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Abstract

Association studies using genetic data from SNP-chip-based imputation or low-depth sequencing data provide a cost-efficient design for
large-scale association studies. We explore methods for performing association studies applicable to such genetic data and investigate
how using different priors when estimating genotype probabilities affects the association results. Our proposed method, ANGSD-asso’s la-
tent model, models the unobserved genotype as a latent variable in a generalized linear model framework. The software is implemented in
C/Cþþ and can be run multi-threaded. ANGSD-asso is based on genotype probabilities, which can be estimated using either the sample
allele frequency or the individual allele frequencies as a prior. We explore through simulations how genotype probability-based methods
compare with using genetic dosages. Our simulations show that in a structured population using the individual allele frequency prior has
better power than the sample allele frequency. In scenarios with sequencing depth and phenotype correlation ANGSD-asso’s latent model
has higher statistical power and less bias than using dosages. Adding additional covariates to the linear model of ANGSD-asso’s latent
model has higher statistical power and less bias than other methods that accommodate genotype uncertainty, while also being much
faster. This is shown with imputed data from UK Biobank and simulations.
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Introduction
Genome-wide association studies (GWASs) have classically been
done to study genotype–phenotype associations. However, a
slightly different design of GWAS is using low depth next-
generation sequencing (NGS) data, because in such cases the ge-
notype cannot be inferred accurately. Low depth sequencing pro-
vides a cost-efficient design, where the number of individuals
studied can be increased many folds compared with high depth
sequencing, since each individual will be a lot cheaper to se-
quence. The statistical power to detect associations increases
with the number of individuals while only dropping slightly with
lower depth and therefore this design provides good statistical
power to detect associations (Pasaniuc et al. 2012). Another ap-
proach that is commonly used in GWAS is performing haplotype
imputation from SNP-chips to infer missing genotypes which also
generates genetic data with uncertainty on the inferred genotype.

A recent successful GWAS (Liu et al. 2018) with low depth NGS
data has shown the viability of this approach. In Liu et al. (2018),
around 140,000 individuals had a noninvasive prenatal test for fe-
tal trisomy with low depth sequencing with an average sequenc-
ing depth of 0:1X. Haplotype imputation was performed on the
low depth NGS data. For the association testing a score test ap-
proach using a linear model framework (Skotte et al. 2012) imple-
mented in ANGSD (Korneliussen et al. 2014) was used, as this
method takes genotype uncertainty into account. Despite the low

sequencing depth several novel associations were discovered.
This provides an example of a study where using methods that
account for the genotype uncertainty in low depth NGS data, pro-
vides good statistical power for detecting associations.

In association studies, genotype uncertainty can be taken into
account using a latent variable model that sums over the possible
genotype states. Using latent variable models can have advan-
tages compared with calling genotypes for low depth NGS data
(Skotte et al. 2012). Skotte et al. (2012) implemented a score test
where the coefficients are not estimated under the alternative
hypothesis making the method computationally very fast; how-
ever, this means the effect size of the genotype is not estimated.
In this article, we will introduce ANGSD-asso’s latent model, it
works in a generalized linear model (GLM) framework; it esti-
mates the effect size of the unobserved genotype. This method
can in practice be run almost as fast as the score test. ANGSD-
asso’s latent model uses a maximum likelihood approach; more
specifically, we will make use of the EM algorithm to maximize
the likelihood, treating the unobserved genotype G as a latent
variable. Using a GLM framework enables us to include covariates
thereby adjusting for possible confounders, such as population
structure. We have implemented an EM algorithm that converges
fast and that can be run multi-threaded, making the analysis of
large data sets possible. We have also implemented a hybrid
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model in ANGSD-asso combining the speed of the score test with
the desired properties of the EM algorithm-based approach.
Using the EM algorithm for doing maximum likelihood estima-
tion in a GLM framework using genotype probabilities has been
implemented in SNPTEST (Marchini et al. 2007). However,
SNPTEST cannot jointly estimate effect sizes of genotype and
covariates and is not computationally efficient. We have
designed a faster implementation that allows for the association
analysis of large-scale NGS data sets.

A common practice for performing association analysis based on
genotype probabilities is using genetic dosages, which are the
expected genotypes calculated from the genotype probabilities.
Dosages are easy to implement into most existing methods as the
genotype can be directly replaced by the dosage. However, dosages
do not convey the uncertainty on the genotype as fully as genotype
likelihoods or genotype probabilities. In Zheng et al. (2011), they
show a gain in power when using genotype probability-based meth-
ods compared with dosages, but only for small studies with variants
with large effect sizes. However, they did not look at how sequenc-
ing depth and phenotype correlation might affect this. This could
happen in a case-control study, if cases and controls were se-
quenced at different places, or if the total data set is merged from
other smaller heterogeneous data sets, creating a systematic differ-
ence in the sequencing depth. We investigate this sequencing depth
bias through simulations of a large-scale association study and
evaluate the performance of our genotype probability-based
method compared with using dosages. In order to be able to assess
how a sequencing depth bias might impact the analyses, we focus
on simulating genetic data as low depth NGS data. However, we
show that a scenario similar to this could also happen with data
based on haplotype imputation.

ANGSD-asso, and the score test and SNPTEST all work on ge-
notype probabilities (also known as the “posterior probability”).
The genotype probabilities can be calculated from the genotype
likelihoods, which in turn can be calculated from the NGS data
(Nielsen et al. 2011). For more on genotype likelihoods and NGS
data see Supplementary Section S5.2.

Another aspect, we will explore is how to estimate genotype prob-
abilities taking population structure into account, when performing
association studies with low depth sequencing data. Population
structure is a common confounder in association studies that need
to be addressed properly (Cardon and Palmer 2003; Freedman et al.
2004; Marchini et al. 2004). For low depth sequencing data, the geno-
type probabilities are often obtained by using a prior based on the al-
lele frequency estimated from the same sequencing data. We will
refer to this allele frequency as the “sample allele frequency”. Using
this prior assumes a homogeneous population without population
structure. We therefore propose to use a different prior when dealing
with structured populations based on individual allele frequencies.
The individual allele frequency is the weighted average population
frequency where the admixture proportions for each individual are
the weights. The individual allele frequency for a site has to be calcu-
lated for each individual, as their admixture proportions might differ.
This takes both the frequency of the variant and the ancestry of ev-
ery individual into account. We therefore want to investigate how
this approach compares to using the sample allele frequency prior in
different scenarios. We will look at this both with regard to statistical
power the false positive rate.

Methods
NGS produces short reads that are mapped to a reference ge-
nome. From the aligned reads the probability of observing these

reads at a given site for a certain genotype can be calculated.
This is known as the genotype likelihood (Nielsen et al. 2011). For
more on the genotype likelihood and how to calculate it see the
Supplementary Section S5.2. The genotype likelihoods together
with a genotype prior can be used to calculate the probability of
the genotype given the data which is referred to as the genotype
probability. For an overview of the relationship between the dif-
ferent kinds of genetic data, and how they can be processed and
analyzed in association studies see Figure 1.

ANGSD-asso’s latent model
We model the data using a maximum likelihood approach in a
GLM framework. This enables us to test for an association with-
out observing the genotype G directly. Rather we observe our NGS
data (x) from which we can calculate the genotype probability
pðGjxÞ. We write the likelihood for our phenotype data (y) given
our sequencing data (x) and covariates (Z):

pðyjx;ZÞ ¼
YN
i¼1

pðyijxi; ziÞ ¼
YN
i¼1

X
g2f0;1;2g

pðyijGi ¼ g; ziÞpðGi ¼ gjxiÞ; (1)

where we use the law of total probabilities to introduce the
genotype as a latent variable G. N is the number of individuals, y ¼
ðy1; y2; . . . ; yNÞ is a vector of our observed phenotype, x ¼
ðx1; x2; . . . ; xNÞ is a vector of sequencing data and Z ¼ ðz1; z2; . . . ; zNÞ
is a N� c matrix with the additional covariates. We see that the trait
yi is conditionally independent of the sequencing data given the ge-
notype [meaning pðyijGi ¼ g; xi; ziÞ ¼ pðyijGi ¼ g; ziÞ]. We can calcu-
late the genotype probability from the sequence data, for example,
by using the sample allele frequency as a prior, by assuming that
the genotype is conditionally independent of the covariates, given
the sequencing data and the frequency f (meaning
pðGi ¼ gjxi; zi; f Þ ¼ pðGi ¼ gjxi; f Þ); however, for simplicity we omit f
from the likelihood.

Figure 1 Schematic of workflow for performing association studies with
genetic data. x is the sequence data that can be converted to genotype
likelihoods, G is the genotypes. p is the individual allele frequencies and f
is the sample allele frequency both of which can be used as priors when
estimating the genotype probabilities. Data either gets generated using
SNP-chips or doing NGS. The NGS data can be converted into genotype
probabilities assuming no population structure using the sample allele
frequency, or assuming population structure and then using principal
component analysis (PCA) to generate genotype probabilities. SNP-chip
genotypes can be analyzed directly. Both kinds of data can be imputed
using haplotype frequencies for generating genotype probabilities. The
genotype probabilities can be analyzed with ANGSD-asso’s latent model
or converted to dosages and then be analyzed with a GLM.
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This allows us to write the likelihood, also introducing the
parameters of our GLM h ¼ ða; b; cÞ, again we assume that the ge-
notype is conditionally independent of the covariates given the
sequencing data:

LðhÞ / pðyjx;Z; hÞ ¼
YN
i¼1

pðyijxi; zi; hÞ (2)

¼
YN
i¼1

X
g2f0;1;2g

pðyijGi ¼ g; zi; hÞpðGi ¼ gjxiÞ:

(3)

And the log-likelood then becomes

¼
XN

i¼1

log
X

g2f0;1;2g
pðyijGi ¼ g; zi; hÞpðGi ¼ gjxiÞ

� �
: (4)

Assuming the term pðyijGi ¼ g; zi; hÞ follows a normal distribu-
tion, given the genotype G takes the value g, the covariates Z and
the linear coefficients h, the mean is given by:

gi ¼ aþ bGi þ
X

c

cczic þ �i: (5)

Equation (4) is the log-likelihood function that we want to
maximize with regard to the parameters h. For maximization, we
use the EM algorithm where our latent variable is the unobserved
genotype G. This is done by weighted least squares regression,
where the parameters h are estimated. For the full derivations of
this see the Supplementary Sections S7 and S7.1. We have also
implemented logistic and Poisson regression where we have in-
troduced a link function for gi for Equation (5) and changed the
distribution for pðyijG; zi; hÞ accordingly. For more information on
this see the Supplementary Section S6.

Furthermore, standard errors on the estimated effect sizes are
estimated using the observed Fisher information matrix as in
Lake et al. (2003) and Skotte et al. (2019). In order to achieve faster
convergence of the latent model, we first do regression on the ge-
notype dosages. We then use the coefficients obtained from the
dosage regression as the starting guess for the coefficients for the
EM algorithm (we refer to this as priming).

Implementation of ANGSD-asso
The three methods in ANGSD-asso for association analysis are
implemented in the ANGSD framework (Korneliussen et al. 2014),
allowing multi-threaded analysis. ANGSD can be downloaded from
its github page: https://github.com/ANGSD/angsd. The latent
variable model is -doAsso 4, the hybrid model (see Supplementary
Methods) is -doAsso 5 and the dosage model (see Supplementary
Methods) is -doAsso 6. ANGSD-asso works on genotype probabilities
in the BEAGLE, BGEN, and BCF/VCF file formats or directly from
BAM files and the other file formats allowed in ANGSD.

Individual allele frequency prior
When estimating the genotype probabilities for low depth se-
quencing data, it is important to have an appropriate prior, when
dealing with genotype data in a structured population. The sam-
ple frequency f of an allele might not describe the occurrence of
an allele across individuals very well. This is due to the fact that
the frequency of an allele might differ drastically between differ-
ent ancestries. Therefore a prior based on the sample frequency
will not work well in a structured population. If we have a dis-
crete number of ancestral populations then by using a weighted

average of the ancestral frequencies, we can calculate the indi-
vidual allele frequency (pij), for individual i for site j, across k pop-
ulations:

pij ¼
X

k

qkifjk: (6)

where fjk is the frequency of the jth site in population k and qik is
the admixture proportion of population k for individual i. In order
to estimate the individual allele frequencies, we will have to first
estimate the ancestral frequencies and the admixture propor-
tions. For NGS data this can be done using NGSadmix (Skotte
et al. 2013) and for genotypes, this can be done using
ADMIXTURE (Alexander et al. 2009). We use the approach from
NGSadmix when inferring population frequencies, in our simula-
tions (see Supplementary Methods for more) with low depth se-
quencing data in a structured population, assuming admixture
proportions are known.

Another approach is (Hao et al. 2015) or PCAngsd (Meisner and
Albrechtsen 2018), where the population structure between indi-
viduals is modeled using principal components rather than a dis-
crete number of ancestral populations. When the individual
allele frequencies have been generated, we can calculate more
accurate genotype probabilities, this can be done using Bayes’
formula as laid out in Equation (3) (Supplementary Methods;
where we replace f by p). p(G) can be calculated using our individ-
ual allele frequency assuming Hardy–Weinberg proportions:

pðGijjpijÞ ¼
ð1� pijÞ2 Gij ¼ 0
2pijð1� pijÞ Gij ¼ 1
ðpijÞ2 Gij ¼ 2:

8><
>: (7)

Simulation of phenotypes
We simulate the phenotypes under a standard additive model
with a normally distributed phenotype. The mean given is given
by effect b from the genotype (g) and the ancestry/admixture pro-
portions (q) with effect c from being population 1 and SD 1,
according to Equation (5). The mean for each simulation can also
be seen in the last column of Table 1. We simulate different sce-
narios respectively with and without effect of the genotype, an-
cestry or sequencing depth, in order to be able to assess how
each of them affects the result. Specifically, we wanted to explore
scenarios where ancestry had a strong effect and we therefore
chose c to have a value of 1. Furthermore, for the genotype effect
size b, we chose a range of values that we deemed realistic.
Finally, we also wanted to explore the impact of correlation be-
tween sequencing depth and the phenotype, and how to handle
this. We therefore introduced sequencing depth and phenotype
correlation in our simulations. Essentially, this means that hav-
ing a large phenotype value or being a case will make it more
likely that an individual is in the high depth group. This is de-
scribed in more detail in Supplementary Sections S1.3 and S4.

Results and discussion
We wanted to assess which prior performs best for generating
the genotype probabilities when performing association studies
with low depth sequencing data. We simulate different scenarios
with and without population structure and with and without se-
quencing depth and phenotype correlation. For each of these sce-
narios, we both applied a sample allele frequency prior and an
individual allele frequency prior and evaluated their performance
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with regard to false positive rate and statistical power to detect
an association. Genotype dosages or the expected genotypes are
often used in association studies, in order to try and account for
the uncertainty on the genotype. However, dosages can be unin-
formative especially with low depth sequencing data. We did
simulations in order to investigate the statistical power to detect
an association, when we model the full genotype probabilities in-
stead of using just the genotype dosage. We use ANGSD-asso la-
tent model and dosage model for this. Last, we compared
ANGSD-asso latent model with the similar model in SNPTEST in
terms of bias, statistical power and computational speed. An
overview of the simulation scenarios is shown in Table 1.

Evaluation of using different priors
Using different priors in a homogeneous population
In scenario 1, we simulate data without genotype effect, and pop-
ulation structure but with sequencing depth and phenotype cor-
relation. We observe no inflation of the false positive rate for
both priors (Supplementary Figure S1). This is expected since
these priors become identical in the absence of population struc-
ture. In scenario 2, we add a genotype effect and again we ob-
serve no difference in the two priors in terms of statistical power
(Supplementary Figure S2).

Using different priors in a structured population
In scenario 3, we simulate population structure and sequencing
depth and phenotype correlation. As shown in Figure 2, using the
sample allele frequency prior gives biased estimates of the effect
size and leads to an increased false positive rate. The increased
false positive rate is present even though we are adjusting for an-
cestry in the linear model, showing that this is not sufficient in
this scenario. When using the individual allele frequency prior,
we do not get biased estimates and have a false positive rate that
is identical to using the true genotype. In scenario 4, we remove
correlation between sequencing depth and phenotype and use a
range of effect sizes for the genotype. Figure 3 shows that using
the individual allele frequency prior has increased statistical
power compared with the sample allele frequency prior. For ex-
ample for an effect size of b ¼ 0:3 the power is 0.74 compared
with 0.61. Furthermore, in this scenario, we see that using dos-
ages has similar statistical power to using genotype probabilities.
When using the sample allele frequency prior the effect sizes are
underestimated. This is due to the fact that using the individual
allele frequency better describes the expected genotype in a
structured population.

In scenario 5, we remove population structure but reintroduce
correlation between sequencing depth and phenotype and use a
range of effect sizes for the genotype. Supplementary Figures S3b
and S4b show that in this scenario there is slightly increased

statistical power when using the full genotype probabilities com-
pared with using dosages, and that our estimated effect size is
less biased. In scenario 6, we have correlation between sequenc-
ing depth and phenotype, population structure and use a range
of effect sizes for the genotype. Supplementary Figures S5b and
S6b show that in this scenario there is increased statistical power
when using the full genotype probabilities compared with using
dosages, and less bias of the estimated effect size.

To evaluate the effect of estimating the admixture proportions
from a limited number of genetic sites, we ran simulations with a
varying number of sites used for estimating the admixture pro-
portions. We observe a bias in effect size and a reduction in
power when a small number (50 or 500) of sites is used. However,
when the number of sites is increased (5000 or 50,000), there is
very little reduction in power or bias (Supplementary Tables S3
and S4) compared with using the true admixture proportions.

Comparison with dosages in large-scale studies
To further explore the performance difference with dosages, we
simulated a large case-control study with 100,000 individuals. All
individuals have low depth sequencing data but the cases and
controls have different average sequencing depths.

In Table 2, we show that using full genotype probabilities has
increased statistical power compared with when using genotype
dosages. We have more power for small effect sizes, where we
have a true positive rate that is almost 0.1 higher. We calculated
the info measure for our dosages in cases and controls respec-
tively, to make it comparable with haplotype imputation. To cal-
culate the info measure, we used the ratio of observed variance
of the dosages to the expected binomial variance at Hardy–
Weinberg equilibrium, as used in the imputation software MACH
(Scott et al. 2007). When genotypes are predicted with high cer-
tainty the info measure will be close to 1. We see that the info
measure is lower in controls, where we have a lower average se-
quencing depth. Supplementary Figures S3, a and b and S4, a and
b show that in scenario 5, with a quantitative trait, there is also
increased statistical power and less bias when using full genotype
probabilities. It also shows that in these simulations when keep-
ing individuals with 0 reads, there is less bias but similar statisti-
cal power. In Table 3, we run the analysis from Table 2, but
including individuals with 0 reads. In this scenario, the difference
between using dosages and genotype probabilities has been al-
most erased. However, it is worth noticing that in this scenario,
we lose statistical power compared with when we remove indi-
viduals with 0 reads. To further investigate these scenarios, we
looked at the bias of the estimated effect sizes. Supplementary
Figures S9 and S10 show for a relative risk (RR) of 1.14 that the la-
tent model gives less biased estimates of the effect sizes com-
pared with dosages.

Table 1 Overview of simulations

Scenario Allele frequency N Population structure Sequencing depth and
phenotype

Simulated phenotype
mean

1 0.45 1,000 No Correlated 0
2 0.45 1,000 No Not correlated b � g
3 ð0:9; 0:1Þ 1,000 Yes Correlated q � c
4 ð0:9; 0:1Þ 1,000 Yes Not correlated b � gþ q � c
5 0.45 1,000 No Correlated b � g
6 ð0:9; 0:1Þ 1,000 Yes Correlated b � gþ q � c

We simulate under a standard additive model with a normally distributed phenotype with a mean given in the last column, and SD 1, according to Equation (5). N is
the number of individuals, g is the genotype with effect size b and q is the ancestry proportion with effect sizec. In scenarios 1 and 3, there is no effect of the
genotype. In scenarios 3, 4, and 6, there is population structure with two ancestral populations with allele frequency of 0.9 and 0.1. The sequencing depth and
phenotype correlation are simulated using (Equation 5; Supplementary Methods).
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Supplementary Figures S5, a and b and S6, a and b, show that
in scenario 6, with a quantitative trait there is increased statisti-
cal power and less bias, when using genotype probabilities com-
pared with dosages. Last, if we do scenario 6, but for a binary
phenotype, we show increased statistical power and a smaller
bias of the effect size, when using genotype probabilities com-
pared with dosages as shown in Supplementary Figures S7, a and
b and S8, a and b. And that in these simulations removing indi-
viduals with 0 reads, leads to increased statistical power and less
bias.

Comparison with SNPTEST
UK Biobank data
SNPTEST (Marchini et al. 2007) also implements a latent model
for performing association (using the option -method em) with
genotype probabilities also using a GLM framework. We applied
both methods to the imputed data of UK Biobank (Bycroft et al.
2018); more specifically, we chose a 50 kb region of chromo-
some 2 (219,675–219,725 kb), which has the genetic variant
rs78058190. This variant has been found to be associated with
waist–hip ratio in Kichaev et al. (2019) and the association is
even stronger when adjusted for body mass index (BMI) (Pulit
et al. 2019). It is an imputed variant in the UK Biobank data

(info/R2 ¼ 0.778797, minor allele frequency (MAF) ¼ 0.049;
Bycroft et al. 2018). We therefore ran both methods on the ge-
notype probabilities from the imputation for this region,
adjusting for gender, age, BMI, and top 10 genetic PCs (from UK
Biobank), with waist–hip ratio as the phenotype but inverse
quantile transformed to a standard normal distribution.
ANGSD-asso’s latent model runs this analysis of 292,432 indi-
viduals and 1647 genetic variants in 82.13 min (17.71 min with
20 threads), SNPTEST runs this in 175.64 min (no multi-
threaded option). The estimated effect sizes from each method
are compared in Figure 4, showing that the estimated effect
sizes are very similar. However, SNPTEST adjusts for covariates
by first regressing out the covariates (plus an intercept) on the
phenotype doing ordinary least squares. SNPTEST then subse-
quently uses the EM algorithm to obtain estimates of the inter-
cept and genotype effect. This approach can lead to bias in the
estimated effect size of the tested variant when adjusting with
covariates that are both correlated with the phenotype and the
tested variant (Freckleton 2002; Vansteelandt et al., 2009). For
example, when performing conditional analysis on other ge-
netic variants, in order to determine if the tested variant might
be the casual variant. We show using the UK Biobank data
(Bycroft et al. 2018), that SNPTEST estimates lower effect sizes
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using ANGSD-asso’s latent model and dosage model respectively with a sample frequency prior (f) and an individual allele frequency prior (p). (B) Bias of
the estimated effect sizes. (C) The simulated admixture proportions and the mean sequencing depth for the simulated individuals.

E. Jørsboe and A. Albrechtsen | 5

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab385#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab385#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab385#supplementary-data


when adjusting for a covariate with high correlation to the fo-
cal variant (rs113414093) which is a consequence of regressing
out the covariate prior to testing the variant (Table 4). When
testing the three variants (rs1134114093, rs116204487, and
rs148358468), but adjusting for rs78058190, we obtain similar
results for ANGSD-asso and SNPTEST (Supplementary Tables
S1 and S2).

Simulated data
SNPTEST can also be shown to be biased in simulations. We sim-
ulated a scenario with population structure that is both

correlated with the phenotype and the genotype. Supplementary
Figure S12 shows that in this scenario SNPTEST’s effect sizes are
downward biased, whereas ANGSD-asso’s latent model has no
bias, when using the individual allele frequency prior, and it also
has increased statistical power compared with SNPTEST. We
have used the most recent version of SNPTEST (v2.5.4-beta3). We
ran all analyses with SNPTEST on the same data as ANGSD-asso,
meaning disabling the option of transforming covariates and
phenotype in SNPTEST.

As shown in Supplementary Figure S11 priming ANGSD-asso’s
EM algorithm with the coefficients from regression on dosages
drastically reduces the number of iterations needed for conver-
gence of the EM algorithm.

We also compared ANGSD-asso’s latent model to SNPTEST in
terms of computational speed and found that ANGSD-asso’s la-
tent model is faster than SNPTEST, especially for binary data, as
shown in Figure 5, and for quantitative data as shown in
Supplementary Figure S13. ANGSD-asso’s latent model is capable
of analyzing data sets of 100,000 individuals in <10 h. Our hybrid
approach can handle the analyses in <17 h unthreaded. SNPTEST
will take days to run the largest data set, when running a logistic
model.

Implementation of model
We have implemented ANGSD-asso’s latent model for taking ge-
notype uncertainty into account when performing association
studies. The advantage of this approach compared with the score
test (Skotte et al. 2012), is that the effect size of the unobserved
genotype is estimated. The effect size helps provide further
insights into the relationship between genotype and phenotype.
Furthermore, the estimated effect sizes also mean, we can make
use of LD-score regression (Bulik-Sullivan et al. 2015). It is shown
using UK Biobank data and simulations that ANGSD-asso’s latent
model has increased statistical power and less bias compared
with SNPTEST, when including covariates that are correlated
with both phenotype and genotype in the model (Table 4 and
Supplementary Figure S12). This is due to SNPTEST adjusting for
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Figure 3 Simulation scenario 4 with varying genotype effect size (b). We have a structured population with the same admixture proportions and mean
sequencing depth as in Figure 2C. There is an effect of ancestry of population 1 (c¼ 1). We use a significance threshold of 10�3. The linear model is
adjusted for ancestry. Each point is based on 10,000 simulations. (A) Statistical power to detect an association, using ANGSD-asso’s latent model and
dosage model respectively with a sample frequency prior (f) and an individual allele frequency prior (p). (B) Bias of the estimated effect sizes.

Table 2 The statistical power for different simulated effect sizes
or RRs of the genotype

RR¼1 RR¼1.1 RR¼1.12 RR¼1.14 RR¼1.16

True genotype 0 0.587 0.868 0.978 0.999
Dosage 0 0.114 0.300 0.431 0.808
Genotype probabilities 0 0.163 0.388 0.659 0.862
R2 cases/controls 0.91/

0.85
0.91/
0.85

0.91/
0.84

0.90/
0.84

0.90/
0.84

The phenotype is simulated as a binary trait. We have performed 10,000
simulations for each effect size. The causal allele of the genetic variant has a
frequency of 0.05 and the disease has a prevalence of 0.10 in the population.
We use a significance threshold of 10�5. We have used the sample allele
frequency prior as there is no population structure. We simulated 50,000
controls and cases respectively, with an average sequencing depth of 1X and
4X, respectively. We have removed individuals with 0 reads (0X). The R2 values
denote how well the true genotype is predicted with this data and are
calculated like the info measure used in the MACH imputation software (Scott
et al. 2007).

Table 3 This table is similar to Table 2; it is the same scenario
also, but where we include individuals with 0 reads.

RR¼1 RR¼1.1 RR¼1.12 RR¼1.14 RR¼1.16

True genotype 0 0.813 0.974 0.999 1.000
Dosage 0 0.0914 0.262 0.523 0.772
Genotype probabilities 0 0.0974 0.273 0.538 0.783
R2 cases/controls 0.91/

0.77
0.90/
0.75

0.90/
0.75

0.90/
0.75

0.90/
0.75
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covariates by first regressing them on the phenotype and then
running the EM algorithm on the residuals. Including covariates
in the linear model is a common way to deal with confounders in
association studies. Also, it is shown that ANGSD-asso’s latent
model is much faster than SNPTEST.

We have chosen to compare our method to SNPTEST as it is
the only other method commonly used that takes genotype un-
certainty into account. Additionally, almost all GWAS that use
dosages are based on a standard GLM which will give identical
results regardless of the method used. We therefore felt, it was
not necessary to compare the dosage method with other software
implementations. There are some exceptions to using standard

GLMs. One of the exceptions is the use of dosages in linear mixed
models which we have not explored in this study.

Different priors in structured and homogeneous
populations
We have shown how using the individual allele frequency prior,
when estimating genotype probabilities, gives better statistical
power to detect an association, when dealing with NGS data with
population structure as shown in Figure 3. Also, it removes issues
with an increased false positives rate when there is sequencing
depth phenotype correlation as shown in Figure 2. This correla-
tion might arise if the sequencing is not randomized, for
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Figure 4 Estimated effect sizes from respectively SNPTEST and ANGSD-asso’s latent model of the overlapping 1596 genetic variants, between the two
analyses. These estimates are based on the imputed data from the UK Biobank of a 50-kb region on chromosome 2 (219,675–219,725 kb). Both analyses
have been adjusted for top 10 genetics PCs as provided by the UK Biobank data, age, gender, and BMI, the analyzed trait is waist–hip ratio from the UK
Biobank data that has been inverse quantile transformed to a standard normal distribution.

Table 4 Waist–hip ratio association of rs78058190 in UK biobank

Covariates SNPTEST P SNPTEST b ANGSD P ANGSD b

Age, sex, BMI, and PC 1–10 8.02 � 10–12 0.030 7.62 � 10�12 0.030
Age, sex, BMI, and PC 1–10 0.00086 0.015 1.04 � 10�6 0.031427
rs113414093 (R2 0.58)
Age, sex, BMI, and PC 1–10 7.39 � 10�6 0.020 1.3 � 10�6 0.024
rs116204487 (R2 0.20)
Age, sex, BMI, and PC 1–10 1.21 � 10�5 0.019 7.14 � 10�7 0.024
rs148358468 (R2 0.19)

This table shows the P-value and estimated effect size (b), for the association of rs78058190 with waist–hip ratio (inverse quantile transformed to a standard normal
distribution) when conditioning on genetic variants in linkage disequilibrium LD with rs78058190. The R2 values are shown in the table and are based on the
LDproxy tool that is part of LDlink (Machiela and Chanock 2015). Results for rs113414093, rs116204487, and rs148358468 conditional on rs78058190 can be found in
Supplementary Table S1 and S2.
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example, if cases and controls are being sequenced at different
times or places thereby creating a systematic bias, or if different
cohorts have been sequenced at different places, or if the trait of
interest is much more prevalent at one place vs. another. The
scenarios from Table 1 are most likely to arise when dealing with
nonmodel species where imputation cannot be done. This leads
us to recommend using the individual allele frequency prior
when performing association studies with NGS data in structured
populations, where imputation is not possible. Whether it is bet-
ter to base the individual allele frequency prior from clustering
using NGSadmix (Skotte et al. 2013) or using PCA using PCAngsd
(Meisner and Albrechtsen 2018) depends on the individuals in the
data. If the sampled individuals are recent descendants of fairly
discrete populations, such as most African Americans, then a
clustering approach will give the most accurate allele frequencies
while if the structure is more continuous such as many Latino
Americans, then PCA might be a better approach.

Comparison with dosages in large-scale studies
In Tables 2 and 3, we show through simulations increased statis-
tical power when using genotype probabilities compared with
dosages, with a larger gain in power for the scenario from
Table 2. Since individuals with 0 reads are also removed from the
true genotype in Table 2, there is higher statistical power for the
true genotype in Table 3 as there are more individuals. In both
instances, it is a case-control study with low depth sequencing
data, where cases and controls have different average sequencing
depths. A scenario like this, where there is better genotype infor-
mation for some individuals, could also arise from haplotype im-
putation. As shown in Tables 2 and 3 with the info measure (R2)
for controls and cases, where cases have more informative ge-
netic data. This could happen if a certain population is not being
represented in the reference panel used for imputation or if

different reference panels or SNP-chips are used for cases and
controls. A systematic difference in imputation quality is roughly
equivalent to having a different average sequencing depth.
However, at the same time, we have to state that our simulations
and our analyses have shown us that in many instances dosages
perform just as well. However, as mentioned there are certain cir-
cumstances where they do not perform as well. We have tried to
explore these circumstances in this article and what the impact
of them is.

Another conclusion, we can draw from our simulations is that
when there is sequencing depth and phenotype correlation, our
estimates of the effect size will be biased when we do not know
the true frequency as shown in Supplementary Figures S4, S6,
and S8. Furthermore, when there is sequencing depth and pheno-
type correlation it seems that keeping individuals with 0 reads
makes a difference; however, this is due to how the simulations
were performed and might not generalize to all scenarios.

With ANGSD-asso implemented in ANGSD, we have made it
possible to perform large association studies with low depth
sequencing data retaining maximal statistical power, and also es-
timating effect sizes. SNPTEST is too slow for the analysis of
large-scale data sets. The speed-up of ANGSD-asso’s latent model
compared with SNPTEST is due to priming for faster convergence
of the EM algorithm and threaded analysis using the ANGSD
(Korneliussen et al. 2014) framework. ANGSD-asso makes the
analysis of large-scale data possible as done in Liu et al. (2018)
(141,431 individuals) while retaining maximal statistical power.

Data availability
The three methods in ANGSD-asso for association analysis are
implemented in the ANGSD framework. ANGSD can be down-
loaded from its github page: https://github.com/ANGSD/angsd.
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The R-scripts used for generating the simulations are available
from https://github.com/e-jorsboe/ANGSD-asso-scripts. Some of the
simulations use population frequencies from (Lazaridis et al. 2014),
this data set is available at https://reich.hms.harvard.edu/datasets.
The imputed genetic data and phenotypes that are used, are avail-
able with the permission of the UK Biobank (https://www.ukbio
bank.ac.uk). We conducted the research using the UK Biobank re-
source under an approved data request (ref: 32683).

Supplementary material is available at G3 online.
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