 
and dropout. They concluded that measurement of 
the MG area may not detect MGD alone in some cases 
because there is a possibility of enlargement of MG in 
early diagnosis and shortening and distortion in severe 
cases. A semi-quantitative scoring system is introduced in 
Arita et al11 to measure and grade MG’s morphological 
changes. Grades are assigned based on the involvement 
of eyelids in pathological changes. Grade 0 is assigned 
for no eyelid involvement, grade I for 33%, grade II for 

34%–66%, grade III for 67% or greater involvement of 
eyelid in MGD. We made a comparison of total MG area 
to the entire area of the eyelids with meiboscore.

Meiboscoring system is not suitable for follow-up exam-
inations because the eye might be in the same grade even 
after treatment and improvement in the MG loss area 
that is, from 60% to 30%. Therefore, examiners should 
use the MG loss area percentage despite of grades in their 
follow-up examinations and comparison of healthy and 
unhealthy eyes. It is very convenient to take an image of 
the MG by Sirius Topography while it takes 10–20 min by 
Phoenix software to circumscribe the MG area by putting 
lines or dots along the edges of glands and measure the 
loss area. It is very arduous when the ducts are located 
non-linearly.

In this article, we proposed a method that can analyse 
the MGs images (IR images) automatically and compared 
it with traditional image processing method (adaptive 
thresholding) and state of the art segmentation methods, 
that is, Mask R-CNN, GAN, U-net and FCN. It is based 
on CGAN where we condition on an input image and 
generate the corresponding output segmented image. 
GANs have been used very successfully in various medical 
imaging applications, that is, detection, segmentation 
and generations. We applied Wallis and Gaussian filter 

Figure 5  Limit of agreement plot showing the consistency between manual and meibomian gland-generative adversarial 
network analysis. The average is plotted along x-axis and mean difference along y-axis (A) manual versus clinician I, (B) manual 
versus clinician II and (C) clinician I versus clinician II.
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to enhance the low contrast areas in the MG images. We 
trained the model using an adversarial pipeline which 
has a large receptive field and captures more global 
information. We employed long term residual connec-
tion to ease model training. A comparison is made with 
manual and automatic analysis methods and concluded 
that our approach is very close to manual analysis and 
outperformed all other automatic analysis methods. 
We have also applied an end-to-end network based on 
adversarial learning to MG segmentation that uses CRF 
to capture higher-order potential. The employed GAN 
uses FCN to classify MG images at the pixel level. GANs 
need competition to improve the performance between 
generator and discriminator. This unguided competition 
induced instability during training, that is, convergence 
to local extreme as a result model collapse. In order to 
contemplate the validity of the MG-GAN analysis, we 
performed various statistical analyses. MG-GAN analysis 
represents a very good relation with manual analysis 
(r=0.96) (p<0.001). The Bland-Altman analysis revealed 
a 96% limit of agreement between the manual our auto 
analysis by the clinician (I) was between −4.95% and 
4.16% (CCC=0.83) and between −3.69% and 5.44% 
(CCC=0.848) for the clinician (II) shown in table 5. We 
observed fair to good agreement between manual and 
automatic analysis. Intraoperator and interoperator 
agreements found excellent. We gauge the performance 
of our model using aHD (average Pompeiu-Hausdorff 
distance) and AJI and noticed premising results shown 
in table 3.

The job of the discriminator D is to evaluate the 
segmented masks generated by the generator G. The 
generator G of the proposed model is a combination of 
an encoder to learn the intrinsic features that is, edges, 
shape, gradients, texture, and so on, and a decoder to 
learn how to delineate the binary masks. The adversarial 
loss enables the generator to learn the input at high 
frequencies (fine-grained details) which contributes to 
sharp and realistic binary masks. The additional loss term 
(equation 4) acts as an optimiser to fit the discriminator 
D to minimise the generated mask predication and maxi-
mise the real mask predication. To analyse the significance 
of discriminator scores, we have done two experiments. 
First, the proposed model is trained without additional 
loss term (equation 4) and the predicted segments are 
ranked on the basis obtained score of the discriminator D. 
In the second we trained generator G with additional loss 
term mentioned in equation 4, and predicted segments 
are ranked based on the score obtained by D. We have 
observed the strong consistency between the score of 
discriminator and dice score in the second experiment 
(Pearson coefficient of r=0.98, p<0.001).

We have observed certain limitations of the proposed 
method. It quantifies the irregularities to MG areas like 
light reflection, the improper focus of the light and posi-
tioning, and eyelid eversion. In future studies, our focus 
is to avoid these potential biases by improving the algo-
rithm to automatically identify these reflections. Based 

on this analysis we concluded that this fully automated 
system is easy, fast and robust and reduces human effort 
and time in the analysis of MGD. We have observed very 
well interoperator and intraoperator reproducibility 
and an excellent correlation between the automatic 
and manual procedures. In this research, we proposed a 
more improved, automatic and objective analysis method 
based on adversarial learning for the accurate detection, 
segmentation and analysis of MGs. The proposed tech-
nique overcomes the limitation of previous assessment 
techniques for the MGs. It enables ophthalmology clinics 
in a more precise way to evaluate the dropout area of MG 
and sophisticated pathological changes in MGs. It is very 
helpful in the characterisation of MG and reduces the 
time associated with the analysis of MG.
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