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Antimicrobial resistance (AMR) is a global concern threatening public health. 

Developing novel antibiotics is one of the effective strategies to tackle AMR. 

Serine/threonine kinases (STKs) have been recently shown to play critical roles 

in the physiology and pathogenesis of several important bacterial pathogens 

which are regarded as a promising antimicrobial drug target. We previously 

reported the roles of STK in the regulation of bacterial cell division, metabolism, 

and pathogenesis in Streptococcus suis, an important zoonotic bacterial 

pathogen. In this study, we firstly identified the Thr167 and Ser175 residues in 

the activation loop of S. suis STK (ssSTK) as the kinase autophosphorylation 

sites. Phenotyping results demonstrated that the autophosphorylation 

deficient strain resembled the stk deletion strain showing essentiality for 

bacterial growth in minimal medium, abnormal morphology, and decreased 

virulence when compared with the wild-type S. suis SC19 strain. Based on these 

findings, we established an ssSTK inhibitor screening approach by measuring 

the growth of S. suis in a minimal medium and testing the autophosphorylation 

inhibition by measuring the consumption of ATP in an enzymatic reaction by 

ssSTK. A series of inhibitors against ssSTK are identified from a commercial 

kinase inhibitors library, including Staurosporine, K252a, AT9283, and APY29. 

These inhibitors showed antimicrobial activity in vitro. Moreover, by using 

Galleria mellonella larvae infection assay, compound APY29 displayed in vivo 

efficacy against S. suis infection. Additionally, it was predicted by molecular 

docking that these inhibitors could interact with ssSTK. Collectively, our data 

illustrated the essential roles of ssSTK autophosphorylation in the physiology 

and pathogenicity of S. suis and consider these inhibitors as promising 

antimicrobial lead compounds.
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Introduction

Antimicrobial resistance (AMR) has become a serious 
problem that poses a huge threat to public health and animal 
husbandry worldwide (Samreen et al., 2021). It is listed as one of 
the top  10 threats to global health by the World Health 
Organization (WHO) in 2019, which causes at least 700,000 
deaths every year (Mancuso et al., 2021). Great efforts have been 
made to tackle AMR. These include the implementation of 
administrative policies to promote the rational use of antibiotics 
(Gyssens, 2011; Xiao et  al., 2013), development of antibiotics 
alternatives such as vaccines, probiotics, antimicrobial peptides, 
and phage therapy to reduce the use of antibiotics (Allen et al., 
2014; Hoelzer et al., 2018; Browne et al., 2020). On the other hand, 
in the past 30 years, few novel classes of antibiotics have been 
developed, which is also one of the reasons leading to the 
accumulation of AMR (Lewis, 2020). Therefore, another 
important aspect to combat AMR is to accelerate the development 
of novel antibiotics.

Protein phosphorylation is an important posttranslational 
modification in prokaryotic and eukaryotic cells that participates 
in regulating a wide variety of cellular processes (Sun et al., 2015; 
Mijakovic et  al., 2016; Lavoie et  al., 2020). The critical role of 
protein phosphorylation makes protein kinases attractive drug 
targets (Chen et al., 2015). Until 2021, the United States Food and 
Drug Administration (FDA) has approved 71 small-molecule 
kinase inhibitors for treating a variety of diseases including tumors 
and non-malignancies (Roskoski, 2021). However, so far, there 
have been no antimicrobials developed that target bacterial kinases.

Important roles of reversible protein phosphorylation 
mediated by bacterial kinases and phosphatases have been noted 
in the past decades and several bacterial protein kinases have been 
proposed as potential targets for novel antibiotics (King and 
Blackledge, 2021). The two-component systems (TCSs) are the 
well-characterized protein phosphorylation systems that play 
important roles in sensing and responding to environmental 
signals (Alvarez et  al., 2016). They are composed of histidine 
kinases (HKs) and response regulators (RRs) that are involved in 
the regulation of bacterial virulence, biofilm formation, and 
antimicrobial resistance (Zschiedrich et al., 2016; Tierney and 
Rather, 2019; Isaka et al., 2021). Inhibitors against the TCSs have 
been identified to have anti-virulence (Rasko et al., 2008) and even 
antimicrobial activity (Velikova et al., 2016a).

Recently, the serine/threonine kinases (STKs) have been 
shown as important regulators in several important bacterial 
pathogens, including Mycobacterium tuberculosis, Staphylococcus 
aureus, Listeria monocytogenes, Streptococcus pneumoniae, and 
Streptococcus suis (Débarbouillé et al., 2009; Osaki et al., 2009; 
Chawla et al., 2014; Pensinger et al., 2014; Zhu et al., 2014; Manuse 
et  al., 2016; Nagarajan et  al., 2021). STKs usually harbor an 
extracellular penicillin-binding protein and serine/threonine 
kinase associated (PASTA) domain and an intracellular catalytic 
kinase domain (Manuse et al., 2016). In response to stimuli, STK 
autophosphorylates on its activation loop of the kinase domain by 

hydrolyzing adenosine triphosphate (ATP) and transfers the 
phosphate to the serine or threonine residues of its substrate 
proteins (Ogawara, 2016; Labbe and Kristich, 2017; Nagarajan 
et al., 2021). STKs are identified as global regulators controlling a 
wide range of important bacterial physiological processes, 
including cell wall hemostasis, virulence, metabolism, and cell 
division in several important bacterial pathogens (Cheung and 
Duclos, 2012; Chawla et al., 2014; Manuse et al., 2016; Wamp 
et al., 2020; Djorić et al., 2021). In some bacteria, STKs are even 
essential or conditional essential for bacterial viability (Fernandez 
et al., 2006; Hu et al., 2021). Based on their critical physiological 
roles, several STK inhibitors have been screened to have 
antimicrobial activity (Fernandez et al., 2006; Wehenkel et al., 
2006; Maslov et al., 2019) or as antibiotic adjuvants to potentiate 
β-lactam activity (Schaenzer et al., 2017, 2018).

Streptococcus suis is a zoonotic bacterial pathogen that causes 
lethal infections in pigs and humans (Lun et al., 2007; Tan et al., 
2019). Currently, antibiotics are still the major approach to treat 
the disease caused by S. suis. However, it is more difficult to 
control S. suis infections due to the rapid emergence of AMR 
(Devi et  al., 2017; Oh et  al., 2017; Tan et  al., 2021). Thus, 
developing novel antibiotics is of great importance in controlling 
S. suis infection. Streptococcus suis only harbors one copy of the 
gene encoding STK. Several studies have revealed that ssSTK plays 
an important role in the growth, metabolism, and pathogenesis of 
S. suis (Zhu et al., 2014; Zhang et al., 2017; Hu et al., 2021; Liu 
et  al., 2021). More importantly, our previous study has 
demonstrated that disruption of stk almost completely abolished 
the growth of S. suis in the minimal medium (Hu et al., 2021).

In this study, we identified the autophosphorylation sites of 
ssSTK in its activation loop and characterized the key role of 
ssSTK autophosphorylation in the growth, morphology, and 
virulence of S. suis. Based on the essentiality of ssSTK 
autophosphorylation for cell growth in the minimal medium as 
well as by establishing an enzymatic assay to test the 
autophosphorylation inhibition by measuring the consumption of 
ATP, four compounds are identified as potent inhibitors against 
ssSTK by high throughput screening from a drug library with 
compound analogous characterization. These inhibitors showed 
strong inhibition against S. suis growth in the minimal medium 
and one of them showed in vivo antimicrobial activity in the 
Galleria mellonella larvae infection assay. Our study identifies 
effective lead compounds by screening STK inhibitors which 
provide good candidates for novel antimicrobials development.

Materials and methods

Bacterial strains and growth conditions

All bacterial strains used in this study are listed in 
Supplementary Table S1. Streptococcus suis SC19 is a virulent 
serotype 2 strain isolated in a diseased pig during an outbreak 
in Sichuan Province, China, in 2005 (Lun et  al., 2007). 
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Streptococcus suis SC19 and its derived strains were grown at 
37°C in tryptic soy agar (TSA) or tryptic soy broth (TSB) 
medium supplemented with 10% fetal bovine serum (FBS, 
Cat#23022-8615, Every green, Hangzhou, China) or the 
chemically defined medium (CDM) prepared as previously 
described (van de Rijn and Kessler, 1980) of which the 
composition is listed in Supplementary Table S2. The stk-deleted 
strain of S. suis SC19 (Δstk) and its complementary strain 
(CΔstk) were constructed in our previous study (Hu et  al., 
2021). The S. suis Δstk::stkT167A-S175A strain was constructed by 
introducing a pSET2-based plasmid into the Δstk strain to 
express the variant STK (T167A-S175A point mutations) in 
trans. Escherichia coli DH5α strain was used as the host strain 
for regular cloning. E. coli MC1061 strain was used as the host 
strain for cloning of pSET2-derived plasmids. E. coli BL21(DE3) 
strain was used as the host strain for pET28a-derived plasmids 
for protein expression and purification.

Plasmids construction

The plasmids used in this study are listed in 
Supplementary Table S1. Plasmid pSET2-pro-stkT167A-S175A encodes 
the variant ssSTK (T167A-S175A point mutations) in S. suis in 
which the native promoter of stk was used to drive the 
transcription of the variant stk genes in S. suis. The promoter 
region and the coding sequence of the stk containing the 
autophosphorylation site mutations were amplified and 
subsequently cloned into pSET2 vector, resulting in plasmid 
pSET2-pro-stkT167A-S175. The coding sequences of the kinase domain 
of ssSTK and its variants ssSTKKD-T167A, ssSTKKD-T169A, and ssSTKKD-

S175A were amplified by overlap extension PCR. The PCR products 
were then cloned into the pET28a vector to generate the 
recombinant expression plasmids pET28a-stkKD, pET28a-stkKD-

T167A, pET28a-stkKD-T169A, and pET28a-stkKD-S175A. All the primers 
used in this study are listed in Supplementary Table S3.

Protein expression and purification

The 6 × his-tagged recombinant proteins were expressed and 
purified as previously described (Zhang et al., 2017). Briefly, 
E. coli BL21 (DE3) containing the pET28a-stkKD, pET28a-stkKD-

T167A, pET28a-stkKD-T169A, or pET28a-stkKD-S175A plasmid was 
grown to the mid-log phase and protein expression was induced 
by the addition of 1 mM isopropyl-β-D-thiogalactopyranoside 
(IPTG) followed by incubation at 18°C for 16 h. The cells were 
harvested and lysed by sonication. The cell lysate was subjected 
to centrifugation at 12,000 rpm for 10 min at 4°C to remove the 
unbroken cells and cell debris. The supernatant was then 
subjected to affinity chromatography with the Ni-NTA column 
(Cat# 10271899, GE Healthcare, Uppsala, Sweden). The purified 
protein was concentrated by ultrafiltration and stored at −80°C 
until use.

Virulence assay using a Galleria 
mellonella larvae model

Galleria mellonella larvae model was used to evaluate the 
virulence of S. suis as previously described (Velikova et al., 2016b). 
A total of 50 G. mellonella larvae were randomly divided into five 
groups (10 per group), which were injected with 1 × 106 CFU of 
S. suis SC19, Δstk, CΔstk, Δstk::stkT167A-S175A, or the same volume 
of saline, respectively, via the left posterior proleg of G. mellonalla 
larvae. The survival of G. mellonella larvae was recorded at 6 h 
intervals for 78 h. In vivo assessment of antimicrobial activity of 
APY29 using G. mellonalla larvae infection model was performed 
as follows. 1 × 106 CFU of S. suis SC19 were injected into the left 
posterior proleg of G. mellonalla larvae (10 per group), followed 
by injection of different doses of APY29, respectively. A control 
group was set, in which saline was injected and without S. suis 
SC19 infection (Mock). The survival of G. mellonella larvae was 
recorded at 6 h intervals for 48 h.

High-throughput screening for ssSTK 
inhibitors

A commercial kinase inhibitors library (HY-LD-000001801), 
containing 1,133 compounds was bought from MedChemExpress 
(MCE), and the detailed information is listed in 
Supplementary Table S5. To screen for inhibitors against ssSTK, 
the mid-log phase cells of S. suis SC19 and Δstk were diluted in 
CDM in 96-well plates containing either the library compounds 
or the same volume of dimethyl sulfoxide (DMSO). After 8 h of 
static culture at 37°C, the optical density at 600 nm (OD600) was 
measured using a microplate spectrophotometer (FLUOSTAR 
OMEGA, BMG LABTECH). Percent inhibition was calculated as 
(ODX – ODN)/(ODP – ODN) × 100%, where ODX is the OD600 value 
for a test treated with compound X, and ODP and ODN are the 
OD600 values for SC19 and Δstk treated with DMSO, respectively.

In vitro ssSTK autophosphorylation assay

ssSTK phosphorylates itself by hydrolyzing 
ATP. Therefore, the autophosphorylation activity can 
be determined by measuring the consumption of ATP. The 
autophosphorylation assays were carried out in 50 μl of kinase 
reaction buffer (HEPES 50 mM, DTT 1 mM, Brij35 0.01%, pH 
7) containing 10 mM MgCl2, 100 μM ATP, 10 μM ssSTK, and 
0.5 μl of compound or DMSO. The mixture was incubated at 
37°C for 30 min. Then, 50 μl of Kinase Glo® reagent (Cat# 
V3771, Promega, Madison, United States) was added to each 
well. After 10 min, the relative light unit (RLU) values were 
measured by using a microplate spectrophotometer. Percent 
inhibition was calculated as ((RLUX − RLUP)/
(RLUN − RLUP)) × 100%, where RLUX is the RLU value for a 
test treated with compound X, and RLUP and RLUN are the 
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RLU values for the reaction mixture without the treatment of 
compound and the reaction mixture lacking ssSTK, 
respectively. Additionally, the autophosphorylation activity is 
also determined by measuring its ssSTK autophosphorylation 
levels after the enzymatic reaction. The mixture (kinase 
buffer, 10 mM MgCl2, 50 μM ATP, and 2 μM ssSTK) was 
supplemented with Staurosporine, K252a, AT9283, and 
APY29 at 10, 50, 100 μM or DMSO, respectively. Then, these 
samples were incubated at 37°C for 30 min and terminated by 
the addition of 6 × SDS loading buffer. Subsequently, the 
sample was boiled for 10 min and analyzed by SDS-PAGE. The 
protein was transferred to the polyvinylidene difluoride 
(PVDF) membrane and the phosphorylated protein was 
probed by an anti-P-Threonine mouse monoclonal antibody 
(Cat# 9386S, Cell Signaling, Boston, United States) diluted at 
1:2,000 followed by incubation with the HPR-conjugated 
anti-mouse IgG antibody (Cat# SA00001-1, Proteintech, 
Wuhan, China) diluted at 1:4,000 in PBS with 5% BSA as the 
secondary antibody. Then, the phosphorylated protein was 
visualized by autoradiography.

Determination of half-maximal  
inhibitory concentration of inhibitors 
against ssSTK

The reaction was conducted in a 50 μl mixture containing 
10 μM ssSTK in the kinase reaction buffer supplemented with 
0.5 μl of DMSO or Staurosporine, APY29, AT9283, and K252a 
with final concentrations ranging from 0 μM to 100 μM in a 
96-well black plate, respectively. The enzymatic inhibition 
percentage was calculated as described above. The data were 
transformed to log scale and non-linear regression was 
performed with GraphPad Prism software (version 7) using the 
variable slope normalized model for enzyme inhibition to 
determine IC50.

Bacterial growth assay

Cells of S. suis SC19, Δstk, CΔstk, and Δstk::stkT167A-S175A were 
grown to the mid-log phase in TSB or CDM, respectively. The cells 
were then subcultured 1:100 into the corresponding medium with 
or without the ssSTK inhibitors in a 100-well plate. The plate was 
incubated at 37°C with shaking and the growth was monitored 
using an automatic growth curve analyzer (Oy Growth Curves Ab 
Ltd., Helsingfors, Finland).

Gram staining

Cells of S. suis were grown to the mid-log phase in the TSB 
medium. Subsequently, the cells were washed twice and 
resuspended in saline. A loop of bacterial cells was fixed on 

glass slides (Shitai, China) through flaming. A Gram staining 
kit (Cat#D008, Jiancheng, China) was utilized according to the 
manufacturer’s instructions. The stained samples were observed 
using an optical microscope (OLYMPUS).

In silico docking

The 3D structure of the kinase domain of ssSTK was predicted 
using the I-TASSER server1 (Roy et al., 2010; Yang et al., 2015; 
Yang and Zhang, 2015). The complex models of the kinase domain 
of ssSTK with inhibitors were generated using autodock4 software. 
The interacting models were displayed by using PyMOL (version 
2.0.6.0) or Ligplus software (version 2.2; Laskowski and 
Swindells, 2011).

Statistical analysis

The data were commonly analyzed by a two-tailed 
Student’s t-test in GraphPad Prism 7 software, with a value of 
p < 0.05 considered to be  statistically significant. The  
survival data were analyzed by log−rank test in GraphPad 
Prism 7 software, with a value of p < 0.05 considered to 
be statistically significant.

Results

Identification of STK 
autophosphorylation sites

STK contains an activation loop where autophosphorylation 
occurs which promotes the exposure of the substrate binding 
sites (Figure  1A). Previous studies have identified the 
autophosphorylation sites of other bacterial STK (Durán et al., 
2005; Tomono et al., 2006; Zheng et al., 2018). By homologous 
comparison, it was predicted that Thr167, Thr169, and Ser175 of 
ssSTK are the autophosphorylation sites of ssSTK 
(Supplementary Figure S1A), which were shown in the simulated 
ssSTK 3D structure (Figure 1B). To verify these sites, the kinase 
domain of ssSTK (ssSTKKD) and the domain containing each 
point mutation (ssSTKKD-T167A, ssSTKKD-T169A, and ssSTKKD-S175A) 
were purified, with which autophosphorylation assays were 
conducted (Supplementary Figure S1B). It was shown in 
Figure 1C and Supplementary Figure S2A that ssSTKKD-T167A and 
ssSTKKD-S175A displayed significantly decreased autophos 
phorylation, while the STKKD-T169A showed a similar level of 
autophosphorylation compared with ssSTKKD. The results 
indicate that Thr167 and Ser175 are the autophosphorylation 
sites of ssSTK.

1 https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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Autophosphorylation of ssSTK is critical 
for the growth, morphology, and 
pathogenicity of Streptococcus suis

Our previous studies revealed that deletion of stk in S. suis 
resulted in growth defects, abnormal morphology, and decreased 
virulence (Zhang et al., 2017). To further investigate the role of 
autophosphorylation of ssSTK in these processes, we constructed 
an S. suis strain Δstk::stkT167A-S175A which expresses ssSTK with the 
autophosphorylation sites substituted with alanine. By performing 
a growth assay, it was revealed that the growth of wild-type S. suis 
SC19 strain and the CΔstk, a strain expressing STK in Δstk, grew 
faster than Δstk and Δstk::stkT167A-S175A strains (Figure 2A). The 
Gram staining assay showed that SC19 and CΔstk strains exhibited 
a normal chain length which contained 2–5 cells per chain, while 
Δstk and Δstk::stkT167A-S175A cells formed significantly longer chains 
(Figures 2B,C). By using a G. mellonella larvae infection model, 
the pathogenicity of the S. suis strains was evaluated. It was shown 
that after infection the G. mellonella larvae infected with SC19 and 

CΔstk strains died rapidly. In contrast, the percentage of survived 
G. mellonella larvae injected with Δstk or Δstk::stkT167A-S175A was 
significantly higher than those injected with SC19 strain 
(Figure  2D). Collectively, our data suggest that ssSTK 
autophosphorylation plays an important role in growth, cell 
division, and pathogenesis of S. suis.

Screening of inhibitors targeting STK of 
Streptococcus suis

We next performed inhibitors screening against ssSTK. Since 
disruption of either the whole STK or its autophosphorylation 
sites results in abolished growth of S. suis in the minimal medium 
(Hu et al., 2021; Figure 2A). Primary screening was conducted by 
monitoring the growth of S. suis SC19 cells in the presence of each 
compound from the kinase inhibitors library in the CDM. A total 
of 1,133 compounds were tested among which 121 compounds 
showed a growth inhibition of over 80% (Figure  3A; 

A B

C

FIGURE 1

Identification of autophosphorylation sites of ssSTK. (A) Schematic diagram of the process of autophosphorylation of STK. The 
autophosphorylation sites of the kinase activation loop are phosphorylated, which exposes the substrate binding sites. Black ellipsoid denotes 
phosphate group; Red ellipsoid denotes the autophosphorylation sites of kinase activation loop; Yellow arrow denotes the substrate binding sites. 
(B) The simulated 3D structure of ssSTK. The amino acid sequence of ssSTK was analyzed using the I-TASSER server. The image was generated by 
PyMOL software. Green spheres represent the predicted autophosphorylation sites of ssSTK. (C) The autophosphorylation assay. Each purified 
protein (ssSTKKD, ssSTKKD-T167A, ssSTKKD-T169A, and ssSTKKD-S175A) was added to kinase buffer including 50 μM ATP, respectively. Then, the mixtures were 
incubated at 37°C for 30 min and terminated by the addition of SDS loading buffer. The autophosphorylation levels of these samples were 
measured by western blotting using an anti-P-Threonine mouse monoclonal antibody; The experiment was carried out two times independently 
under the same conditions.
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Supplementary Table S4). However, these compounds are not 
necessarily targeting STK to impede the growth of S. suis. 
Therefore, we continued to measure the inhibitory activity of these 
121 compounds against the autophosphorylation of ssSTK by 
quantifying ATP consumption using an in vitro enzymatic assay. 
Finally, three compounds Staurosporine, APY29, and AT9283 
were identified as inhibitors against ssSTK, respectively 
(Figures 3B–D).

Inhibition of autophosphorylation of 
ssSTK in vitro

To further confirm the inhibitory activity of these  
inhibitors, in vitro autophosphorylation of ssSTK was tested in the 
presence of these compounds by Western blot analysis. It was 
shown that Staurosporine and AT9283 at 10 μM could already 
inhibit the autophosphorylation of ssSTK (Figures  4A,B; 
Supplementary Figures S2B,C). APY29 displayed a dose-
dependent inhibitory effect against ssSTK (Figure  4C; 

Supplementary Figure S2D). These data indicate that 
Staurosporine, AT9283, and APY29 are potent inhibitors targeting 
ssSTK autophosphorylation.

The screening for ssSTK inhibitors from 
the analogues of Staurosporine, APY29, 
and AT9283

In order to discover ssSTK inhibitors with higher efficacy, 
analogs of these inhibitors were selected to test for their inhibitory 
effect against ssSTK in vitro. Nine Staurosporine analogs, five 
analogs of APY29, and one analog of AT9283 were subjected to 
autophosphorylation test with ssSTK (Figure 5). It was revealed 
that most of these analogs except K252a (Figure 3E) exhibited an 
inhibition lower than 50% (Figures 5A,B). Subsequently, the in 
vitro autophosphorylation assay confirmed that K252a could 
inhibit the autophosphorylation of ssSTK (Figure  4D; 
Supplementary Figure S2E). Preliminary structure–activity 
relationship (SAR) analysis revealed the essential role of 

A B

C

D

FIGURE 2

The role of autophosphorylation of ssSTK in the morphology, growth, and pathogenicity of Streptococcus suis. (A) Growth assay. Cells of S. suis 
SC19, Δstk, CΔstk, and Δstk::stkT167A-S175A were grown in the chemically defined medium (CDM) and OD600 monitored; (B) Gram staining assay. Cells 
of S. suis SC19, Δstk, CΔstk, and Δstk::stkT167A-S175A were grown to the mid-log phase. Then, the cells were washed twice and resuspended in normal 
saline. Each sample (20 μl) was fixed on glass slides and stained. The samples were then observed using an optical microscope. (C) 30 chains were 
randomly chosen from each Gram staining images of SC19, Δstk, CΔstk, and Δstk::stkT167A-S175A, respectively. Next, numbers of cells per chain were 
counted, respectively, and the data were presented as the means ± standard errors (n = 30). Student’s t-test was used to analyze their chain length 
difference in GraphPad Prism 7 software, with the value of p < 0.001, ***. (D) G. mellonella larvae infection assay. The G. mellonella larvae were 
inoculated with 1 × 106 CFU of S. suis SC19, Δstk, CΔstk, Δstk::stkT167A-S175A and the same volume saline (Mock). The survival for each group was 
recorded every 6 h for 78 h. The survival data were analyzed by log−rank test in GraphPad Prism 7 software, with the value of p < 0.001, ***. The 
experiments were carried out two times independently under the same conditions.
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glycosidic linkage at N-12 and N-13 position of indolocarbazole 
in bioactivity against ssSTK. Additionally, the structural 
comparison of K252c with indolocarbazole showed that the 
pyrrole ring with carbonyl possibly facilitates the bioactivity of 
indolocarbazole derivatives against ssSTK. The comparison of 
Staurosporine and Midostaurin or 3-Hydroxy-Midostaurin or 

O-desmethyl-Midostaurin suggested that N-methybenzamide 
substitution at C-4′ position of pyran ring possibly reduced 
indolocarbazole derivatives potency (Figure 5A). The structure 
and activity comparison of VEGF2-2-IN-5 hydrochloride with 
APY29 highlighted the key role of benzimidazole nucleus in 
APY29 (Figure 5B).

A B

D E

C

FIGURE 3

Screening of ssSTK inhibitors. (A) The scatter plot of the primary screening with the 1,133 compounds; (B–E) The structure of Staurosporine, 
APY29, AT9283, and K252a, respectively.

A

C

B

D

FIGURE 4

Autophosphorylation assay. Inhibitors including Staurosporine (A), AT9283 (B), APY29 (C), and K252a (D) at 100, 50, 10, 0 μM, and ssSTK were co-
incubated at 37°C for 30 min, respectively. Next, the samples were boiled in SDS loading buffer and were detected for the autophosphorylation of 
ssSTK by western blotting using anti-P-Threonine mouse monoclonal antibody. The experiments were carried out two times independently under 
the same conditions.
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Determination of IC50 of inhibitors 
against ssSTK

To further assess the kinetic data of Staurosporine, APY29, 
AT9283, and K252a, we  determined the autophosphorylation 
activity of purified ssSTK in the presence of increasing 
concentrations of Staurosporine, APY29, AT9283, and K252a 
ranging from 0 to 100 μM. Enzymatic assays were conducted to 
determine the half maximal inhibitory concentration (IC50) of the 
ssSTK inhibitors. It was shown in Figure  6 that IC50 of 
Staurosporine, APY29, AT9283, and K252a against ssSTK were 
8.966, 10.09, 10.58, and 13.81 μM, respectively. The data further 
verified the inhibitory activity of these compounds.

In vitro and in vivo antimicrobial activity 
of ssSTK inhibitors

Staurosporine, APY29, AT9283, and K252a were subjected to 
test for their antimicrobial activity against S. suis by measuring the 
growth of S. suis in the CDM in the presence of 50 μM of each 

inhibitor. It was shown that the growth was significantly inhibited 
by the presence of the inhibitors which was similar to that of the 
Δstk strain (Figure 7A). Moreover, it was observed that S. suis cells 
showed chained morphology when treated with Staurosporine, 
APY29, AT9283, or K252a at 50 μM, resembling Δstk (Figures 7B,C). 
We  further evaluated the in vivo antimicrobial efficacy of the 
compounds using a G. mellonella larvae infection model. It was 
shown that the group treated with 150 mg/kg • body weight of 
APY29 displayed a significantly higher survival than treated with 
normal saline after infection with S. suis SC19. The results indicate 
that APY29 had potent antimicrobial activity in vivo (Figure 7D).

Molecular modeling between ssSTK and 
the inhibitors

In order to investigate the binding modes between ssSTK and 
the inhibitors. These inhibitors were docked into the ATP-binding 
pocket of ssSTK, respectively. The lowest binding energy complex 
models suggested that these inhibitors interact with ssSTK via 
hydrogen bones and hydrophobic forces (Figure  8). It was 

A

B

FIGURE 5

The analogs of Staurosporine, APY29, and AT9283. (A) The inhibition against ssSTK of Staurosporine and its analogs at 10 μM. C2-carbonyl-pyrrole 
ring was marked by black box. N-methybenzamide substitution at C-4′ position of pyran ring of Midostaurin, 3-Hydroxy-Midostaurin and 
O-desmethyl-Midostaurin were marked by black dash box. (B) The inhibition against ssSTK of APY29, AT9283, and its analogs at 10 μM. 
Benzimidazole nucleus was marked by black box. The experiments were carried out two times independently under the same conditions.
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suggested from the lowest binding complex models that the 
Val93 in the pocket of ssSTK could interact with Staurosporine, 
AT9283, APY29 and K252a (Figure 8), which may provide an 
insight into the design of ssSTK inhibitors based on the structure 
in the future. Additionally, it was shown in Figure 8D that the 
benzimidazole nucleus of APY29 interacted with ssSTK via 
hydrogen bond which may further explain the bioactivity 
difference between APY29 and VEGF2-2-IN-5 hydrochloride.

Discussion

AMR has become a huge threat to public health worldwide 
(Samreen et al., 2021). Urgent actions are needed to take to deal with 
AMR. Despite several other strategies to control AMR, innovation 
on novel antimicrobials has been proposed as one of the most 
powerful approaches (Hutchings et  al., 2019; Moo et  al., 2020; 

Miethke et al., 2021). In this study, we show that autophosphorylation 
of the important bacterial kinase STK is involved in the regulation of 
growth, morphology, and pathogenicity of S. suis. Four compounds 
Staurosporine, AT9283, APY29, and K252a are identified as the 
inhibitors against ssSTK. They demonstrated effective antimicrobial 
activity in the CDM in vitro, among which APY29 showed in vivo 
efficacy against S. suis infection using a G. mellonella larvae infection 
model. Our results illustrated the feasibility of bacterial kinase ssSTK 
as an antimicrobial target and provide a good starting point for 
further antimicrobial drug development.

Considering the key role of protein phosphorylation 
modification in cellular functions, protein kinases have been 
deemed as attracting drug targets (Singh et al., 2017). So far, 71 
kinase inhibitors have been approved by the U.S. Food and Drug 
Administration (FDA; Attwood et al., 2021). Most of them are 
applied for cancer treatment, such as Imatinib, an early identified 
Bcr-Abl kinase inhibitor for the treatment of chronic myelogenous 

A B

C D

FIGURE 6

IC50 of inhibitors against ssSTK. Staurosporine (A), APY29 (B), AT9283 (C) and K252a (D) at 5, 10, 25, 50, 75, 100 μM and ssSTK were co-incubated at 
37°C for 30 min, respectively. Next, the remaining ATP levels of the sample were measured by chemiluminescence technology to determine 
autophosphorylation levels of ssSTK. The experiments were carried out two times independently under the same conditions.
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leukemia (de Kogel and Schellens, 2007). In addition, several 
kinase inhibitors are developed for other diseases, such as 
tofacitinib for the treatment of rheumatoid arthritis (Dhillon, 
2017). Although, protein kinases also play important roles in 
bacterial physiology, unfortunately, antibiotics targeting bacterial 
kinases have not yet been developed.

In bacteria, two-component systems, tyrosine kinase-
phosphatase systems, and serine/threonine kinase-phosphatase 
systems comprise the main protein phosphorylation systems 
(Kobir et al., 2011; Mijakovic et al., 2016). Due to their critical 
roles in bacterial growth, metabolism, cell division, and 
pathogenesis, they have been regarded not only as global 
regulators but also promising anti-virulence or antimicrobial 
targets (Hirakawa et al., 2020; Nagarajan et al., 2021). Efforts have 
been made to screen inhibitors against these phosphorylation 
systems. Compound NH125 was shown as an inhibitor against 
several HKs including YycG, PhoQ, and EnvZ, and displayed 
bactericidal activity against S. aureus, Bacillus subtilis, and 

S. pneumonia (Yamamoto et al., 2000, 2001). Walkmycin C was 
identified to inhibit autophosphorylation of VicK, CiaH, and LiaS 
in Streptococcus mutans (Eguchi et  al., 2011). Recently, 
Streptozotocin and floxuridine have been identified as inhibitors 
against the two-component system SaeRS of S. aureus and 
provided protection for mice against S. aureus (Yeo et al., 2018). 
By targeting the protein tyrosine phosphatase, inhibitor I-A09 has 
been identified and shown to inhibit the growth of Mycobacterium 
tuberculosis in host cells (Zhou et al., 2010).

Serine/threonine kinases, another important class of bacterial 
kinase, have recently been demonstrated to be  involved in the 
regulation of critical physiological processes and virulence of several 
important bacterial pathogens, making them attractive drug targets 
(Manuse et al., 2016; Djorić et al., 2021). Recently, several inhibitors 
against STKs have been identified. Fernandez and his colleagues 
have identified Staurosporine and K252a as inhibitors against PknB 
of M. tuberculosis by autoradiography of SDS-PAGE analysis, which 
prevented mycobacterial growth (Fernandez et al., 2006). They have 

A B

C
D

FIGURE 7

Characterizations of the STK inhibitors. (A) Growth assay. Cells of S. suis SC19 and Δstk were grown in the CDM in the presence and absence of 
the STK inhibitors, and the OD600 was measured; (B) Influence of the STK inhibitors on the morphology of S. suis. Streptococcus suis SC19 cells 
were co-cultured with each inhibitor in TSB medium to the log-phase. The cells were harvested, washed, and subjected to Gram staining 
followed by observation using an optical microscope. (C) 30 chains of were randomly chosen from each Gram staining images of SC19 treated 
with Staurosporine, AT9283, APY29, and K252a, respectively. Next, numbers of cells per chain were counted, respectively, and the data were 
presented as the means ± standard errors (n = 30). Student’s t-test was used to analyze their chain length difference in GraphPad Prism 7 
software, with the value of p < 0.001, ***. (D) G. mellonella larvae infection assay. Galleria mellonella larvae were inoculated with APY29 at 150, 
100, 50, and 0 mg/kg•body weight after S. suis SC19 infection. The survival was recorded every 6 h for 48 h. The survival data were analyzed by 
log−rank test in GraphPad Prism 7 software, with a value of p < 0.01, **. The experiments were carried out two times independently under the 
same conditions.

https://doi.org/10.3389/fmicb.2022.990091
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2022.990091

Frontiers in Microbiology 11 frontiersin.org

also conducted an in silico screening to discover PknB inhibitors and 
Mitoxantrone was identified as an ATP-competitive PknB inhibitor 
with potent antimicrobial activity (Wehenkel et  al., 2006). 
Additionally, based on the susceptibility of L. monocytogenes prkA 
deletion mutant strain to β-lactams antibiotics, Schaenzer et al. have 
performed a primary screening for ceftriaxone adjuvants followed 
by an enzymatic inhibition assay, and confirmed Imidazopyridine 
aminofurazans as a specific inhibitor showing bioactivity against 
PrkA of L. monocytogenes rather than Stk1 of S. aureus (Schaenzer 
et al., 2017). Although several inhibitors against bacterial STKs have 
been discovered, none of them was permitted for antimicrobial 
application due to their toxicity or druggable defects. In this study, 
we proposed a novel strategy of STK inhibitors screening based on 
the growth defect of S. suis stk deletion mutant in the minimal 
medium and enzymatic inhibition assay, and identified several 
inhibitors against ssSTK and S. suis SC19 strain.

To investigate the structure–activity relationships (SARs), a 
series of indolocarbazole derivatives were tested for their 
inhibitory activity against ssSTK, and only Staurosporine and 

K252a showed potent inhibition. The bioactivity difference of the 
indolocarbazole derivatives is worthy of further analysis. Previous 
studies on SARs of indolocarbazole derivatives against PKCs, a 
family of eukaryotic serine/threonine kinases, revealed the 
important role of glycosidic linkage at N-12 and N-13 position of 
indolocarbazole in the bioactivity of these compounds (Wang 
et al., 2020). Our data also suggested that the glycosidic linkage 
improves the bioactivity of indolocarbazole against 
ssSTK. Additionally, the structural comparison of K252c with 
indolocarbazole showed that the pyrrole ring possibly facilitates 
the inhibition activity. However, the comparison of Staurosporine 
and Midostaurin suggested that N-methybenzamide substitution 
at C-4′ position of pyran ring reduces the bioactivity of 
indolocarbazole derivatives. The SARs analysis could provide 
insights into the structural modifications of indolocarbazole 
derivatives against ssSTK. Moreover, our results showed that 
Staurosporine and K252a displayed antimicrobial efficacy in vitro. 
However, they also showed toxicity to host cells which may be due 
to a lack of kinase selectivity (Lazarovici et al., 1996). Therefore, 

A B

C D

FIGURE 8

Molecular docking. Staurosporine (A), K252a (B), AT9283 (C), and APY29 (D) were docked into the ATP-binding pocket of ssSTK using autodock4 
software, respectively. The complex models were shown using Ligplus software (version 2.2.), Benzimidazole nucleus was marked by red box.
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fragment-based optimization of Staurosporine and K252a may 
be helpful to resolve this problem.

The benzimidazole derivatives show various biological 
activities due to their structural resemblance with purine (Bansal 
et al., 2019). However, their antimicrobial activity has rarely been 
studied. AT9283 and APY29 shared a benzimidazole nucleus. 
Previous studies have identified AT9283 and APY29 as kinase 
inhibitors with anticancer and anti-apoptosis activities, 
respectively (Korennykh et al., 2009; Santo et al., 2011; Qi et al., 
2012; Gu et al., 2021). In the current study, AT9283 and APY29 
were demonstrated as inhibitors against ssSTK exerting 
antimicrobial activity against S. suis. The structure and activity 
comparison of APY29 and its analogue VEGFR-2-IN-5 revealed 
that the bioactivity of APY29 might be partly attributed to its 
benzimidazole nucleus. Additionally, the molecular docking 
models also show that the benzimidazole nucleus of APY29 or 
AT9283 interacts with ssSTK via hydrogen bond. Thus, 
discovering ssSTK inhibitors from benzimidazole derivatives is a 
promising strategy. Although the primary SAR of APY29 and 
AT9283 was analyzed, further structural optimizations for higher 
activity and lower toxicity are still needed.

Conclusion

In conclusion, we demonstrate the feasibility of targeting the 
autophosphorylation ssSTK as a strategy for antimicrobial 
compounds screening and identified 4 compounds, Staurosporine, 
APY29, AT9283, and K252a, as inhibitors against ssSTK. These 
compounds showed potent inhibition of the growth of S. suis in 
the minimal medium and one of them showed in vivo efficacy 
against S. suis infection. Our study provides promising candidates 
for further antimicrobial development.
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