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d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Senegal

* lara.ferrero.gomez@gmail.com

Abstract

Many vector-borne diseases circulate in the Republic of Cabo Verde. These include malaria

during the colonization of the archipelago by the Portuguese explorers and several arbovi-

ruses such as yellow fever (now eradicated), dengue and zika.

To control these vector-borne diseases, an integrated vector control program was imple-

mented. The main targeted mosquito vectors are Aedes aegypti and Anopheles arabiensis,

and in a lesser extent the potential arbovirus vector Culex pipiens s.l. The main control strat-

egy is focused on mosquito aquatic stages using diesel oil and Temephos. This latter has

been applied in Cabo Verde since 1979. Its continuous use was followed by the emergence

of resistance in mosquito populations.

We investigated the current susceptibility to Temephos of the three potential mosquito

vectors of Cabo Verde through bioassays tests. Our results showed various degrees of sus-

ceptibility with 24h post-exposure mortality rates ranging from 43.1% to 90.9% using WHO

diagnostic doses. A full susceptibility was however observed with Bacillus thurigiensis var

israelensis with mortality rates from 99.6% to 100%.

Introduction

Mosquitoes (Diptera: Culicidae) are insects of the greatest importance to global health,

because, in addition to the discomfort caused by their bites, they transmit a wide variety of

pathogens [1] and represent therefore a major public health problem. Overall, 17% of the

recorded diseases worldwide are caused by mosquitoes with 700,000 deaths per year [2].

In Cabo Verde, several mosquito-borne diseases have been recorded: Yellow fever, lym-

phatic filariasis, malaria, dengue fever and zika [3–8]. Some of them were endemic in the coun-

try for a long time. It is particularly the case of malaria which was identified since the 15th

century at the time of the settlement of the archipelago. It is transmitted by Anopheles arabien-
sis, a member of the Anopheles gambiae complex, which was the first mosquito described in

Cabo Verde in 1909 [9]. Despite the decrease of the number of malaria cases during the last

decades, malaria is not yet completely eradicated in the country. Even if it was almost
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eradicated between 1954 and 1970, it still represents a main public health problem. Currently,

the country is considered by the WHO to be in the pre-eradication phase [10], with a short-

term goal of eliminating this disease by 2020 [11]. In recent previous years, the disease was lim-

ited to the Santiago Island with more than 400 indigenous cases and one death recorded dur-

ing the last epidemic in 2017 [12–15].

For the other mosquito-borne diseases, Cabo Verde was exposed to various arboviruses. In

2009, the archipelago experienced the emergence of dengue virus serotype III. This arbovirus

caused the largest epidemic in West Africa with more than 21,000 cases [6, 7]. Ae. aegypti was

identified as the main vector during this epidemic. Its presence on the archipelago was

reported since 1945 [16]. In 2015, it was incriminated as the main vector during an epidemic

of zika with about 8000 cases [8].

Due to the absence of vaccines or specific treatments for these diseases, vector control is an

effective and valuable alternative to control these diseases. It is based on the use of various

methodologies and/or tools [17–21]. Among these tools, those based on the use of chemicals

as insecticides are most used to control mosquito populations both at larval and adult stages.

In Cabo Verde, Temephos is the most widely used for mosquito control with other techniques

including diesel oil, predatory fishes in mosquito breeding sites and indoor residual spraying

with deltamethrin [13].

As observed elsewhere, with the continuous use of chemical compounds for vector control,

the main limitation is the emergence of resistant mosquito populations [22–25]. For the spe-

cific case of Temephos, its use since 1979 [26, 27] was followed by the apparition of resistant

Ae. aegypti populations on the island of Santiago in 2012 and 2014 [28]. Similarly, pyrethroid

resistance was also observed in Anopheles with the detection of the resistant alleles from molec-

ular studies. For Temephos, the mechanism involved in the resistant populations are not yet

identified and need further studies as well as in Culex vectors [29].

To face this resistance, Bacillus thuringiensis var israelensis (Bti), a biolarvicide, has been

proposed as an alternative to overcome the observed resistance [30, 31]. Its low residual effect

on the environment [32] and its effectiveness has been demonstrated in several countries

including Cabo Verde [28]. Therefore, we evaluated in this study its effectiveness against three

mosquito vectors compared to doses of Temephos used by health agents in Cabo Verde and

recommended by WHO. The final goal was to use it as an alternative to overcome the resis-

tance with Temephos.

Materials and methods

Study area and sampling sites

This study was carried out in the city of Praia, the main urban area of the island of Santiago,

located on the western coast of the African continent in the Atlantic Ocean, between latitude

14˚ and 18˚ N and longitude 22˚ and 26˚ W (Fig 1).

The climate of the region is subtropical dry with an arid season during most part of the year

and a short rainy season that lasts from July to October. The average annual rainfall estimate is

between 300 and 700 mm. The average mean annual temperature is 25˚ C [33].

Ae. aegypti, Cx. pipiens s.l. and Anopheles spp. eggs and larvae were collected respectively

using BR-OVT ovitraps and by larval collection in the city of Praia (Fig 2).

The area was divided into 4 zones (A, B, C and D), each zone containing several sites in the

city of Praia (see Table 1).

The sites were selected in different places including public spaces of the city and in small

agricultural lands. Apart from these latter sites for which permission was obtained from
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owners, no permission was necessary for the collections in public spaces. Field studies did not

involve endangered or protected species.

In each site, the collection points were chosen within the zones based on the following crite-

ria: (1) For Cx. pipiens s.l. and Ae. aegypti, we privileged the presence of vegetation and/or agri-

cultural fields, with pools of stagnant water and high density of people such as the presence of

schools and health centres. (2) For Anopheles spp., the samples were collected mainly in the

locations of Achada Grande Trás and Várzea, characterized by a larger number of small tem-

porary freshwater pools during the rainy season, where mainly breed Anopheline larvae.

Fig 1. Cabo Verde, Santiago Island, city of Praia. This map was adapted from an image extracted from https://sedac.ciesin.columbia.edu/data/collection/gpw-v3/

maps/gallery/search?contains=Cape+Verde for illustrative purposes only. City of Praia is marked in white in the south of Santiago Island.

https://doi.org/10.1371/journal.pone.0234242.g001
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Samples collection and treatment

Egg and larval collections. Ae. aegypti and Cx. pipiens s.l. larvae were obtained from

hatched eggs collected by the oviposition traps BR-OVT [34]. These traps were supplied with

acacia infusion as attractant [35] and were installed in the different places selected in the city

of Praia. They were inspected and once eggs were collected, they were taken to the laboratory

and the eggs placed in white plastic containers trays containing water for hatching. Upon

hatching, respectively between 30 and 60 larvae or 125 to 250 larvae were kept and reared with

200 ml or 500 ml of chlorinated tap water.

Anopheles spp. and Cx. pipiens s.l. larvae were collected in natural or artificial breeding sites

using nets for larvae or buckets with or without a light source (Fig 3).

Maintenance and identification of larvae. The larvae were kept in laboratory and were

fed with crushed and autoclaved flocculated fish food. The amount of daily food for larvae of

the L1 and L2 stages was 0.003g and for the L3 and L4 stages 0.006g per plastic container. The

water was removed and replaced every 3 days. Larvae were maintained in standard conditions

at a temperature of 25±2˚C, 75±10% relative humidity and 12:12h photoperiod [36].

They were identified using the taxonomic key of mosquitoes in Cabo Verde [16].

Fig 2. Sampling sites of Anopheles spp., Cx. pipiens s.l. and Ae. aegypti in the city of Praia. This map was adapted

from an extracted from image http://idecv-ingt.opendata.arcgis.com/datasets/cartografia-st-2010 for illustrative

purposes only. Sampling sites. The polygons marked A (yellow), B (green), C (blue) and D (red) represent the four

collection zones, of culicids, in the City of Praia. The sites are marked with violet coloured stars.

https://doi.org/10.1371/journal.pone.0234242.g002

Table 1. Distribution of the sites of the city of Praia through the sampling zones.

Zones Sites investigated

Zone A Achada Grande Frente, Lém-Ferreira, Gamboa, Várzea.

Zone B Eugénio Lima, Achadinha Pires, Bairro

Zone C Ponta d´Água, Vila Nova, Pensamento

Zone D Achada Santo António, Tira-chapéu, Terra Branca, Palmarejo

https://doi.org/10.1371/journal.pone.0234242.t001
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Larvicides

The biological larvicide tested in the bioassays was Bacillus thuringiensis var israelensis, strain

AM65-52, 37.4% (w/w) as dispersible granule, manufactured by |Valent BioSciences Corpora-

tion, batch nº| 246-846-PG. The doses used were 3, 7, 11 and 15 kg/ha, corresponding respec-

tively to the minimum dose, mean dose 1, mean dose 2 and maximum dose recommended by

the manufacturer and adjusted to the surface of the container.

The chemical larvicide tested in this study was Temephos 1% granulated, manufactured by

SDS Ramcides Hop Science Pvt. Ltd, lot #: SDSREP111601. The concentrations used were of

0.25 mg/L as recommended by WHO and the manufacturer dose) and 1 mg/L as used and

applied by health agents in routine larval control activities in Cabo Verde) and adjusted to the

volume of the container.

Bioassays tests for Ae. aegypti and Cx. pipiens s.l.

For each larvicide, the assays were performed using 40 L3/L4 stage larvae in three replicates.

Each larvicide was dissolved directly into 200 ml of dechlorinated water. Fifteen minutes after

dissolution, the physiochemical parameters of the water (pH, temperature, salinity, conductiv-

ity and dissolved organic materials) were measured using PCSTestr TM 35 portable

multiparameter.

All the experiments were carried out in standard conditions at a temperature of 25±2˚C, 75

±10% relative humidity and 12:12h photoperiod.

The full protocol is available at dx.doi.org/10.17504/protocols.io.bbstinen

Bioassays tests for Anopheles spp.

To analyse the susceptibility of Anopheles spp. for each larvicide, bioassays were performed

with the same methodology explained for Ae. aegypti and Cx. pipiens s.l.

Using the WHO method [37], the bioassays were repeated only for Temephos at the con-

centration of 1 mg/L, which corresponds to the dose applied by health agents in Cabo Verde.

The bioassays were performed for 25 larvae from L3/L4 stage in 100 ml, in four replicates with-

out food. After 24 hours of exposure, the number of dead and dying larvae in each replicate

was recorded. The bioassay was repeated three times at different dates between September and

October 2017.

For each assay, larvae collected from the different sites were used as control.

The quality control of Temephos used in this study was evaluated using a susceptible strain,

Anopheles coluzzii, maintained at the Medical Entomology Unit of Dakar Pasteur Institute.

Using the WHO method [37], bioassays were performed to analyse the susceptibility of

Anopheles spp. to 1 mg/L of Temephos, taking into account different physical and chemical

factors namely feeding, type of water or the area of collection of the larvae.

Fig 3. Anopheles spp. and Culex pipiens s.l. breeding sites. A. Culex pipiens s.l. artificial breeding site. B. Anopheles
spp. natural breeding site. C. Anopheles spp. artificial breeding site.

https://doi.org/10.1371/journal.pone.0234242.g003
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For the evaluation of the feeding effect of the larvae on the bioassay test, the larvae were

pooled using as control larvae for which no food was supplied.

The effect of the type of water on the bioassay was studied using three types of water:

dechlorinated tap water, mineral water and water from natural breeding site. Dechlorinated

tap water was used as control because it was used along all the bioassays.

For the evaluation of the effect of the origin of Anopheles spp., larvae of L3/L4 stages were

collected from Achada Grande Trás and Várzea.

Statistical analysis of data

Sampling data were collected in field records: BROVT form and larval inspection form. The

data were entered into a Microsoft Office Excel 2016 database and the Ovitrap Positivity Index

(POI) and the Egg Density Index (IDO) were calculated according to [38].

The effectiveness of the larvicides were assessed 24 hours post-exposure using the total

number of dead larvae. The assay was considered invalid when the mortality of in the control

was>10%. When mortality was between 5 and 10%, the ABBOTT mortality correction for-

mula was applied [39]. The test was discarded when more than 10% of pupae was obtained or

the mortality in the negative control was 20% or more.

All the data were recorded in field sheets and stored into a Microsoft Office Excel 2016

database. The mortality rate was calculated as the percentage of dead larvae from all replicates

for Temephos and Bti. For the different mean, standard deviation and standard error were

calculated.

To analyse the robustness of the results obtained and due to the existence of a high number

of zeros, a Zero-inflated Poisson regression (ZIP) model and Zero-inflated Negative Binomial

regression (ZINB) were used. Respectively, the number of surviving larvae in the bioassays was

used as dependent variable and the insecticide tested as exposure variable. Bivariate and multi-

variate adjustments were made with the independent variables; number of replicates per bioas-

say and number of bioassays performed for each genus/species of mosquito. For all tests a p

value <0.05 was considered as statistically significant. The application of the ZIP model was

considered when the values obtained for the probability of X2 were greater than 0.005 (Prob>

X2). The ZIP-likehood ratio test was used to evaluate the application of the ZINB model. A sig-

nificant likelihood ratio test for the overdispersion parameter, alpha = 0 indicates that the

ZINB model is preferred to the ZIP model. The software Stata V.14.0 was used for the statisti-

cal analyses.

Results

Sample collections

A total of 4633 Ae. aegypti were collected through by the BR-OVT ovitraps among 36 of which

33 were positive (presence of eggs), giving an ovitrap positive index (POI) of 91% (Table 2).

For Cx. pipiens s.l., 48 rafts were collected (15 in BR-OVT and 33 directly from breeding sites).

For Anopheles spp. all larvae were collected by direct larval search.

Bioassays of susceptibility to larvicides

The Temephos and Bti larvicides were tested in Ae. aegypti mosquito populations, C.x pipiens
s.l. and Anopheles spp. from the City of Praia, Cabo Verde, in two different periods. The mean

mortality rates for each concentration of each insecticide were analysed separately for each

mosquito species.
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For larvae bioassays, Ae. aegypti larvae were selected from eggs collected from the 4 collec-

tion sites in Praia (Fig 2). For Cx. pipiens s.l. larvae were selected from the egg rags hatching

collected mainly from zone D, directly from the breeding sites (Figs 2 and 3). For Anopheles
spp., larvae were selected from the collections made directly from breeding sites located in

Várzea and Achada Grande Trás (Fig 3).

For Ae. aegypti, the mortality rates for Bti were from 99.6% to 100% after 24 hours of expo-

sure. For Temephos, the reported mortality rates were 90.9% at the dose recommended by the

WHO and 98.2% at dose used by the health agents in Cabo Verde, after 24h (Fig 4A and 4B).

For Cx. pipiens s.l. the mortality rates for Bti ranged from 99.6% to 100%. For Temephos

the respective mortality rates at the dose recommended by WHO and that used by the health

agents were 79% and 92.9% (Fig 5A and 5B).

For Anopheles spp. The mortality rates after exposure to Bti was 100% for all tested concen-

trations. In the first bioassay, Temephos was responsible for the mortality of 43.1% of the pop-

ulations at the dose recommended by WHO and 79.3% at the dose used in Cabo Verde. In the

second bioassay, the percentage of pupae was 13.3%. The test was therefore discarded because

this percentage was higher than that recommended by WHO (10%). When the test was run

with the dose used by the health agents in Cabo Verde, a mortality rate of 58.9% was observed

(Fig 6A and 6B).

For the An. coluzzii laboratory susceptible strain, the mortality rates were respectively 0%

and 100% for the control and tested groups during the 9 replicates (3 for the control and 6 for

the tested group).

The results of the bioassays demonstrated that the Bti solution, at the minimum concentra-

tion recommended by the manufacturer, killed 100% of the L3/L4 larval stages of Cx. pipiens s.

l. and Anopheles spp. and 99.6% for Ae. aegypti. Temephos showed different levels of effective-

ness among the species tested (Ae. aegypti, Cx. pipiens s.l, An. gambiae complex and An. pretor-
iensis) the bioassays for the two latter species were carried out without separation of the two

species of anophelines found in breeding sites. Ae. aegypti had a higher mean mortality rates

Table 2. Number of ovitraps, total number of eggs, ovitraps positivity index (POI) and eggs density index (EDI) of Ae. aegypti.

Zone A Zone B Zone C Zone D Zones A-D

BR-OVT 7 10 10 9 36

Positive BR-OVT 6 9 10 8 33

Number of Eggs 1039 1052 1646 896 4633

POI (%) 86 90 100 89 91

EDI 173 117 165 112 142

https://doi.org/10.1371/journal.pone.0234242.t002

Fig 4. Mean mortality of Ae. aegypti by chemical and biological insecticides. A. Mean mortality of Ae. aegypti by

Bti. Minimum dose– 3 Kg/ha, mean dose 1–7 Kg/ha, mean dose 2 – 11Kg/ha and maximum dose– 15Kg/ha. B. Mean

mortality of Ae. aegypti by Temephos. For each set of data, the standard error (black colour) is displayed.

https://doi.org/10.1371/journal.pone.0234242.g004
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than the other for both concentrations with a mortality rate of 90.9% at the dose recommended

by WHO. Cx. pipiens s.l. presented a mortality rate of 79.2% for the dose recommended by

WHO. For Anopheles spp., the mortality rates were 43.1% at the dose recommended by WHO

and 69.1% at the dose applied by health agents in Cabo Verde (Fig 7).

Evaluation of the susceptibility of Anopheles spp. to Temephos

Following the WHO method for performing the Temephos susceptibility bioassays (dose

applied in Cabo Verde by the health agents) for Anopheles spp., the mortality rates observed

were 56%, 51.3% and 73.8% in the bioassays 1, 2 and 3 respectively. These observations showed

similar results for the two experimental approaches used, with a minimum mortality of 51.3%

and a maximum of 73.8% using the WHO method, whereas the mortality rates observed by

the method used and adapted for this study were 58.9% (minimum mortality) and 79.3%

(maximum mortality). This allowed to validate the method used in this study (Fig 8).

Evaluation of the effect of larval feeding, type of water and location of the

breeding site, in the susceptibility of Anopheles spp. to Temephos

The Table 3 shows the results obtained from the Anopheles spp. susceptibility bioassays to

Temephos with various larval food and type of water used. The bioassays were done in dupli-

cate. The values presented represent the mean mortalities.

No significant difference was observed for the bioassays for the unfed larvae as well as larvae

fed with commercial flocculated autoclaved fish food before the start of the bioassay.

Fig 5. Mean mortality of Culex pipiens s.l. by chemical and biological insecticides. A. Mean mortality of Culex
pipiens s.l. by Bti. Minimum dose– 3 Kg/ha, mean dose 1–7 Kg/ha, mean dose 2–11 Kg/ha and maximum dose– 15 Kg/

ha. B. Mean mortality of Culex pipiens s.l. by Temephos. For each set of data, the standard error (black colour) is

displayed.

https://doi.org/10.1371/journal.pone.0234242.g005

Fig 6. Mean mortality of Anopheles spp. by chemical and biological insecticides. A. Mean mortality of Anopheles
spp. by Bti. Minimum dose– 3 Kg/ha, mean dose 1–7 Kg/ha, mean dose 2–11 Kg/ha and maximum dose– 15 Kg/ha. B.

Mean mortality of Anopheles spp. by Temephos at 0,25 m (mean of trials 1 and 3). For each set of data, the standard

error (black colour) is displayed.

https://doi.org/10.1371/journal.pone.0234242.g006
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The mortality rates after exposure to Temephos was compared between the three types of

water: mineral water, natural breeding water and dechlorinated tap water (Table 3). The test

control was carried out in dechlorinated tap water because this type of water was used in all

experiments. The results showed that the difference in Anopheles spp. larval mortalities for

Temephos were not significant different for the bioassays performed in dechlorinated tap

water and mineral water. However, a significant difference was observed for the natural breed-

ing water, with a mortality rate significantly higher than in previous bioassays. A plausible

explanation could be the difference observed in the physiochemical parameters of the water of

the natural breeding places (Varzea and Achada Grande Trás) in comparison to the other two

types (Table 4).

To determine if there are some differences in larval mortality of Anopheles spp. to Teme-

phos, according to the place of collection of the larvae, we compared the results of the bioassays

made with specimens from the two main collection localities namely Várzea and Achada

Grande Trás. The respective mortality rates were 34.2% and 59% for Várzea and Achada

Grande Trás, with a great difference, which could be attributed to a difference in selective pres-

sure between the two locations by the insecticide Temephos or specific differences between

populations.

Fig 7. Comparison of mean mortality by Bti, at minimal dose, and by Temephos, among the three species tested.

Minimum dose of Bti– 3 Kg/ha. Culicids tested: Aedes aegypti in blue colour, Culex pipiens s.l. in orange and Anopheles
spp. in grey colour.

https://doi.org/10.1371/journal.pone.0234242.g007

Fig 8. Mortality of Anopheles spp. by Temephos, at the rate of application in Cabo Verde, following the WHO

method. Temephos rate application in Cabo Verde belong to 1 mg/l. Average columns represent the mean of Bioassay

1, Bioassay 2 and Bioassay 3.

https://doi.org/10.1371/journal.pone.0234242.g008
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In order to determine which of the two possibilities is more plausible, the surviving mosqui-

toes from all the experiences with Anopheles spp. (control and those exposed to Temephos)

from the two localities were kept and reared to adulthood for species identification. In Várzea,

100% of the individuals were identified as An. gambiae complex from a total of 277 adult mos-

quitoes (234 wild and 43 Temephos resistant). In the other locality studied, a heterogeneous

population was observed with the presence of An. pretoriensis and An. gambiae complex (Fig

9).

In Achada Grande Trás, 71% and 29% from 465 susceptible adult mosquitoes and 72% and

28% from 90 Temephos resistant mosquitoes were respectively identified as An. gambiae com-

plex and An. pretoriensis. These results confirm the absence of differences in susceptibility to

Temephos between the two Anopheles species.

Statistical analysis

The main estimators obtained from the modelling (ZIP and ZINB) are shown in Table 5. The

full results of the modelling are presented in the Additional File 2.

From the adjustment made with the bivariate and multivariate models, we observed statisti-

cally significant coefficients for all estimates made from the inflated zero variables "Surviving

larvae".

From the adjustment made of the counting data (Count Part) no significant difference was

observed. The coefficients, confidence intervals and standard errors were very low indicating

non-significant predictors. It was only in the multivariate analysis that the predictors observed

in Cx. pipiens s.l. and Anopheles spp. bioassays presented higher coefficients, confidence inter-

vals and standard errors, but were not significant (p> 0.05).

These observations pointed out the existence of overdispersion of the results due, mainly, to

the excess of zeros obtained in bioassays performed with the Bti larvicide.

These observations express therefore a minimal effect of the replica and bioassay variables

on the larval survival results obtained in this study.

Discussion

In this study we evaluated the susceptibility profile of the main culicids of Cabo Verde within

the City of Praia, capital of Cabo Verde to Bacillus thuringiensis var israelensis (Bti) and Teme-

phos in its commercial forms. The results observed indicate a loss of susceptibility, with a

Table 3. Effect of feeding and water type used in bioassays on larval mortality of Anopheles spp. by Temephos 1%.

Average Mortality (%)

Feeding Without feeding Dechlorinated Tap Water Mineral bottled Water Breeding Water

Control 0 0 0 0 0

Temephos 1mg/L 51.2 56.0 57.0 65.7 80.2

https://doi.org/10.1371/journal.pone.0234242.t003

Table 4. Physiochemical parameters of water types used in bioassays.

pH Temperature (˚C) Salinity (ppm) TDS (ppm) Condutivity (μS)

Várzea breeding water 7.4 27 615 795 1203

Achada Grande Trás breeding water 6–8 28 766 991 1526

Dechlorinated tap water 7–3 26 240 334 472

Mineral bottled water 7–1 26 24–5 25–4 35–8

https://doi.org/10.1371/journal.pone.0234242.t004
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difference according to the mosquito species analysed, for Temephos in comparison to Bti

with a total susceptibility to the alternative biological compound.

To analyse the robustness of the results obtained in the bioassays performed in this study,

the regression models for ZIP and ZINB count variables were applied. The values obtained for

the counting predictors point to the existence of overdispersion of the results due, mainly, to

the excess of zeros obtained in bioassays performed with the Bti larvicide. The values obtained

for the zero inflation predictors point out a minimal effect of the replica and bioassay variables

on the larval survival results obtained in this study.

Fig 9. Ratio of An. gambiae complex and An. pretoriensis in bioassays with mosquitoes from Achada Grande Trás.

Adults anophelines developed from larva control (Wild) and from larvae surviving the Temephos (Temephos 1%

Resistance) coming from Achada Grande Trás.

https://doi.org/10.1371/journal.pone.0234242.g009

Table 5. Parameter estimated of the zero-inflated poisson (ZIP) and zero-inflated negative binomial (ZINB) models applied to larvicide susceptibility bioassays.

Parameters of bivariate ZIP/ZINB models Parameters of multivariated ZIP/ZINB models

Variable bCoef (Std Error) 95% cConf Interval P value Coef (Std Error) 95% Conf Interval P value

Count Part

1. Replica Aedes aegypti Bioassays 0.062 (0.033) -0.002–0.126 0.057 0.015 (0.024) -0.123–0.04 0.283

1. Bioassay Aedes aegypti Bioassays 0.108 (0.126) -0.074–0.29 0.245

2. aReplica Culex pipiens s.l. Bioassays 0.090 (0.048) -0.004–0,184 0.059 0.199 (0.045) 0.013–0.42 0.013

2. aBioassay Culex pipiens s.l. Bioassays -0.760 (0.260) 0.91- -1.64 0.091

3. Replica Anopheles spp. Bioassays
a0.017 (0.026) -0.033–0,068 0.500 0.660 (0.033) 0.02–0.13 0.045

3. Bioassay Anopheles spp. Bioassays -0.387 (0.239) -0.885–0.810 0.105

4. aReplica Anopheles spp. WHO Bioassays -0.041 (0.02) -0.080–0,02 0.041 -0.046 (0.020) -0.085–0.004 0.019

4. aBioassay Anopheles spp. WHO Bioassays 0.065 (0.059) -0.052–0.148 0.269

Zero Part

1. Aedes surviving larvae -58.38 (0.540) -59.44- -57.32 0.000 -37.73 (0.697) -39.10- -36.36 0.000

2. aCulex surviving larvae -43.02 (23205.52 -45525.01–45438.96 0.999 -42.820 (22003.37) -43168.64–43083 0.998

3. Anopheles surviving larvae a-39.12 (13102.15) -25718.86–25640.62 0.998 -40.09 (1.032) -42.12- -38.07 0.000

4. aAnopheles surviving larvae WHO Bioassays -41.952 (50829.37 -99665.69–99581.59 0.999 -34.12 (7190.89) -14128.03–14059.78 0.996

Numbers 1, 2, 3 and 4 in the “Variable” column indicate each of the four bioassays in the study.
aResults of the Negative binomial Zero-inflated regression Model.
bCoef (Std Error) means “Coefficient (Standard error)”
cCoef Interval means “Confidence Interval”.

https://doi.org/10.1371/journal.pone.0234242.t005
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In our experiments, we collected 4633 eggs of Ae. aegypti, a sufficient number for the study

which required 1920 larvae in stage L3/L4, and 48 rafts of Cx. pipiens s.l. which, due to their

low hatching rate, required additional larval collections to complete the amount required for

the study (1920 L3/L4 larvae). For Anopheles spp. we collected 5000 larvae, of which 3960 L3/

L4 stage were selected for the study.

The species-specific differences to Temephos

The species-specific differences observed in the susceptibility to Temephos, can be linked to

the bioecology of each mosquito vector and the previous control activities carried out by the

Vector Control Programs of Cabo Verde.

An. arabiensis, of the An. gambiae complex, has been targeted as the malaria vector in Cabo

Verde for centuries [40, 41]. For its control, the larvicide Temephos [25, 26] was introduced.

The continuous and non-rotational use of this larvicide could have exerted selective pressure

on its populations, that explain the observed resistance of An. arabiensis, together with the

other sympatric anopheline species Anopheles pretoriensis to Temephos [26]

The mortality rates observed for both species was 43.1% at the dose recommended by

WHO and 69% at the dose applied by the health agents in Cabo Verde.

Ae. aegypti, the main vector responsible for the transmission of dengue and zika in Cabo

Verde [42, 43], was the targeted species by the vector control programs since the first dengue

outbreak in 2009/10 [6]. Thereafter, intervention measures against vectors have increased both

in the quantity of used insecticide and the extent of the areas treated with Temephos by health

agents, with emphasis on the City of Praia, the focus of outbreaks and epidemics of vector-

borne diseases [44, 45].

Cx. pipiens s.l. is not considered as a vector for mosquito-borne diseases like in Cabo Verde.

However, it is a potential vector for diseases such as West Nile, Rift Valley fever and lymphatic

filariasis [46–49]. For the latter the identified vector is An. arabiensis [3]. Although its control

is not important for the health authorities, its populations have been submitted to Temephos

pressure in the city of Praia where it breeds sympathetically with Ae. aegypti and Anopheles
spp. in peri-domestic areas and in non-drinking water. Cx. pipiens s.l., until the expansion of

Ae. aegypti in recent years [50], was the most abundant mosquito in the city of Praia [41],

which explains the abundance of this species in breeding sites that are normally occupied by

other species.

For Ae. aegypti an opposite situation happens to the one described for Cx. pipiens s.l. in rela-

tion to the existence of selective pressure on the survival of the larvae due to the use of Teme-

phos. The main breeding sites for Ae. aegypti are either small or medium size domestic

containers filled with drinking water, which normally are not treated with the larvicide or if

they are, the residual effect decreases substantially due to the constant change of water in the

majority of the households. This effect was observed in a study performed for Ae. aegypti in

Argentina [51]. This situation, as well as the introduction of its control later than that of

Anopheles, may explain the greater susceptibility to Temephos observed for this species in rela-

tion to Cx. pipiens s.l. and Anopheles spp. In this study Ae. aegypti presents a mean mortality

rate of 90.9% and 98.3% at the dose recommended by the WHO and the dose applied by the

health agents, respectively. This reduced susceptibility should be subjected to investigation and

can easily evolve for low resistance to Temephos in this vector if the use of this larvicide is

maintained. In fact, results of [28] demonstrated low resistance of the Ae. aegypti populations

from the City of Praia to Temephos, in 2012 and 2015. The loss of this low resistance, three

years after, could be the result of the decreased use of the larvicide and the fitness cost that

arise by maintaining the metabolic mechanism of resistance to Temephos in Ae. aegypti
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populations [52, 53]. In Cuba, [54] proved the reversal of the resistance to Temephos in an Ae.
aegypti laboratory strain after six generations without insecticide selection.

Resistance of Ae. aegypti populations to Temephos is reported from many parts of the

world: Brazil from all its territory [55–58], Paraguay [59], the Caribbean from Tortola, Guada-

lupe and Saint Martin islands [60, 61], in Asia from Thailand, India, Saudi Arabia and Pakistan

[62–65]. However, from continental Africa there are no record of resistance to Temephos

except for the archipelago of Cabo Verde [28] and the French overseas department of Mayotte

[66]. The low detection of resistance to Temephos in Africa, in addition to the lack of further

studies in this area, may be explained by the fact that most of the vector-borne disease pro-

grams on this continent are focused on combating, mainly, the disease and the vectors of

malaria [67–69]. The malaria vector control programs that target mainly Anopheline species

have no significant effect on arbovirus vectors [70].

For the Cx. pipiens s.l., the observed lethality of Temephos in this study was 79%, at the

dose recommended by the WHO and 92.9% at the application dose used by local health agents.

These results indicate resistance to Temephos of this species, at the standard dose recom-

mended by the WHO and reduced susceptibility, at the dose of application by the Cabo Verde

health agents. Thus, Temephos can no longer be considered as an effective insecticide to con-

trol Cx. pipiens s.l. in the City of Praia, and there is a need to confirm the presence of resistant

genes in the vector. The loss of susceptibility to this organophosphate as well as the molecular

and metabolic mechanisms that lead to this has been studied for a long time, by identifying

populations resistant to this product in different parts of the world, such as: Italy [71], Corsica

[72], French Polynesia [73], Martinique [74, 75], Portugal [76], China [77], Japan [78], Cyprus

[79], Greece [80] and Iran [81], as well as on the African continent: Tunisia [82, 83], Ivory

Coast, Burkina Faso [84], Egypt [85], Mayotte island [67] and Morocco[86].

The results discussed so far suggest that the different Temephos resistance profiles,

observed among the different culicids analysed, are more related to the pressure of use of the

insecticide than to the type of mosquito. This is confirmed in the bioassays performed for pop-

ulations of Anopheles from different locations in the city of Praia, Várzea and Achada Grande

Trás. In these sites, it was observed that the difference in susceptibility to Temephos was not

due to the existence of different species of anophelines at the sites studied (Fig 9). Other factors

not identified in this study, such as the existence of a selective pressure of the insecticide, could

explain this result.

Although it is not registered in scientific publications, it is known that the Várzea breeding

sites, from which larvae from anopheles bioassays were collected, are subjected to continuous

and intense use of Temephos, carried out by health agents in these locations [87–89].

Regardless of the difference in susceptibility to the Temephos species-specific observed in

our study, in all bioassays an inverse correlation was confirmed between insecticide suscepti-

bility and the concentration of product applied.

In this study, the concentration currently measured by health agents in vector control was

considered as discriminant concentration of Temephos (1 mg / L) and was compared with the

diagnostic dose recommended by WHO for the control of Anopheles (0.25 mg / L). Temephos

discriminating doses for susceptibility monitoring of each potential vector were not defined

because the bioassays were performed with the commercial product and not with the technical

grade insecticide Temephos. The commercial Temephos product was selected for the bioassays

because the objective of the study was to know the current susceptibility of the potential mos-

quito vectors of Cabo Verde to the larvicidal product applied in control activities.
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Effect of Bacillus thuringiensis var israelensis (Bti)

For Bti biolarvicide, we observed that the populations of the main Culicidae species in the city

of Praia are susceptible to all concentrations analysed, with mean mortality rates of 100% for

Cx. pipiens s.l. and Anopheles spp., after 24 h of exposure, and 99.6% for Ae. aegypti. In Burkina

Faso and Benin, treatment with Bti, with the same commercial product Vectobac GR as in

Cabo Verde, was effective on larvae of An. gambiae complex and Cx. quinquefasciatus [90, 91],

and during a study conducted in China where the toxicity of Bti was demonstrated for larvae

of Aedes, Culex and Anopheles, especially for the last two [92]. In Kenya and in India, [93, 94]

also observed susceptibility to Bti on the larvae of the last stages of An. gambiae complex and

Cx. quinquefasciatus, more effectively for the anopheline species and with an effective dose

dependence on the type of water whether clean or residual. In Uzbekistan, Malaysia and Aus-

tralia, the larvae of the Ae. aegypti and Cx. quinquefasciatus were susceptible to Bti, both in

their granulated and liquid formulations [95–97]. The effectiveness of Bti in controlling the

vector of malaria has been analysed and demonstrated in different places inside and outside

the African continent like in Burkina Faso [98], Ghana [99], Gambia [100], Côte d’Ivoire [101]

and Eritrea [102] and in the American continent in Peru and Ecuador [103]. For Ae. aegypti,
the efficacy of Bti was observed in Cabo Verde [27], Cambodia [104, 105], Cuba [106], Florida

[107] and Brazil. In the latter, the absence of resistance of different populations to the product

[108] was determined with greater effectiveness in its granulated form [109]. The use of Bti

showed a great success to control Cx. pipiens s.l. in different places like in India [110], Florida

[111], Turkey [112], Poland and Germany [113].

In this study, we observed the susceptibility of Bti to the main culicid species of Cabo

Verde. However, new bioassays are needed to define the discriminating concentrations of Bti

and Temephos for each species in order to compare the efficacy of these two larvicides.

Effect of Temephos

The results obtained on the susceptibility of Anopheles spp. to Temephos, based on the bioas-

says carried out using the WHO methodology [37], were similar to those obtained with the

methodology adopted in this study. A mean mortality rate of 60.4% of Anopheles spp. (mini-

mum 51.3% and maximum 73.8%) according to the experimental approach of this study was

observed. Considering the results obtained from the use of the two methods, the populations

of anopheline mosquitoes in the city of Praia are resistant to Temephos, demonstrating the

repeatability of the results and validating the method selected in this study. It is important to

also note that the method adopted for this study allowed the analysis of larger samples of mos-

quitoes without affecting the validity of the results. It is thus considered a valid method in

assessing the susceptibility of larvae of mosquito populations in Cabo Verde to insecticides.

To determine if the resistance of Anopheles spp. to Temephos observed in this study was

entirely due to the larvicide and not to other factors that could interfere with the bioassay, the

potential influence of the presence of food, the type of water used and the locality of larval ori-

gin was analysed. Our results showed that the last two factors could affect the results, with

increasing larval mortality in bioassays performed with water from the breeding site and espe-

cially those from the locality of Várzea. The presence or absence of food in bioassays with

Anopheles spp. showed no significant effect on larval mortality, with 51% and 56% mortality

respectively observed after 24 hours (Table 2). In a study conducted by [114] on the factors

that affect the resistance to DDT on Anopheles populations, it is shown that the age of mosqui-

toes is an important factor, but that larval feeding only exerts a statistically significant low

effect on those populations of mosquitoes that are already resistant. Another study conducted

on Cx. quinquefasciatus, susceptibility to Temephos for larvae in stage L2 is influenced by the
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type of diet (protein or carbohydrate), but this effect was not observed for L3/L4 larvae [115].

Bioassay tests on laboratory strains performed on Anopheles spp. using different types of diet

(fish food and cat food) were carried out but no difference was observed (unpublished data).

The type of water used in the susceptibility bioassay of Anopheles spp. to Temephos produced

differences in larval mortality. In the bioassays performed with water from the public supply

system and with mineral water, mortality rates of 57% and 65.7% were observed, respectively,

maintaining the repeatability of the results already observed in the bioassays performed with

Temephos (Table 2). In those carried out with water from the breeding sites where the larvae

came from, the mortality rate was higher (80.2%). The differences observed could be related to

the differences observed in the physiochemical characterization of the water of the breeding

sites. This concern mainly salinity, total dissolved solids (TDS) and conductivity. A study by

[116] showed a positive relationship between the toxicity of Temephos and the degree of salin-

ity of the water. On the influence of water conductivity on the survival of An. gambiae complex

larvae, [117] observed that the increase in this parameter affects negatively their survival. In

addition to the physiochemical parameters analysed in this work, it is necessary to evaluate

other biotic and abiotic factors such as the presence of predators, vegetation, water turbidity

and ion concentrations to make a more complete identification of the factors that affect the

survival of anopheline larvae in Cabo Verde.

The location of breeding sites also influences the mortality of Anopheles spp. by Temephos,

as noted above. Indeed, we observed differences between the larvae from Várzea and Achada

Grande Trás, with the respective mortality rates of 34.2% and 59%. To determine if the differ-

ence observed depend on the type of anopheline species (An. arabiensis and An. pretoriensis),
all the samples collected and survivors after the Temephos bioassays, including control, were

kept in the laboratory until adulthood and were morphological identified. In Várzea, 100% of

the adults corresponded to An. arabiensis, while in Achada Grande Trás, adults not exposed to

Temephos corresponded 71% to An. arabiensis and 29% to An. pretoriensis. The respective val-

ues from resistant larvae were 72% and 28%. These findings showed that the difference found

in the mortality of larvae by Temephos is not due to differences in susceptibility of the two spe-

cies of anophelines present, but to other factors, mainly different use of Temephos in Varzea

and Achada Grande Trás. There could be a positive selective pressure for insecticide resistance

in Varzea due to the fact that breeding sites in this area are subjected to greater amounts of

Temephos for longer. In Iran, it was shown an occurrence of Temephos resistance in An. ste-
phensi after prolonged use in some parts of the country [118]. For Ae. aegypti, [119, 120] indi-

cated that Temephos resistance is unstable in the absence of selection pressure caused by the

persistent presence of this insecticide and that, differences in the transcript profiles among dif-

ferent susceptible strains are heritable and due to a selection process and are not caused by

immediate insecticide exposure. In addition to the selective pressure exerted by the continuous

use of Temephos and its tolerance by anophelines, another factor to consider is the use of fer-

tilizers and pesticides in urban and peri-urban agriculture [121–123], as well as the change of

behaviour of the species that are adapted to live in polluted waters that proliferate in urban

agglomerations [124]. Studies carried out by [125] showed that An. arabiensis tolerance to

urban contaminated larval habitats was accompanied by resistance to Temephos larvicide.

Conclusion

This study shows the tolerance to the larvicide Temephos applied in Cabo Verde in different

grades, on the main malaria vector An. arabiensis in the country implying that a great attention

should be accorded to its use in the vector control program in the country. On the other hand,

it confirms the total susceptibility of these mosquitoes to Bacillus thuringiensis var israelensis,
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including its minimum dose, which points to its use as an alternative to vector control. Fur-

ther, studies characterizing the molecular mechanisms involved in the Temephos tolerance

observed, as well as simulated field tests to analyse larval survival over time and validate the

susceptibility bioassays are recommended.

Supporting information

S1 Data.

(XLSX)

S2 Data.

(XLSX)

S1 File.

(DOCX)

Acknowledgments

The authors thank: the students of the Tropical Disease Research Group at Jean Piaget Univer-

sity by their participation in field work, the Jean Piaget University of Cabo Verde by the logisti-

cal support, the laboratory staff of the Dr. Ibrahima Dia of the Dakar Pasteur Institute by

performing the susceptibility bioassays to Temephos with the susceptible control strain of an

An. coluzzii laboratory strain, Dr. Iemke Postma for the adaptation of Figs 1 and 2 and the cor-

rection of English, the Cabo Verde National Territory Management Institute for allow the use

of Santiago map like and Open file image and Dr Robert Gordon and Dr J. Rudi Strickler for

the correction of English.

Author Contributions

Conceptualization: Lara F. Gómez.
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