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Abstract
Noise exposure is one of the most common causes of hearing loss and peripheral damage to the auditory system. A
growing literature suggests that the auditory system can compensate for peripheral loss through increased central
neural activity. The current study sought to investigate the link between noise exposure, increases in central gain,
synaptic reorganization, and auditory function. All axons of the auditory nerve project to the cochlear nucleus, making
it a requisite nucleus for sound detection. As the first synapse in the central auditory system, the cochlear nucleus is
well positioned to respond plastically to loss of peripheral input. To investigate noise-induced compensation in the
central auditory system, we measured auditory brainstem responses (ABRs) and auditory perception and collected
tissue from mice exposed to broadband noise. Noise-exposed mice showed elevated ABR thresholds, reduced ABR
wave 1 amplitudes, and spiral ganglion neuron loss. Despite peripheral damage, noise-exposed mice were hyperre-
active to loud sounds and showed nearly normal behavioral sound detection thresholds. Ratios of late ABR peaks
(2–4) relative to the first ABR peak indicated that brainstem pathways were hyperactive in noise-exposed mice, while
anatomical analysis indicated there was an imbalance between expression of excitatory and inhibitory proteins in the
ventral cochlear nucleus. The results of the current study suggest that a reorganization of excitation and inhibition in
the ventral cochlear nucleus may drive hyperactivity in the central auditory system. This increase in central gain can
compensate for peripheral loss to restore some aspects of auditory function.
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Introduction
Deafness can have detrimental consequences on syn-

apse morphology and function of the central auditory
system (Gravel and Ruben, 1996; Shepherd et al., 2006;

Muniak et al., 2013a). Substantial gaps remain in our
knowledge of the central effects of acquired hearing loss.
The goal of the present study was to link central changes
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Significance Statement

Noise exposure can cause significant damage to the peripheral auditory system. Previous work has shown
that the dorsal cochlear nucleus, inferior colliculus, auditory thalamus, and auditory cortex become
hyperactive following damage to the peripheral auditory system, which may compensate for decreased
sensory input. Here we show that after noise exposure, hyperactivity develops in the auditory brainstem as
a result of reorganization of excitation and inhibition in the ventral cochlear nucleus. The compensatory
plasticity observed at this early stage of the primary auditory pathway may contribute to the hyperactivity
reported at later stages. Further, we show that this hyperactivity can compensate for reduced sensory input
to partially restore some aspects of auditory function.
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in neural reorganization with changes in brainstem phys-
iology and perception in an animal model of bilateral
noise-induced hearing loss.

One of the most common causes of acquired hearing
loss is damaging noise exposure. Many studies have
detailed the consequences of noise exposure on the anat-
omy, physiology, and function of the inner ear (Schmiedt,
1984; Saunders et al., 1985; Henderson et al., 2006).
Noise exposure can damage hair cells, supporting cells,
auditory afferent dendrites, spiral ganglion neurons
(SGNs), and the stria vascularis, all resulting in reduced
afferent input to the central auditory system. A growing
literature suggests that increased neural activity develops
in central auditory structures including the dorsal cochlear
nucleus (DCN), inferior colliculus, thalamus, and auditory
cortex following sound exposure (Salvi et al., 2000; Seki
and Eggermont, 2003; Ma et al., 2006; Brozoski et al.,
2007; Kaltenbach, 2007; Bauer et al., 2008; Izquierdo
et al., 2008; Shore et al., 2008; Longenecker and Gala-
zyuk, 2011; Middleton et al., 2011; Vogler et al., 2011;
Barker et al., 2012; Dehmel et al., 2012b; Gold and Bajo,
2014; Kalappa et al., 2014). The predominant hypothesis
is that central hyperactivity acts as a gain control to
compensate for the reduced afferent input from the ear
(Potashner et al., 1997; Kaltenbach et al., 2000; Milbrandt
et al., 2000; Salvi et al., 2000; Brozoski et al., 2002;
Schaette and McAlpine, 2011).

There is some evidence that both spontaneous (Vogler
et al., 2011; Robertson et al., 2013) and evoked (Boettcher
and Salvi, 1993; Cai et al., 2009) neural activity are en-
hanced in the ventral cochlear nucleus (VCN) following
noise exposure. Other studies have found evidence for
hyperactivity in the brainstem using auditory brainstem
responses (ABRs; e.g. Hickox and Liberman, 2014; Lowe
and Walton, 2015; Möhrle et al., 2016). The first peak of
the ABR, generated by the auditory nerve, is reduced after

noise exposure. Later ABR waves (2–5 in animals, III to V
in humans) are primarily generated by bushy cells of the
VCN and bushy cell–driven pathways (Melcher and Kiang,
1996). Following sound exposure, these central waves, or
their amplitudes relative to wave 1, are increased, indicat-
ing hyperactivity (Hickox and Liberman, 2014; Lowe and
Walton, 2015; Möhrle et al., 2016).

Hyperactivity observed in the later ABR waves presum-
ably reflects an imbalance of excitation and inhibition,
contributing to relatively larger neural responses in the
VCN and upstream auditory brainstem nuclei compared
to the auditory nerve. This imbalance could be due to
increased activity in excitatory synapses and/or reduced
inhibitory activity. Previous work has found evidence for
both. Glutamatergic release and receptor gene expres-
sion in the VCN show long-term increases after unilateral
exposure (Muly et al., 2004; Dong et al., 2010). On the
other hand, inhibitory GABAergic and glycinergic receptor
genes are downregulated shortly after unilateral sound
exposure but upregulated over a longer time scale (Dong
et al., 2010). These changes have not been investigated
for bilateral noise exposures.

In the present study, we investigated the perceptual,
physiologic, and anatomic consequences of bilateral
noise exposure in mice. We used a combination of ABRs
and immunohistochemistry to determine if the VCN ex-
hibits sound-evoked hyperactivity following sound expo-
sure and measured tone detection and acoustic startle
reflex (ASR) to test whether this hyperactivity could func-
tionally compensate for reduced afferent input to support
detection of and reactivity to sounds. Compared to sham-
exposed mice, noise-exposed mice exhibited increased
hyperactivity in the brainstem and an imbalance between
excitatory and inhibitory presynaptic protein expression,
but showed only small elevations in perceptual thresholds
and enhanced reactivity to sound. Our results suggest
that central hyperactivity can compensate for decreased
sensory input to restore some auditory function.

Materials and Methods
Subjects

Subjects were young adult male and female CBA/CaJ
mice bred in our colony from founders originally obtained
from Jackson Laboratory (stock #000654). The numbers
used in each procedure are detailed in Table 1. Animals
were bred and housed in a quiet, low-traffic room to
minimize extraneous noise exposure (Lauer et al., 2009).
All procedures were approved by the Johns Hopkins Uni-
versity Animal Care and Use Committee and performed in
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Table 1. Numbers of CBA/CaJ mice of used for each procedure

Procedure Total mice Sham mice (F; M) Noise mice (F; M) Age
ABR 82 41( 21; 20) 41 (22; 19) 10 weeks
GAD65 labeling 12 7 (3; 4) 5 (2; 3) 2.5–5 months
VGLUT1 labeling 12 6 (3; 3) 6 (3; 3) 2.5–5 months
SGN counts 18 11 (5; 6) 7 (4; 3) 2.5–5 months
CTBP2 labeling 8 3 (1; 2) 5 (1; 4) 2.5–5 months
ASR 21 10 (6; 4) 11 (4; 7) 2.5–5 months
CLS 14 14 (7; 7) 5 (2; 3) 2.5–5 months
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accordance with the Guide for the Care and Use of Lab-
oratory Animals.

Noise exposures
Noise exposures and sham exposures were performed

on 6-week-old mice. Home cages were placed in the
room containing the apparatus 30 min before commence-
ment of exposure to allow subjects time to acclimate to
the new surroundings. For both noise and sham exposure
conditions, awake mice were selected at random and
placed in a small wire cage mounted inside a small sound-
attenuating booth [Industrial Acoustic Company (IAC)] be-
low two speakers (TW57; Pyramid Audio). Broadband
noise was generated using Matlab (MathWorks) and
broadcast via a processor [RX6; Tucker-Davis Technolo-
gies (TDT)] and an amplifier (CH1; Crown Harman). We
calibrated the noise to 100 dB SPL at the location of the
cage before exposure using a half-inch free-field micro-
phone and Z-weighting (SoundTrack LxT, Larson Davis).
Mice were exposed to broadband noise (2–50 kHz) for 2
hours while the cage was gradually rotated within the
sound field. Animals undergoing sham exposure condi-
tions (controls) were placed in the rotating cage inside the
sound booth for 2 hours, but no noise was presented. The
same experimenter, a young adult female, performed all
exposures. Exposures occurred during the hours of 8:00
am and 6:00 pm with the booth lights turned on so as not
to disrupt the mice’s circadian cycle.

Auditory brainstem response
We recorded ABRs 1 month after exposure to measure

auditory sensitivity and determine if the auditory brains-
tem exhibited hyperactivity. Procedures were similar to
those described by McGuire et al. (2015) and Lauer
(2017). Mice were anesthetized with 100 mg/kg ketamine
and 20 mg/kg xylazine and placed on a heating pad inside
a small sound-attenuating chamber (IAC) lined with Sonex
acoustic foam to reduce acoustic reflections. Mice were
placed in front of a speaker (FT28D; Fostex) with the
speaker positioned 30 cm from the vertex of the skull. We
monitored body temperature via a rectal probe and main-
tained it at 36 � 1°C. Subcutaneous platinum needle
electrodes were placed over the left bulla and at the
vertex of the skull, and a ground electrode was inserted
into the leg muscle. The electrodes were attached to a
preamplifier leading to an amplifier (ISO-80; World Preci-
sion Instruments).

Stimulus generation, presentation, and response acqui-
sition were controlled using custom Matlab-based soft-
ware, a TDT RX6, and a PC. Stimuli consisted of clicks
(0.1-ms square wave pulse of alternating polarity) and
5-ms tones at frequencies of 6, 8, 12, 16, 24, and 32 kHz
(0.5-ms onset/offset), generated with a sampling fre-
quency of 195 kHz, and presented at a rate of 20/s. We
calibrated stimuli using a quarter-inch free-field micro-
phone (type 4939; Brüel and Kjær) placed at the location
of the mouse’s head and custom Matlab-based software.
Responses were sampled at 9.5 kHz, bandpass filtered
from 300 to 3000 kHz, and averaged over 300 stimulus
repetitions. We tested clicks first, to verify electrode
placement and the presence of a clearly observable re-

sponse, and then tested tone stimuli in random order. We
presented a given stimulus at descending levels starting
at 85–105 dB (depending on frequency) until a threshold
was reached. Threshold was defined as the sound level at
which the ABR peak-to-peak (any peak) amplitude was
two standard deviations above the average baseline am-
plitude during the period of the recording when no sound
stimulus was present. The amplitudes of the ABR and
baseline were calculated within 8-ms windows beginning
2 ms after stimulus onset and �20 ms after onset, respec-
tively. We manually measured amplitudes of peaks 1
through 4 offline using custom software. Peak 5 was not
reliably detected in our recordings, consistent with re-
ports from others (Zheng et al., 1999), so we did not
measure or analyze it further. Testing lasted �40–60 min;
mice were returned to their home cages following testing
and monitored until recovery.

Acoustic startle reflex
We used ASR to evaluate whether functional reactivity

to sound was altered in noise-exposed mice. ASR was
performed in a small sound-attenuating chamber (IAC)
lined with Sonex acoustic foam to reduce acoustic reflec-
tions. Mice were placed inside a small, custom-made,
sound-permeable, half-cylindrical-shaped testing cage.
The testing cage was mounted onto a platform containing
a piezoelectric sensor that transduced the animal’s move-
ment into voltage signals that were then amplified using a
custom-built amplifier.

All ASR test parameters, stimuli, and recordings were
controlled with custom Matlab software. Startle stimuli
were 20-ms broadband noise bursts of varying stimulus
intensity (70, 80, 90, 100, and 105 dB SPL). Stimuli were
generated via a processor (RP2.1; TDT), attenuated (PA5;
TDT), amplified (D75A; Crown), and delivered through a
speaker (Super Tweeter; Radioshack) placed 10 cm from
the testing cage. The speaker was calibrated with a sound
level meter (SoundTrack LxT; Larson Davis) in the approx-
imate location of the animal’s head before testing.

Animals were acclimated to the testing cage and sound
chamber for 5 min before the start of testing. Each ses-
sion consisted of 10 trials at each intensity (50 total)
presented in pseudo-random order. Trials were separated
by a randomized intertrial interval ranging from 5 to 15 s.
The animal’s ambient movement was automatically mon-
itored by the testing program at the start of each trial.
When the animal was still for a period of 5 s, the startle
stimulus was presented. Measurements during the 5-s
“quiet movement” period served as a baseline for the
animal. For each trial, the animal’s startle response output
signals were amplified, digitized, and recorded (RP 2.1;
TDT) for 100 ms following the startle stimulus onset.
Sessions lasted for 20–25 min. At the end of testing,
animals were returned to their home cage. All testing was
conducted between the hours of 10:00 am and 4:00 pm
by the same experimenter, an adult female.

Tone detection
We trained mice using operant conditioning to assess

how well noise-exposed mice were able to consciously
perceive sounds. Mice were trained to detect tones in a
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quiet background using a conditioned lick suppression
(CLS) paradigm (Heffner et al., 2006; Lauer et al., 2011).
Because it takes mice several weeks to become proficient
at CLS, we began testing within a week after sham or
noise exposure. Once mice performed well in the basic
task (usually after 3–4 weeks), we began measuring
thresholds. During testing, mice were water restricted, but
allowed unlimited access to food. On any days they were
not tested, we provided mice with supplemental hydrating
gel.

Testing took place in a sound-attenuating chamber
(IAC) lined in Sonex foam. A mouse was placed in a small
wire mesh cage containing a lick spout fed via a syringe
pump delivery system. Licking was detected through volt-
age changes induced when the mouse made contact with
the spout. A moist sponge was placed against the bottom
of the cage to assist with charge transfer. All testing was
controlled by a custom program in Matlab operating a
multichannel processor (RX8; TDT). Sounds were pro-
duced at a sampling rate of 100 kHz (RX8; TDT) and
delivered through an amplifier (SA8; TDT) driving a loud-
speaker (Vifa) placed 1 meter from the spout. Before
testing, we calibrated tone stimuli using a sound level
meter with the tip of the microphone placed at the ap-
proximate position of the mouse’s head (Z-weighting;
SoundTrack LxT; Larson Davis).

Mice initiated trials by licking the spout. On warning
trials, after a random waiting period of between 2 and 5 s,
two 240-ms tones separated by a 240-ms silent interval
were played from the speaker. A mild shock was pre-
sented through the spout 40 ms after sound offset, and
mice learned to withdraw from the spout to avoid the
shock. Warning trials were presented with a �25% prob-
ability. During safe trials, no tones were presented, and
the animal continued licking to receive juice. Licking was
monitored for 720 ms before and after the acoustic stim-
ulus in warning trials and during the equivalent time period
for safe trials. For analysis, the relevant time period was
split into 35 20-ms “pre” bins and 35 20-ms “post” bins,
and we counted the number of bins containing licks. All
mice exhibited consistent licking behavior, with licks in at
least 20 pre-stimulus bins and no evidence of suppres-
sion on safe trials (less than a 10% difference between
number of pre- and post-stimulus bins). We considered
the mouse to have responded (i.e., suppressed licking)
whenever the post-stimulus bin count was less than or
equal to the determined criterion. A response on a safe
trial was counted as a false alarm, while a response on a
warning trial was counted as a hit. The subject’s criterion
was calculated such that the false alarm rate was near
16%. Hits and false alarm rates were used to calculate a
d= for each trial type.

In each testing session, we tested mice with tones of
one frequency, at levels in 10-dB intervals using the
method of constant stimuli and presented in a random
order. The range of levels was adjusted to include one
level below threshold. Threshold was defined as the level
yielding a d= of 1.0. Given the enforced false alarm rate of
16%, this d= reflects a hit rate of �50%. Mice were
allowed to perform trials until they reached satiety, usually

45–60 min, then were returned to their home cages. We
measured thresholds for tones of 8, 12, and 16 kHz. Mice
were tested with each frequency until the calculated
threshold differed by �5 dB for at least three sessions.
Final thresholds are reported as the average of the last
3–4 sessions and include at least 20 warning trials at each
sound level.

Spiral ganglion counts
We counted spiral ganglion neurons in the cochleae of our

mice to assess the amount of peripheral damage induced by
the noise exposure. Cochleae were embedded in Araldite,
following methods similar to Hequembourg and Liberman
(2001). Mice were deeply anesthetized with a 0.3–0.5
mg/g dose of sodium pentobarbital (i.p.), transcardially
perfused with 60 ml of a 4% paraformaldehyde fixative
solution, and decapitated. Following transcardial perfu-
sion, we reperfused the cochleae with 4% paraformalde-
hyde through the round and oval windows and postfixed
overnight. Cochleae were then removed from the skull
and decalcified in 1% EDTA in phosphate buffer for sev-
eral days. After a series of progressive dehydrations, co-
chleae were infiltrated with a solution of Araldite 502
(Electron Microscopy Services) and cured in an oven at
60°C. Cochleae were sectioned parallel to the modiolus at
30 �m and stained with 1% toluidine blue (Fisher Scien-
tific).

We estimated the number of spiral ganglion neurons
following stereology procedures described by Schettino
and Lauer (2013). We used the Optical Fractionator Probe
in Stereo Investigator (SI) software (MBF Bioscience). The
region of interest, Rosenthal’s canal, was visualized at
40� magnification and traced. The SI software placed a
sampling grid (40 � 40 �m) at random locations over the
region of interest. At each counting location, an observer
who was blind to the hearing status of the subject
counted the number of spiral ganglion neurons within the
grid, refocusing as needed to visualize all neurons and
measure the total depth of the tissue. The observer con-
tinued through all sections that contained Rosenthal’s
canal, counting neurons in every third section. When
counting was complete, the software estimated the total
number of neurons.

Inner ear immunohistochemistry
To further evaluate the status of the cochlea, we quanti-

fied ribbon synapses on inner hair cells and number of inner
and outer hair cells in cochlear whole-mount preparations.
Cochleae were extracted after transcardial perfusion and
fixed for an additional hour, after which they were decalcified
in 1% EDTA. We then dissected the organ of Corti into 5–6
flat turns following methods described by Eaton Peabody
Laboratories (https://www.masseyeandear.org/research/
otolaryngology/investigators/laboratories/eaton-peabody-
laboratories/epl-histology-resources/cochlear-dissection-
summary). Cochlear pieces were placed in a blocking buffer
of 5% normal goat serum, 10% bovine serum albumin, and
0.5% Triton X-100 (Electron Microscopy Services) for 1 h.
They were then incubated overnight at 4°C in mouse mono-
clonal anti-CTBP2 (1:200, BD Biosciences, cat# 612044,
RRID:AB_399431), rabbit polyclonal anti-myosin 6 (1:500,
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Sigma-Aldrich, cat# M5187, RRID:AB_260563), and chicken
polyclonal anti-neurofilament (1:1000, Millipore, cat#
AB5539, RRID:AB_11212161) in half concentration blocking
buffer. The next day, cochlear pieces were rinsed, incubated
in secondary antibodies in half concentration blocking buffer
for 2 hours at room temperature, rinsed again, mounted in
Fluoromount-G (Southern Biotech) on subbed slides, and
coverslipped. Secondary antibodies were goat anti-mouse
AF488 (1:1000, Thermo Fisher Scientific cat# A-10667,
RRID:AB_2534057), goat anti-rabbit AF568 (1:1000, Thermo
Fisher Scientific, cat# A-11036, RRID:AB_10563566), and
goat anti-chicken AF647 (1:1000, Invitrogen, cat# A21449,
RRID:AB_1500594).

We quantified synaptic ribbons and hair cells at 9 fre-
quency locations along the cochlea, falling at half-octave
intervals between 4 and 64 kHz. Locations were identified
using low-magnification �5� photographs and the Im-
ageJ plugin Measure_line, also developed by the Eaton
Peabody Laboratories. At each frequency location, we
used a confocal microscope (LSM 700 Axio Imager 2; Carl
Zeiss) to collect z-stacks at 63� magnification with a
z-step size of 0.25 �m. Care was taken to ensure the
z-dimension included all synaptic ribbons. Cochlear im-
age processing was done in ImageJ. Synaptic ribbons
were calculated as the total number of CTBP2-labeled
puncta throughout the image stack divided by the number
of inner hair cells in the image. Cells and their ribbons
were included only if the entire cell was visible in the
image frame. We also counted the total number of inner
and outer hair cells that fit within a 100-�m-long window.
The number of hair cells in each noise-exposed cochlea
was compared to the average number of cells in sham-
exposed cochleae to calculate cell survival.

Ventral cochlear nucleus immunohistochemistry
We evaluated labeling of vesicular glutamate trans-

porter 1 (VGLUT1) and glutamic acid decarboxylase 65
(GAD65) in the VCN to identify effects of noise exposure
on excitatory and inhibitory synapses, respectively.
VGLUT1 is present in auditory nerve terminals in the
cochlear nucleus (CN; Gómez-Nieto and Rubio, 2009;
Zeng et al., 2009; Lauer et al., 2013). GAD65 is primarily
localized to presynaptic GABAergic terminals (Feldblum
et al., 1993; Soghomonian and Martin, 1998); most termi-
nals in the VCN that release GABA also release glycine
(Juiz et al., 1996).

Procedures were similar to those described by Lauer
et al. (2013) and McGuire et al. (2015). Mice were deeply
anesthetized, transcardially perfused, and decapitated, as
described above. The skull bone was partially removed,
and the brain was postfixed overnight. The following day,
the brain was dissected from the skull, trimmed, and
embedded in gel albumin. Serial sections were cut at 50
�m in the coronal plane and collected in 0.12 M Tris-
buffered saline (TBS).

We incubated sections in 0.5% Triton X-100 (Electron
Microscopy Services) for 10 min at room temperature on
a shaker. Sections were then blocked in 1% normal goat
serum for 1 h at room temperature, rinsed, and incubated
overnight in mouse monoclonal anti-GAD65 (1:1000; Ab-

cam, cat# ab26113, RRID:AB_448989) or rabbit poly-
clonal anti-VGLUT1 (1:1000; Thermo Fisher Scientific,
cat# 48-2400, RRID:AB_2533843) at 4°C. The following
day, we rinsed the sections, incubated in biotinylated goat
anti-mouse (1:200; Vector Laboratories, cat# BA-9200,
RRID:AB_2336171) or goat anti-rabbit (1:200; Vector Lab-
oratories, cat# BA-1000, RRID:AB_2313606) for 1 h,
rinsed, and then incubated in avidin-biotin complex (ABC
Elite, Vector Labs) for 1 h. We finally stained the sections
with a solution of nickel ammonium sulfate and 3-3=-
diaminobenzidine (Sigma Chemical). For each brain, we
omitted the primary antibody for one section and the
secondary antibody in an additional section to serve as
negative controls. As a positive control, we noted staining
of terminals in the cerebellum as has been previously
described (Rico et al., 2002; Obata et al., 2008).

Ventral cochlear nucleus immunohistochemical
analysis

Sections that included VCN were photographed in
grayscale at 20� on a microscope (Labophot; Nikon) with
mounted CCD camera (Progres; Jenoptik). For sections in
which VCN did not fit entirely into the imaging area, we
took two or three overlapping photographs and merged
them in Photoshop (Adobe Systems) or Fiji (Schindelin
et al., 2012) before analysis. All photographs of VCN from
both hemispheres of a given mouse were then collected
as a single image-stack in FIJI. Using a graphics tablet
and stylus (Cintiq 22HD; Wacom), we manually traced a
region of interest (ROI) around the VCN in each image
following standard criteria (Willard and Ryugo, 1983).
Each case exhibited minor variations in overall illumination
and/or staining intensity across its set of sections. To
correct for this irregularity, a leveling adjustment was
applied to each section such that the mean pixel intensity
within each VCN ROI was equivalent across all sections
from the mouse without causing over- or undersaturation.
Only global (section-wide) adjustments of pixel values
were permitted; local manipulations were never made.

To identify positive immunolabeling, a histogram of
pixel intensity was constructed based on all pixels within
the VCN ROIs across all slices. This histogram served
as the input for automatic image thresholding. We evalu-
ated the output of all available autothreshold algorithms in
Fiji against the results of manual thresholding by a blinded
observer on a limited dataset. We determined that of the
various available algorithms, triangle and RenyiEntropy
most successfully identified stained particles for VGLUT1
and GAD65 labeling, respectively. Furthermore, the algo-
rithms ignored diffuse background labeling such as that
noted in negative control sections. Accordingly, these
algorithms were applied to our entire dataset. Label/opti-
cal density was quantified as the total number of thresh-
olded pixels in a given case divided by the total number of
pixels within the entire VCN ROI. With the exception of
manual segmentation of VCN borders, all steps were fully
automated, thus minimizing the possibility of experi-
menter bias.
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Cochlear nucleus reconstruction
Each CN was reconstructed and manipulated in 3D

following previously described methods (Muniak et al.,
2013b; Connelly et al., 2017). Briefly, serial-section bright-
field photomicrographs through the entire CN were
collected with a 2� objective and semi-automatically
montaged and aligned in TrakEM2 software (Cardona
et al., 2012) with the assistance of custom Python scripts.
Within TrakEM2, the boundary of the CN was segmented
using a graphics tablet (Cintiq 22HD; Wacom) following
standard criteria (Willard and Ryugo, 1983). We then ex-
ported these outlines to Amira software (Thermo Fisher)
and used them to construct 3D surfaces of each CN. In
instances where the entirety of the CN was not included
(e.g., exclusion of posterior-most sections of the DCN),
the 3D surface reconstruction was left unbounded (i.e.,
not “closed”) at the anterior and/or posterior end; doing
so ensured that subsequent alignments in Amira were not
influenced by artificial boundaries. Each experimental 3D
CN surface was iteratively aligned, using affine transfor-
mations in Amira, to a published 3D template of the
mouse CN (Muniak et al., 2013b) until no further improve-
ments to the quality of the fit could be achieved. We
quantified the quality of each fit using the root mean
square (RMS) distance of vertices of the experimental
surface to the template surface. A 3D transformation ma-
trix was subsequently obtained that provides a linear
mapping between an individually reconstructed CN
(within the coordinate-frame of TrakEM2) and the CN
template. Each hemisphere of a mouse was recon-
structed individually, and transformations of the left hemi-
sphere included a reflection over the midline to match the
orientation of the CN model.

Frequency mapping of immunolabeling
Each image section from the 20� image-stack used for

immunolabeling analysis was imported into TrakEM2 and
aligned to its corresponding 2� counterpart using scale-
invariant feature transforms (Saalfeld et al., 2010). The
frequency model of the mouse CN (Muniak et al., 2013b)
uses the same virtual coordinate system as the aforemen-
tioned 3D CN template. Thus, by concatenating the re-
sulting transform of each high-magnification image with
the previously computed 3D affine transformation, we
were able to map every pixel of the image-stack to the CN
frequency model. Accordingly, we could assign frequency
values to all pixels within each VCN ROI of a given subject
and analyze the results in Matlab. We examined fre-
quency-specific labeling in 1/4-octave bins spanning the
frequency range used for audiometric testing (6–32 kHz),
with bin-centers of 5.8, 6.9, 8.2, 9.8, 11.7, 13.9, 16.5, 19.6,
23.3, 27.7, and 33.0 kHz. Label density within each bin
was evaluated independently: we calculated the total
number of immunopositive (i.e., thresholded) pixels—
derived from the prior auto-thresholding analysis—within
a particular 1/4-octave range and divided this by the total
number of VCN pixels allocated to the same frequency
interval.

Experimental design and statistical analyses
We exposed 6-week-old CBA/CaJ mice to broadband

noise or a sham exposure. After noise or sham-exposure,
mice were used in a variety of procedures; the numbers of
mice and their sex and age at the time of procedure are
listed in Table 1. We trained some mice in CLS proce-
dures. We do not include ABR data or histology from
these animals, because, due to the extensive time spent
training and testing them, these other procedures are
performed at much later time points. In the rest of the
animals, we recorded ABRs 1 month post-exposure.
Some of these animals were later tested in ASR, while we
collected and processed brains and/or cochleae from
others. We did not harvest any tissue from mice tested in
ASR due to concern that additional exposure to loud
sounds during the ASR testing might have uncontrolled
effects on anatomy. Half of the brains collected were
labeled for VGLUT1 and half for GAD65; both hemi-
spheres were analyzed in all animals. For most animals,
we counted SGNs in both cochleae; however, we did not
analyze any cochleae that were damaged during dissec-
tion or processing. When two cochleae were available for
a given subject, the counts for the two cochleae were
averaged to obtain a single count per subject. We dis-
sected one cochlea each from an additional subset of
animals and counted ribbon synapses and hair cells.

We fitted linear mixed models (LMM) to all ABR data, as
well as ASR data, CLS data, and frequency-specific im-
munohistochemistry data using the nlme package in R (R
Development Core Team, 2017) . Mixed models were
used because they can account for repeated measures as
well as missing data points. Exposure condition and sub-
ject sex were included in all models. Additional variables
typically included were frequency and stimulus level, but
these variables were excluded when not applicable. In
general, model fits were quite good, with an average
Nagelkerke pseudo-R2 of 0.75 (Lefcheck, 2016; Naka-
gawa et al., 2017). Pseudo-R2 values for the models of
ABR thresholds, amplitudes, and latencies were all at
least 0.72, except p2 amplitudes in response to tones,
which had a value of 0.43. ABR peak ratios of p2:p1 and
p4:p1 had models with pseudo-R2s of 0.50, while that of
peak ratio p3:p1 was 0.38. The models for ASR and CLS
had pseudo-R2s of 0.98 and 0.75, respectively, and those
for VCN and inner ear immunohistochemistry were �0.82.

We fitted separate models for the ABR thresholds and
CLS thresholds, as well as the amplitudes, latencies, and
amplitude ratios of each ABR peak. Each model included
a weighting term to correct the heteroskedasticity that
resulted from differences in variability between the noise-
exposed and sham-exposed animals. Amplitude and fre-
quency variables were log-transformed before inclusion
in the models to achieve normality, and we also used the
poly function to include an orthogonal second-order
polynomial frequency term to reflect the shape of the
audiogram. In the model for ASR, we corrected het-
eroskedasticity with a weighting term based on stimulus
level.

To assess the effect of noise exposure on CLS detec-
tion thresholds relative to ABR thresholds, we fit a linear
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mixed-effects model that included both ABR and CLS
thresholds, but also included a “procedure” factor indi-
cating whether a threshold was determined through CLS
or ABR. For this analysis, we ignored subject sex due to
the smaller number of trained subjects and restricted the
data to measurements at frequencies tested in both pro-
cedures (i.e., 8, 12, and 16 kHz).

For all mixed-model analyses, the model included all
main effects and all possible interaction terms, excluding
the highest-order interaction. Statistics reported reflect an
ANOVA based on the fixed effects in the model, and we
report partial eta squared as an effect size (Cohen, 1973;
Richardson, 2011). We performed post hoc analyses on
the models for thresholds, amplitude ratios, ASR data,
and frequency-specific immunohistochemistry data with
the package lsmeans, using the mvt correction (based on
a multivariate t distribution) for multiple comparisons. We
used the lstrends post hoc function in the lsmeans pack-
age to compare the slopes of the level functions for
amplitudes and latencies between the noise-exposed and
sham-exposed groups, also using the mvt correction. For
post hoc tests, we report Cohen’s d as a measure of
effect size.

We used two-way ANOVAs to test the effects of noise
exposure on spiral ganglion counts and global VCN antibody
labeling. ANOVAs were performed using the ANOVAN func-
tion in Matlab and in all cases included exposure condition
and subject sex as factors. We report partial eta squared
effect sizes. An alpha level of 0.05 was used for all statistical
tests, and residuals from each test followed a normal distri-
bution.

Results
Auditory brainstem response

ABR thresholds were generally higher in noise-exposed
mice than in sham-exposed mice (Fig. 1). Thresholds to
clicks were significantly higher in noise-exposed animals
compared to sham-exposed animals (LMM: F(1,78) � 48.8,
p � 0.001, �p

2 � 0.39), and there was no effect of subject
sex. There was a significant effect of the interaction of
frequency and exposure condition (LMM: F(2365) � 74.0,
p � 0.001, �p

2 � 0.29) on thresholds in response to tones.

Noise-exposed subjects had significantly higher thresh-
olds than sham-exposed subjects in response to all fre-
quencies higher than 6 kHz (all post hoc: t(78) � 7.2, p �
0.001, d � 0.80), but the magnitude of the effect was
greatest at 16 and 24 kHz. There was also a significant
effect of the frequency � sex interaction (LMM: F(2, 365) �
5.1, p � 0.006, �p

2 � 0.03). There was no difference in
thresholds between the sexes at 12 kHz and below, but
females tended to have lower thresholds at frequencies
above 12 kHz.

The peak-to-trough amplitudes of ABR wave 1 (referred
to hereafter as p1) in response to clicks and tones of 8, 16,
and 32 kHz are plotted in Fig. 2A (top). Trends for 6, 12,
and 24 kHz were similar to those evident in the responses
to 8, 16, and 32 kHz, respectively. Amplitudes of p1 in
response to clicks and tones of all frequencies increased
as a function of intensity (Fig. 2A) for both noise-exposed
and sham-exposed mice. However, in response to clicks
and tones with frequencies above 8 kHz, the amplitudes
of p1 were considerably smaller in noise-exposed mice
compared to sham-exposed mice (Fig. 2A). This point is
illustrated by comparing the grand average ABR traces in
Fig. 2C. The slopes of the level functions were also dif-
ferent. That is, the difference in amplitude between noise-
exposed and sham-exposed animals increased as a
function of level. This is reflected for the responses to
clicks in a significant exposure � level interaction (LLM:
F(1390) � 6.9, p � 0.009, �p

2 � 0.02). For responses to
tones, the difference in slopes varied across frequency, as
indicated by a significant exposure � frequency � level
interaction (LLM: F(2,2368) � 44.8, p � 0.001, �p

2 � 0.04).
The slopes were significantly different between noise-
exposed and sham-exposed animals for tones of all fre-
quencies (all post hoc: t(2368) � 11.8, p � 0.001, d � 1.3)
and clicks (post hoc: t(390) � 16.0, p � 0.001, d � 1.77).
However, while the slopes were steeper for sham-
exposed animals in response to clicks and frequencies
from 12 to 32 kHz, they were steeper for noise-exposed
animals at 6 and 8 kHz. There was also an effect of sex for
some of the level functions for responses to tones, as
reflected in a significant sex � frequency � level interac-
tion (LLM: F(2,2368) � 6.7, p � 0.001, �p

2 � 0.01) and a
significant sex � exposure � level interaction (LLM:
F(2,2368) � 4.6, p � 0.033, �p

2 � 0.01). Males had faster
slopes than females at 6 and 8 kHz, but females had
faster slopes at 12 and 16 kHz; this effect was larger in
control mice than exposed mice.

ABR latencies of p1 typically decreased as a function of
intensity (Fig. 2B), consistent with previous studies in a
variety of species (Overbeck and Church, 1992; Zhou
et al., 2006; Dehmel et al., 2012a). There was some vari-
ation in the slopes of the level functions between noise-
exposed and sham-exposed mice and across frequency,
reflected in a significant exposure � level interaction for
responses to clicks (LMM: F(1390) � 38.6, p � 0.001, �p

2 �
0.09) and a significant exposure � frequency � level
interaction for responses to tones (LMM: F(2,2368) � 36.1,
p � 0.001, �p

2 � 0.03). A post hoc test on the slopes
indicated differences in noise-exposed and sham-
exposed animals for tones at 6, 12, 16, and 32 kHz (all
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Figure 1. ABR thresholds. Average thresholds for responses to
clicks and tones of frequencies ranging from 6 to 32 kHz.
Threshold was met when the peak-to-peak amplitude of the
response was equal to two standards deviations above the
average baseline noise amplitude. Error bars represent SEM.
Asterisks indicate significant differences between noise-
exposed and sham-exposed subjects.
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post hoc: 4.0 � t(2368) � 6.6, p �0.001, 0.44 � d � 0.73);
however, the direction of the differences varied across
frequency, and the sizes of the effects were much smaller
compared to the effects on amplitudes (compare max
latency d � 0.73 to min amplitude d � 1.30), suggesting
that this interaction may not be functionally important.
There was also a significant effect of the sex � frequency �
level interaction on latencies of responses to tones (LMM:
F(2,2368) � 10.7, p � 0.001, �p

2 � 0.01), but no effects of
sex on responses to clicks. The slopes of the level func-
tions were steeper for females than males at 6 and 8 kHz,
but did not differ at higher frequencies.

Amplitudes of the later ABR peaks (peaks 2–4) in-
creased as a function of increasing level and were gener-
ally reduced in noise-exposed animals compared to
sham-exposed animals (Fig. 3A). There was a significant
effect of the exposure � level interaction on amplitudes of
responses to clicks for p2 (LMM: F(1390) � 3.9, p � 0.050,
�p

2 � 0.01) and p3 (LMM: F(1390) � 6.9, p � 0.009, �p
2 �

0.02), but not p4. However, the main effects of exposure
(LMM: F(1,78) � 29.4, p � 0.001, �p

2 � 0.27) and level
(LMM: F(1390) � 430.0, p � 0.001, �p

2 � 0.52) on p4 were
both significant. For responses to tones, there were sig-
nificant effects of the exposure � frequency � level
interactions on the amplitudes of p2 (LMM: F(2,2368) � 7.4,
p � 0.001, �p

2 � 0.01) and p4 (LMM: F(2,2309) � 19.7, p �
0.001, �p

2 � 0.02). None of the three-way interactions had
significant effects on p3. However, there were significant
effects of the exposure � level (LMM: F(2,2368) � 4.7, p �
0.031, �p

2 � 0.01), exposure � frequency (LMM: F(2,2368) �
5.7, p � 0.003, �p

2 � 0.01), and level � frequency (LMM:
F(2,2368) � 28.711, p � 0.001, �p

2 � 0.02) interactions. The
slopes of the level functions for p2, p3, and p4 were

significantly steeper in sham-exposed animals for clicks
and frequencies above 8 kHz (all post hoc: t(2368) � 4.8,
p � 0.001, d � 0.53) except for p2 at 32 kHz. Slopes for
level functions were significantly steeper in noise-
exposed animals at 6 kHz for p2 (post hoc: t(2368) � –5.7,
p � 0.001, d � –0.63) and at 6 and 8 kHz for p4 (post hoc:
6 kHz: t(2368) � –8.9, p � 0.001, d � –0.99; 8 kHz:
t(2368) � –3.5, p � 0.002, d � –0.39).

Both p2 and p4 of tones were also influenced by a
significant effect of the sex � frequency � level interac-
tion (LMM: p2: F(2,2368) � 6.1, p � 0.002, �p

2 � 0.01; p4:
F(2,2368) � 3.1, p � 0.047, �p

2 � 0.01). There were also
significant effects of the sex � frequency � exposure inter-
action (LMM: F(2,2368) � 4.0, p � 0.019, �p

2 � 0.01) and the
sex � level � exposure interaction (LMM: F(2,2368) � 4.2,
p � 0.042, �p

2 � 0.01) on amplitudes of p2 for responses
to tones and of the sex � level interaction (F(1390) � 6.1,
p � 0.014, �p

2 � 0.02) on p4 of responses to clicks. For
p2, the slopes for males were not dependent on fre-
quency, but slopes for females decreased as a function of
frequency, such that females had steeper slopes than
males at low frequencies but shallower slopes at higher
frequencies. Slopes for p4 generally decreased in both
sexes as a function of frequency, but females had con-
sistently steeper slopes than males across frequency.

Similar trends in latency were observed for the latencies
of late peaks as for p1 (c.f. Figs. 2B and 3B). For all three
later peaks of responses to clicks, the interaction between
exposure and level was significant (LMM: p2: F(1390) �
28.0, p � 0.001, �p

2 � 0.07; p3: F(1390) � 34.7, p � 0.001,
�p

2 � 0.08; p4: F(1390) � 61.2, p � 0.001, �p
2 � 0.14). The

interactions between exposure condition, frequency, and
level had significant effects on all three of the later peaks
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Figure 2. Measurements of ABR peak 1. A, Amplitudes. B, Latencies of peak 1 in response to clicks and tones of 8, 16, and 32 kHz.
Legend in A also applies to B. Axis in B also applies to A. Solid lines indicate predictions of means made by linear mixed models fit
to the data. C, Waveforms averaged across all subjects for each exposure condition. Solid lines represent means, and lighter shading
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Confirmation 8 of 19

July/August 2018, 5(4) e0250-18.2018 eNeuro.org



of responses to tones (LMM: p2: F(2,2368) � 16.8, p �
0.001, �p

2 � 0.01; p3: F(2,2368) � 13.0, p � 0.001, �p
2 �

0.01; p4: F(2,2368) � 13.1, p � 0.001, �p
2 � 0.01). However,

again post hoc tests revealed the effects of the exposure
� level interactions to be quite small and variable across
frequency (all post hoc: 2.9 � t(2368) � 7.6, p � 0.017,
0.44 � d � 0.73). The sex � level � frequency interaction
was also significant for p3 of responses to tones (LMM:
F(2,2368) � 5.6, p � 0.004, �p

2 � 0.01), reflecting a similar
trend as that observed for p1 wherein females had
steeper slopes than males only at 6 and 8 kHz.

Hyperactivity assessed via ABR
To evaluate whether the central auditory system exhib-

ited hyperactivity relative to peripheral activity in noise-
exposed mice, we calculated the ratio of the amplitudes
of peaks 2–4 relative to peak 1 for all responses. The
results for stimuli at 60, 70, and 80 dB SPL are plotted in
Fig. 4. For responses to clicks, there were significant
effects of the exposure � level interaction on p2:p1 (Fig

4A; LMM: F(1268) � 24.9, p � 0.001, �p
2 � 0.09), p3:p1 (Fig

4B; LMM: F(1268) � 11.4, p � 0.001, �p
2 � 0.04), and p4:p1

(Fig 4C; LMM: F(1268) � 19.5, p � 0.001, �p
2 � 0.07)

amplitude ratios. No effects that included sex as a vari-
able were significant. We performed post hoc contrasts at
the stimulus levels 60, 70, and 80 dB SPL. These tests
revealed that noise-exposed animals had significantly
larger p2:p1 and p4:p1 amplitude ratios than sham-
exposed animals, and that the size of the effect was
inversely correlated with stimulus level (Table 2).

In responses to tones, there was a general trend for
ratios of p2:p1 and p4:p1 to be larger in noise-exposed
animals at frequencies of �12 kHz and higher, but equal
or larger in sham-exposed animals at frequencies below
12 kHz, indicating hyperactivity in the bushy cell–driven
pathways in the region of hearing loss. Ratios also dif-
fered as a function of level, resulting in significant expo-
sure � frequency � level interactions for each peak ratio
(LMM: p2:p1: F(2,1991) � 8.2, p � 0.001, �p

2 � 0.01; p3:p1:
F(2,1991) � 19.6, p � 0.001, �p

2 � 0.02; p4:p1: F(2,1991) �
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17.4, p � 0.001, �p
2 � 0.01). Post hoc tests revealed that

noise-exposed animals typically had significantly larger
p2:p1 ratios at frequencies of 12 kHz and higher (all post
hoc: t(78) � 2.8, p � 0.050, d � 0.31). While effect sizes
decreased as a function of stimulus level at 12 and 16 kHz
(d � 0.6–0.39 at 12 kHz and 0.72–0.69 at 16 kHz), they
increased as a function of level at 24 and 32 kHz (d �
0.60–1.15 at 24 kHz and 0.31–0.98 at 32 kHz). In general,
there were no differences between amplitude ratios of
noise and sham-exposed mice at 6 or 8 kHz, with the
exception of 8 kHz at 60 dB SPL, where noise-exposed
mice had larger ratios (post hoc: t(78) � 3.6, p � 0.006,
d � 0.39).

Most p3:p1 ratios did not differ significantly between
noise- and sham-exposed animals. Exceptions occurred
almost exclusively at the highest stimulus level examined,
80 dB SPL, and showed frequency dependencies similar
to those noted earlier. At 80 dB SPL, noise-exposed mice
had larger ratios than sham-exposed mice at 24 kHz (post
hoc: t(78) �3.7, p � 0.003, d � 0.41) and 32 kHz (post
hoc: t(78) �3.7, p � 0.004, d � 0.40), but smaller ratios at
6 kHz (post hoc: t(78) � 5.3, p � 0.001, d � 0.58) and 8
kHz (post hoc: t(78) � 3.9, p � 0.002, d � 0.44). Noise-
exposed mice also had smaller ratios at 6 kHz at 70 dB
(post hoc: t(78) � 3.2, p � 0.016, d � 0.35).

p4:p1 ratios were larger in noise-exposed animals com-
pared to sham-exposed animals at 12 kHz and higher for all
levels examined (all post hoc: t(78) � 3.3, p � 0.012, d �
0.37), with the exception of 32 kHz at 60 dB SPL where there
was no significant difference. Ratios of p4:p1 were also
significantly larger in noise-exposed mice than sham-
exposed at 8 kHz at 60 dB SPL (post hoc: t(78) � 4.5, p �
0.001, d � 0.50), but smaller at 6 kHz at 80 dB SPL (post
hoc: t(78) � 4.7, p � 0.001, d � 0.51). Similar to p2:p1 ratios,
effect sizes of p4:p1 ratios decreased as a function of level
at 12 kHz (d � 0.77–0.37) and 16 kHz (d � 0.83–0.67), but
increased as a function of level at 24 kHz (d � 0.58–0.95)
and 32 kHz (d � 0.21–0.73). There were also significant
effects of the frequency � level � sex interactions on p2:p1
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Table 2. Post hoc tests comparing click amplitude ratios for
noise and sham-exposed mice

Ratio Level df t p d
p2:p1 60 178 –5.7 �0.001 –0.63

70 1.78 –3.1 0.006 –0.34
80 1.78 –0.1 0.986 –0.02

p3:p1 60 1.78 2.3 0.041 0.25
70 1.78 1.3 0.269 0.15
80 1.78 0.3 0.904 0.03

p4:p1 60 1.78 –9.9 �0.001 –1.10
70 1.78 –7.7 �0.001 –0.85
80 1.78 –3.5 0.002 –0.39
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ratios (LMM: F(2,1991) � 17.1, p � 0.001, �p
2 � 0.02), p3:p1

ratios (LMM: F(2,1991) � 7.2, p � 0.001, �p
2 � 0.01), and p4:p1

ratios (LMM: F(2,1991) � 15.0, p � 0.001, �p
2 � 0.02). For most

levels and frequencies, females had larger wave ratios than
males, but the differences were small and any observed
dependence on level was inconsistent across frequency.

Acoustic startle reflex
In all animals, a growth in mean ASR amplitude was

observed with increasing startle stimulus level (Fig. 5).
Mean ASR amplitude was greater for the noise-exposed
group compared to the sham-exposed group across all

but the lowest stimulus level of 70 dB SPL, which does
not typically elicit a startle response. A mixed model
revealed a significant effect of the exposure condition �
level interaction (LMM: F(1, 81) � 14.0, p � 0.001, �p

2 �
0.15). Subsequent post hoc tests indicated that the effect
of noise exposure was significant at all levels except 70
dB SPL (all post hoc: t(18) � 3.3, p � 0.011, d � 0.72).
Males had larger ASR amplitudes than females at levels
above 70 dB SPL, but the size of the effect increased as
a function of level, as indicated by a significant sex � level
interaction (LMM: F(1,81) � 9.6, p � 0.003, �p

2 � 0.11).

Conditioned lick suppression
We measured behavioral detection thresholds to deter-

mine if auditory function was maintained in mice that had
been noise-exposed. All animals showed lick suppression
rates of at least 80% above �70 dB (Fig. 6A). All animals
also showed linear reaction times as a function of stimulus
level, with noise-exposed mice typically having longer
reaction times (Fig. 6B). Noise-exposed animals had
higher CLS thresholds than sham-exposed mice, ranging
from �4.5 dB higher at 8 kHz to �20 dB higher at 16 kHz
(Fig. 6C). There was a significant interaction between
frequency and exposure condition (LMM: F(2,32) � 6.6, p �
0.004, �p

2 � 0.29), with post hoc tests revealing a signif-
icant difference between noise-exposed and sham-
exposed mice only at 16 kHz (post hoc: t(12) � 2.7, p �
0.001, d � 1.42).
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Figure 5. Acoustic startle reflex. Average relative startle re-
sponses to broadband noise bursts ranging from 70 to 105 dB
SPL. Error bars represent SEM. Asterisks indicate significant
differences between groups.
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Figure 6. Behavioral detection thresholds. A, Lick suppression rates for noise-exposed and sham-exposed mice for detection of 16
kHz tone. B, Response times for the data in A. C, CLS thresholds for noise-exposed and sham-exposed mice. Error bars indicate
SEM. Asterisks indicate significant differences between groups. D, Difference between thresholds of noise-exposed and sham-
exposed mice as determined from CLS or ABR. Error bars indicate SEM. Asterisks indicate significant differences between the
threshold differences for CLS and ABR.
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Importantly, the differences in CLS thresholds were much
smaller than the differences in ABR thresholds between
noise-exposed and sham-exposed animals, which ranged
from �8 to �30 dB (Fig. 6D). A mixed model that included
both ABR and CLS thresholds revealed a significant influ-
ence of the exposure � procedure interaction (LMM:
F(1,92) � 8.1, p � 0.012, �p

2 � 0.07), indicating that the effect
of noise exposure observed through ABRs was significantly
different from the effect observed through CLS. Post hoc
tests revealed that this was true across all three frequencies
(all post hoc: t(92) � 2.8, p � 0.006, d � 0.29).

Spiral ganglion neuron counts
Stereological quantification of spiral ganglion neurons in-

dicated that noise-exposed mice experienced a �14% loss
of SGNs (mean � SD sham � 7311 � 595 cells; noise �
6262 � 717 cells; ANOVA: F(1,15) � 10.6, p � 0.005, �p

2 �
0.42). There was no significant effect of subject sex. Loss of
SGNs would result in a decrease in the input to the central
auditory system, consistent with the smaller size observed in
ABR peak 1 amplitudes of noise-exposed mice.

Inner ear immunohistochemistry
Example images of cochleae labeled for CTBP2 from

sham-exposed and noise-exposed mice are shown in Fig.
7A. Noise-exposed mice had about half as many ribbon
synapses as sham-exposed mice at frequencies between
11 and 45 kHz (Fig. 7B). In a linear mixed model, the
interaction between frequency and exposure condition
was significant (LMM: F(2,56) � 3.9, p � 0.03, �p

2 � 0.12).
The exposure condition had a significant influence on
synapse counts at all frequencies except 4 kHz (all post
hoc: t(6) � 3.4, p � 0.046, d � 1.21). Inner hair cells were
well-preserved in noise-exposed mice, with a decrease of
�20% at 32 and 64 kHz. There was a �30% loss of outer
hair cells in noise-exposed mice at 45 kHz, with a drastic
loss of �95% at 64 kHz.

Ventral cochlear nucleus immunohistochemistry
Examples of VGLUT1 and GAD65 labeling are shown in

Fig. 8. Fig. 9A,B illustrates an example of the results of
autothresholding in a section labeled for GAD65. Across

the entire VCN, there was slightly less VGLUT1 labeling in
noise-exposed animals compared to sham-exposed ani-
mals (Fig. 8A). However, this effect was not statistically
significant. Noise-exposed mice did have significantly
less GAD65 labeling than sham-exposed mice (Fig. 8B;
ANOVA: F(1,9) � 7.4, p � 0.024, �p

2 � 0.45). Subject sex
had no effect on either type of labeling.

Frequency distribution of immunolabeling in VCN
To determine if the global changes in VGLUT1 and

GAD65 labeling were frequency specific, we recon-
structed each nucleus in 3D, fitted the reconstructions to
a template of the entire CN (Muniak et al., 2013b), and
mapped the frequency information from the template to
the reconstruction (Fig. 9C–F). The fit quality of the tem-
plate alignments was similar to that reported previously
for mice of the same strain (mean RMS error � SD 38.6 �
4.8 �m; Connelly et al., 2017).

The difference between VGLUT1 labeling in noise and
sham-exposed mice increased as a function of frequency
(Fig. 10A), reflected in a significant interaction between
exposure status and frequency (LMM: F(2114) � 28.3, p �
0.001, �p

2 � 0.33). Post hoc tests revealed significant
differences at two of the highest frequencies examined
(post hoc: 23.3 kHz: t(8) � 2.7, p � 0.048, d � 0.77; 27.7
kHz: t(8) � 2.7, p � 0.046, d � 0.78). While not quite
reaching significance after correction for multiple compar-
isons, differences at the two closest frequencies were of a
similar magnitude (post hoc: 19.6 kHz: t(8) � 2.5, p �
0.058, d � 0.73; 33 kHz: t(8) � 2.6, p � 0.054, d � 0.75).
There was a significant effect of the interaction between
sex and frequency (LMM: F(2114) � 10.7, p � 0.001, �p

2 �
0.16), although the size of this effect was about half that of
the exposure status � frequency effect. Females had
more labeling at lower frequencies than males, and while
labeling decreased in both sexes as a function of fre-
quency, the amount decreased more in females such that
they had less labeling than males at the highest frequen-
cies examined. The interaction between exposure status
and sex was not significant.

There was no obvious frequency dependence in the
differences in GAD65 labeling between noise and sham-
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Figure 7. Inner ear immunolabeling. A, Example maximum intensity images of cochleae from a sham-exposed (top) and noise-
exposed (bottom) mouse at 32 kHz. Cochleae were immunolabeled for CTBP2 (green), myosin 6 (red), and neurofilament (blue). Scale
bar equals 10 �m. B, Average counts of ribbon synapses per inner hair cell as a function of frequency. Error bars indicate SEM.
Asterisks indicate significant differences between groups. C, Average percentages of hair cells remaining in noise-exposed cochleae
relative to the averages for sham-exposed cochleae. Error bars indicate SEM.
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exposed mice (Fig. 10B). Accordingly, the interaction be-
tween exposure status and frequency was not significant,
and post hoc tests indicated noise-exposed mice had
significantly less labeling than sham-exposed mice at all
frequencies examined (all: t(8) � 3.2, p � 0.019, d � 0.93).
There was also a significant effect of the sex � frequency
interaction (LMM: F(2114) � 3.6, p � 0.030, �p

2 � 0.06). As
with VGLUT, GAD65 labeling in both sexes decreased as
a function of frequency, but the pattern of the sex differ-
ence was reversed. Males had more labeling at the lowest
frequencies but less labeling at higher frequencies.

Discussion
Our experiments demonstrate evidence of hyperactivity

in the VCN of mice exposed to damaging noise, which
appears to result from a widespread loss of inhibition.

While noise-exposed mice had damaged cochleae and
elevated ABR thresholds, they showed enhanced reactiv-
ity to loud sounds and only slightly elevated behavioral
tone detection thresholds. The discrepancy between be-
havioral and physiologic measures and the imbalance in
immunolabeling of excitatory and inhibitory synaptic pro-
teins in the VCN indicate that increased gain in the audi-
tory brainstem can compensate for decreased afferent
input to restore or maintain some auditory function.

Neural substrates of hyperactivity
Noise-exposed mice had elevated ABR wave amplitude

ratios compared to sham-exposed mice. Since the late
peaks of the ABR are generated by bushy cell–driven
pathways (Melcher and Kiang, 1996), elevated wave ratios
indicate that these pathways are more responsive than
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Figure 8. Overall label density in the VCN. A, Quantification of VGLUT1 labeling, calculated as the total number of thresholded pixels
divided by the total number of pixels within the entire VCN. Example sections in right panel from a sham-exposed and a
noise-exposed individual. Scale bars equal 10 �m. The overall amount of VGLUT1 expression decreased by �25% in noise-exposed
mice relative to sham-exposed mice, but this reduction was not statistically significant. B, Quantification and examples of GAD65
labeling in sham-exposed and noise-exposed individuals. Noise-exposed animals exhibited a significant reduction of labeling
(indicated by asterisk) of �50% relative to sham-exposed mice.
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would be predicted given the decreased peripheral input.
We observed hyperactivity mostly at frequencies �8 kHz,
corresponding to the frequencies where ABR threshold
shifts were largest. While this finding is consistent with the
general notion that hyperactivity occurs in the central
auditory system after sound exposure, most previous
studies have limited their reports to later stages of the
ascending auditory pathway and the DCN. However, the
VCN, where bushy cells are located, is part of several
parallel auditory pathways and is involved in basic sound
detection and responsivity (Lauer et al., 2017a), so it is
perhaps not surprising that hyperactivity is present al-
ready in these pathways. Our finding is consistent with
two studies demonstrating enhanced spontaneous and
driven activity in VCN following noise exposure (Boettcher
and Salvi, 1993; Vogler et al., 2011).

Our anatomic results suggest that hyperactivity in VCN
results from an overall loss of inhibition, rather than from
large changes in excitation. Noise-exposed mice had sig-
nificantly less GAD65 labeling than sham-exposed mice
across all frequencies, but less VGLUT1 labeling only

between �20 and 30 kHz. The magnitude of the GAD65
decrease coupled with the relative stability of VGLUT1
labeling represents an imbalance between inhibition and
excitation in the brainstem that likely accounts for the
observed hyperactivity. There was not a strong effect of
frequency on any of our results, which is likely due to the
broadband character of the exposure. Other authors ex-
posing with different types of noise have found different
patterns of hearing loss (Chen et al., 2016).

Our VGLUT1 labeling is consistent with that of Kurioka
et al. (2016), who showed that VGLUT1 puncta density
decreased in the VCN of noise-exposed mice. Further-
more, studies in a variety of animal models have shown a
loss of VGLUT1 in VCN after treatment with ouabain or
kanamycin, conductive hearing loss, and mechanical hair
cell ablation (Zeng et al., 2009; Fyk-Kolodziej et al., 2011;
Yuan et al., 2014; Clarkson et al., 2016). The results of our
GAD65 labeling contrasts with that of Zheng et al. (2015),
who found no difference in GAD labeling in the VCN of
noise-exposed and control rats. However, the rats in the
Zheng et al. study did not develop permanent ABR

Figure 9. Frequency mapping of immunolabeling. A, An example coronal section of the VCN stained for GAD65. B, The same section
in A following auto-thresholding. Positively-labeled particles are black. The border of the VCN ROI for this section is also shown in
black. C, The same section in A after its corresponding 3D-reconstructed CN was mapped to the frequency model (Muniak et al.,
2013b). Colors indicate assigned frequency values. Contour lines indicate edges of 1/4-octave bins used in subsequent analyses. D,
Merging of auto-thresholding data (B) with frequency mapping (C) produces frequency specific GAD65 labeling in the CN. Orientation
axes apply to A–D. E, 3D reconstruction of frequency-specific GAD65 labeling for a single case. All coronal slices are shown at their
corresponding locations within the reconstructed CN. Black arrowhead indicates position of section shown in panels A–D. The color
gradient is a reflection of the tonotopic organization of the VCN. F, Same as in E, but shown from a lateral viewpoint.
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threshold shifts, probably because of differences in expo-
sure protocol and species-specific susceptibility to noise
exposure. Furthermore, Zheng et al. (2015) evaluated
GAD expression with an antibody against both GAD65
and GAD67, while the current study targeted only GAD65.
The two isoforms tend to localize differently in cells
(Soghomonian and Martin, 1998), so it is not surprising
that they might be differentially reorganized following
sound exposure. It is worth noting that GAD65 in the VCN
is likely localized mostly to terminals that co-release gly-
cine and GABA. While glycine is typically considered the
primary inhibitory neurotransmitter in the VCN (Wu and
Oertel, 1986), GABA predominantly acts to modulate tim-
ing (Palombi and Caspary, 1992; Gai and Carney, 2008;
Chanda and Xu-Friedman, 2010) and primary inhibition
(Lim et al., 2004; Lu et al., 2008; Nerlich et al., 2014). Other
forms of peripheral damage are also associated with de-
creases in inhibitory protein immunolabeling and concen-
trations of inhibitory amino acid in the VCN (Syka, 2002;
Asako et al., 2005; Godfrey et al., 2005, 2008; Lu et al.,
2008; Gold and Bajo, 2014).

Central hyperactivity as compensation
Despite large increases in ABR thresholds, noise-

exposed mice did not suffer large behavioral deficits. In
fact, noise-exposed mice showed increased reactivity to
acoustic startle-inducing stimuli, similar to previous re-
ports (Chen et al., 2013; Salloum et al., 2014). Salloum
et al. (2014) showed that increased in ASR reactivity was
dependent on a moderate elevation in ABR thresholds,
which explains why some other experiments did not iden-
tify large differences in the ASR after sound exposure (e.g.
Sun et al., 2012; Hickox and Liberman, 2014).

The elevation in ASR amplitudes suggests that sound-
exposed subjects are sensitized to loud sounds. Sound-
exposed rats show evidence of increased stress or
anxiety (Pace and Zhang, 2013; Lauer et al., 2017b), and
emotional states can potentiate the ASR (Davis et al.,
1993; Lauer et al., 2017a). Although we did not test for
stress, it is possible that the noise-exposed mice in our
study experienced negative emotional states a result of
the exposure. The exaggerated ASR could additionally be
related to the emergence of tinnitus or hyperacusis in our
noise-exposed subjects (see Impairments related to cen-

tral hyperactivity, below). However, we did not try to
determine if any of our animals had either tinnitus or
hyperacusis. Regardless of additional factors, the startle-
eliciting stimulus was sufficient to elicit robust ASRs in
noise-exposed mice, providing further support that cen-
tral gain was able to compensate for reduced peripheral
input.

Though ASR measures are informative about reactivity to
sounds, they do not necessarily reflect conscious percep-
tion, since the animal is not required to attend to the stimuli
(Lauer et al., 2017a). In a trained behavioral task, our noise-
exposed mice had nearly normal detection thresholds, indi-
cating that perception was not as severely impaired as the
ABR thresholds and SGN loss might suggest. These results
are consistent with data from aging gerbils, noise-exposed
rats, noise-exposed chinchillas, and ouabain-treated mice,
in which electrophysiological measures of threshold did not
reliably estimate behavioral thresholds after acquired hear-
ing loss (Salvi et al., 1979; Hamann et al., 2002; Heffner et al.,
2008; Chambers et al., 2016).

One could argue that ABR thresholds are higher than
behavioral thresholds in mice with peripheral trauma be-
cause the ABR is a measure of synchronous neural activ-
ity and may require coordination of larger numbers of
neurons than perception does. However, Ngan and May
(2001) showed that ABR thresholds correlate with the
thresholds of the single most sensitive auditory nerve
fibers in subjects with noise-induced hearing loss, sug-
gesting that the ABR thresholds are not artificially inflated
but instead accurately reflect the physiologic status of the
auditory nerve after hearing loss.

We suggest that noise-exposed mice preserve or re-
gain some auditory function through compensation in the
central auditory system. Several studies have demon-
strated increased central gain in response to peripheral
damage (Salvi et al., 2003; Gold and Bajo, 2014; Cham-
bers et al., 2016; Clarkson et al., 2016; Möhrle et al., 2016;
Zhao et al., 2016), although the underlying mechanisms
remain uncertain (Auerbach et al., 2014). This increase in
gain is thought to partially compensate for the reduced
sensory input. Typically, the compensation is thought to
begin in the DCN, inferior colliculus, or auditory cortex. In
the present study, we observed hyperactivity in bushy

Figure 10. Frequency-specific analysis of immunolabeling. A, Mean density of VGLUT1 expression in the VCN of sham and
noise-exposed mice in 1/4-octave bins. B, Mean density of GAD65 expression in the VCN of sham and noise-exposed mice in
1/4-octave bins. Asterisks indicate significant differences following post hoc testing.
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cell-driven pathways, suggesting that compensation is
already present at the level of the brainstem, at least
under the conditions tested here. Mice unilaterally treated
with ouabain (Chambers et al., 2016) provide an interest-
ing counterpoint, because when tested only with the
treated ear, they show normal behavioral detection
thresholds, virtually no ASR, and very little ABR. The mice
exhibit hyperactivity at the level of the auditory cortex,
with some elevation in the inferior colliculus. Ouabain
eliminates nearly all type I SGNs and their central pro-
cesses (Lang et al., 2005), but other forms of peripheral
damage usually spare most SGNs and their central pro-
cesses (Zilberstein et al., 2012; McGuire et al., 2015). This
difference in SGN survival likely accounts for the lack of
startle response in the ouabain-treated animals and may
explain why compensation is strongest at the level of the
cortex. Nevertheless, our experiments demonstrate that
gain compensation is possible at the first level of the
central auditory pathway.

Impairments related to central hyperactivity
Central hyperactivity may be able to compensate for

the loss of afferent input from the ear, and thus may
represent a potential target for novel treatments. How-
ever, it has also been associated with various forms of
hearing dysfunction. Increased central ABR wave ampli-
tudes relative to wave 1 have been implicated in tinnitus
and reduced sound tolerance in some human studies
(Attias et al., 2005; Gu et al., 2010; Schaette and McAlp-
ine, 2011), although not in others (Møller et al., 1992;
Gilles et al., 2016). In animal studies, central hyperactivity
has been associated with tinnitus, reduced sound toler-
ance, and loudness recruitment (Attias et al., 2005; Cai
et al., 2009; Middleton et al., 2011; Heeringa and van Dijk,
2014; Kalappa et al., 2014). Tinnitus and reduced sound
tolerance are associated with impaired speech compre-
hension in noise (Vielsmeier et al., 2016) and can cause
difficulty using amplification devices (Lindley et al., 2001;
Formby et al., 2008). Hyperactivity in central auditory
pathways could affect other aspects of perception such
as spectral contrast perception and temporal processing
(Møller, 1972; Blackburn and Sachs, 1990; Young et al.,
1992; Doucet et al., 1999; McGinley and Oertel, 2006;
Chen et al., 2016). Central hyperactivity may also result in
abnormal activation of the olivocochlear pathways (Knud-
son et al., 2014; Dragicevic et al., 2015), which could
further reduce the afferent input to the brain and affect
hearing in noise and selective attention (Delano et al.,
2007; Sturm and Weisz, 2015). Thus, while detection of
sounds may be restored by central hyperactivity, more
complex aspects of hearing may be adversely affected.
While we did not test our subjects for tinnitus or sound
tolerance, some subset of our subjects may have experi-
enced one or more of these additional pathologies. Iden-
tification of these subgroups in future studies (following,
e.g., Gu et al., 2010; Hickox and Liberman, 2014) may
reduce variability in results and inform our understanding
of these pathologies. When developing therapies and
optimizing prosthetic devices, it is important to consider

how the central auditory system may compensate for
peripheral changes.
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