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Abstract: Although bone possesses a remarkable capacity for self-remodeling and self-healing of
small defects, the continuously increasing growth of bone diseases in the elderly population is
becoming a significant burden, affecting individual life quality and society. Conventional treatment
options involve surgical procedures for repair and reconstruction, local debridement, autografts or
allografts, bone transport, Masquelet’s two-stage reconstructions, and vascularized bone transplants.
However, as such approaches often lead to disruptions of bone-regeneration processes and microbial
contaminations and are often inefficient, researchers focus on developing bone-regenerative strategies
and identifying novel therapeutic agents that could aid the bone-healing process. In this regard,
plant-derived biocompounds, especially essential oils (EOs), have received great scientific attention in
recent years, owing to their antioxidant, anti-inflammatory, and antimicrobial effects. Current studies
focus on either the direct application of EOs on bone tissue or the introduction of EOs as bioactive
compounds in bone scaffolds or as coatings for bone implants. Some of the EOs investigated involve
St. John’s wort, rosemary, thyme, ylang, white poplar, eucalyptus, lavender, and grape seed. In this
context, the present paper aims to provide an overview of the main mechanisms involved in bone
repair and regeneration and the potential of EOs to address and enhance these mechanisms.
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1. Introduction

Bone is a tissue organized into two main compartments, namely trabecular bone; i.e.,
cancellous or spongy; and cortical bone, i.e., dense or compact [1–4]. Structurally, bone
is a nanocomposite composed of organic collagen nanofibers and inorganic compounds,
such as hydroxyapatite and whitlockite, that range in size between 20 and 50 nm in the
lamellar bone and 10 and 50 nm in the woven bone [5]. Through the interactions between
osteocytes, osteoblasts, and osteoclasts, bone tissue is characterized by a continuously
dynamic process of the new bone formation while resorting to the old tissue. Thus, bone
tissue possesses a remarkable capacity for self-remodeling and self-healing when small
defects occur. However, in the case of major injuries and defects, external intervention is
required for restoring the functionality of bone [1,6,7].

Bone disorders, including osteoporosis, osteoarthritis, bone cancer, bone fractures, and
infections, represent a great burden that affects individual life quality and society [6,8,9].
While osteoarthritis is a disease of the articular cartilage, secondary changes further affect
subchondral bone remodeling, especially in the late stages [10]. With the continuously
increasing growth of the elderly population, bone diseases are an important cause for direct
and indirect economic losses due to severe long-term pain or physical disabilities [6,8,9].
The most common metabolic bone disorder is osteoporosis, a progressive and disabling
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systemic skeletal disease that is characterized by a reduced bone mass and microarchitectural
deterioration of the bone, which will consequently increase bone fragility and susceptibility
to fracture [8,11–13]. Fractures are a contributing factor for independence loss, mobility
limitations, chronic pain, and increased mortality rate, and their healing is dependent
upon a series of intrinsic factors, i.e., bone-loss degree, location, bone quality, fracture
immobilization, blood supply, and soft tissue integrity; and extrinsic factors, i.e., age,
comorbidities, smoking, medication, and nutritional status [14,15]. In this regard, the main
treatment strategy involves the fixation of the broken fragments to ensure immobilization
for proper healing [16,17]. Additionally, other treatment options involve surgical procedures
for repair and reconstruction, local debridement, autografts or allografts, bone transport,
Masquelet’s two-stage reconstructions, and vascularized bone transplants, as bone is the
second-most transplanted tissue after blood [6,18–20]. However, such approaches often lead
to disruptions of the bone-regeneration processes and microbial contaminations and are
often inefficient [21].

As bone is responsible for fulfilling major functions within the body, namely support
and locomotion, protection, mineral and bone matrix protein storage, and endocrine energy
regulation [22], the subject of bone loss and its subsequent repair is of great importance. In
this context, a clear understanding of bone loss and the underlying repair mechanisms is
essential for developing successful treatment options for traumatic injuries, bone infections,
metabolic bone disorders, tumors, and other associated diseases. Moreover, knowledge on
this subject could further help prevent the social and economic burdens that society could
face [18].

In this regard, bone-regenerative medicine has experienced considerable scientific
attention in recent years [23,24]. While bone regeneration is a complex process that allows
the tissue to regain and maintain its structure and function with no scar formation, certain
clinical situations require an acceleration of the process. Researchers have been focusing
on identifying novel therapeutic agents that could aid the bone-healing process and under-
stand the inflammatory mechanisms that modulate this process [25,26]. Since ancient times,
nature has represented a major source of bioactive compounds that exhibit therapeutic
properties [27]. Plant-derived drugs are consumed by 75% of the global population and
are the major form of treatment in many developing countries. As studies have shown the
anti-inflammatory, antioxidant, and regenerative properties of these biocompounds, they
have been widely applied in the treatment of osteoarthritis, asthma, heart diseases, hyper-
tension, or cancer [26,28,29]. In this context, there is increasing evidence of the potential of
natural biocompounds as an alternative for bone healing and regeneration, owing to their
capacity for inhibiting bone resorption and tissue inflammation; increasing antioxidant
defenses, tissue vascularization, and bone cell proliferation; reduced costs; and minimal
side effects [26,30].

Essential oils (EOs) are secondary plant metabolites comprising complex mixtures
of volatile compounds that exhibit fundamental properties for biomedical applications,
including antibacterial, antiviral, antifungal, anti-inflammatory, antioxidant, analgesic, and
sedative [31–34]. Furthermore, as they have shown to exhibit inhibitory effects against
osteoclast activity, subsequently leading to an increase in bone mineral density [35], EOs
could represent a promising candidate for developing therapeutic agents that could pro-
mote bone healing and regeneration processes. In this context, the present paper aims to
provide an overview of the main mechanisms involved in bone repair and regeneration
and the potential of EOs to address and enhance these mechanisms.

2. Bioactivities and Mechanisms of Action of Essential Oils

Current strategies are focusing on the use of biomaterials and biocompounds that
could enhance bone-regenerative processes [36]. Therefore, natural compounds known
for their anti-inflammatory, antioxidant, anticancer, and antimicrobial characters have
been investigated for potential bone-healing capacities. Owing to their ability to penetrate
cellular membranes and further modulate various molecular targets, from ion channels to
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intracellular enzymes, EOs have been extensively studied for their biological effects [37]. Al-
though they are important sources of bioactive molecules, their effects are highly influenced
by their chemical composition (Figure 1), which generally depends on the plant species,
source, and part, as well as the extraction methods [38,39]. Terpenes, the most abundantly
found compounds in EOs, are synthesized in the plant cell cytoplasm through the meval-
onate and mevalonate-independent (deoxyxylulose phosphate) pathways [40,41]. Terpenes
can be further classified based on the number of isoprene units, namely hemiterpenes
(1 unit), monoterpenes (2 units), sesquiterpenes (3 units), diterpenes (4 units), sesterter-
penes (5 units), triterpenes (6 units), tetraterpenes (8 units), and polyterpenes (>8 units)
(Table 1) [41–43]. Additionally, the precise mechanisms of action are considerably difficult
to understand and have not been completely elucidated, with many reports stating the
synergistic effects of EO biocompounds [38]. In this context, there is a wide variety of
in vitro and in vivo studies confirming the biological effects of EOs, including antibac-
terial, antibiofilm, antifungal, antiviral, antioxidant, anti-inflammatory, anticarcinogenic
and tumor suppression, analgesic, antipyretic, anticonvulsant, hepatoprotective, cardio-
protective, neuroprotective, and many more (Figure 2) [37–39,44]. Therefore, EOs have
become a potential alternative to conventional therapy that is mostly based on synthetic
compounds [39].
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Table 1. Summary of the main hydrocarbon terpenes and the associated number of isoprene units and carbon atoms.

Compound Isoprene
Units

Carbon
Atoms Examples and Chemical Structures

Hemiterpenes 1 5
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Table 1. Cont.

Compound Isoprene
Units

Carbon
Atoms Examples and Chemical Structures

Sesquiterpenes 3 15
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Table 1. Cont.

Compound Isoprene
Units

Carbon
Atoms Examples and Chemical Structures

Sesterterpenes 5 25

Materials 2021, 14, x FOR PEER REVIEW 
 5 of 20 
 

 

    
R-humulone S-humulone guaiazulene elamazulene 

Diterpenes 4 20 

 
  

phytane cembrene A taxadiene 

  
 

sclarene labdane abietane 

Sesterter-
penes 

5 25 

   
astellatene boleracene caprutriene 

   
retigeranin B brarapadiene A brarapadiene B 

Materials 2021, 14, x FOR PEER REVIEW 
 5 of 20 
 

 

    
R-humulone S-humulone guaiazulene elamazulene 

Diterpenes 4 20 

 
  

phytane cembrene A taxadiene 

  
 

sclarene labdane abietane 

Sesterter-
penes 

5 25 

   
astellatene boleracene caprutriene 

   
retigeranin B brarapadiene A brarapadiene B 

Materials 2021, 14, x FOR PEER REVIEW 
 5 of 20 
 

 

    
R-humulone S-humulone guaiazulene elamazulene 

Diterpenes 4 20 

 
  

phytane cembrene A taxadiene 

  
 

sclarene labdane abietane 

Sesterter-
penes 

5 25 

   
astellatene boleracene caprutriene 

   
retigeranin B brarapadiene A brarapadiene B 

astellatene boleracene caprutriene

Materials 2021, 14, x FOR PEER REVIEW 
 5 of 20 
 

 

    
R-humulone S-humulone guaiazulene elamazulene 

Diterpenes 4 20 

 
  

phytane cembrene A taxadiene 

  
 

sclarene labdane abietane 

Sesterter-
penes 

5 25 

   
astellatene boleracene caprutriene 

   
retigeranin B brarapadiene A brarapadiene B 

Materials 2021, 14, x FOR PEER REVIEW 
 5 of 20 
 

 

    
R-humulone S-humulone guaiazulene elamazulene 

Diterpenes 4 20 

 
  

phytane cembrene A taxadiene 

  
 

sclarene labdane abietane 

Sesterter-
penes 

5 25 

   
astellatene boleracene caprutriene 

   
retigeranin B brarapadiene A brarapadiene B 

Materials 2021, 14, x FOR PEER REVIEW 
 5 of 20 
 

 

    
R-humulone S-humulone guaiazulene elamazulene 

Diterpenes 4 20 

 
  

phytane cembrene A taxadiene 

  
 

sclarene labdane abietane 

Sesterter-
penes 

5 25 

   
astellatene boleracene caprutriene 

   
retigeranin B brarapadiene A brarapadiene B retigeranin B brarapadiene A brarapadiene B

Triterpenes 6 30

Materials 2021, 14, x FOR PEER REVIEW 
 6 of 20 
 

 

Triterpenes 6 30 
  

squalene malabaricane lanostane 

  
hopane oleanane ursolic acid 

Tetrater-
penes 8 40 

 
 

phytoene β-carotene 

 
 

lycopene lutein 

 
cryptoxanthin 

Materials 2021, 14, x FOR PEER REVIEW 
 6 of 20 
 

 

Triterpenes 6 30 
  

squalene malabaricane lanostane 

  
hopane oleanane ursolic acid 

Tetrater-
penes 8 40 

 
 

phytoene β-carotene 

 
 

lycopene lutein 

 
cryptoxanthin 

Materials 2021, 14, x FOR PEER REVIEW 
 6 of 20 
 

 

Triterpenes 6 30 
  

squalene malabaricane lanostane 

  
hopane oleanane ursolic acid 

Tetrater-
penes 8 40 

 
 

phytoene β-carotene 

 
 

lycopene lutein 

 
cryptoxanthin 

squalene malabaricane lanostane

Materials 2021, 14, x FOR PEER REVIEW 
 6 of 20 
 

 

Triterpenes 6 30 
  

squalene malabaricane lanostane 

  
hopane oleanane ursolic acid 

Tetrater-
penes 8 40 

 
 

phytoene β-carotene 

 
 

lycopene lutein 

 
cryptoxanthin 

Materials 2021, 14, x FOR PEER REVIEW 
 6 of 20 
 

 

Triterpenes 6 30 
  

squalene malabaricane lanostane 

  
hopane oleanane ursolic acid 

Tetrater-
penes 8 40 

 
 

phytoene β-carotene 

 
 

lycopene lutein 

 
cryptoxanthin 

Materials 2021, 14, x FOR PEER REVIEW 
 6 of 20 
 

 

Triterpenes 6 30 
  

squalene malabaricane lanostane 

  
hopane oleanane ursolic acid 

Tetrater-
penes 8 40 

 
 

phytoene β-carotene 

 
 

lycopene lutein 

 
cryptoxanthin 

hopane oleanane ursolic acid



Materials 2021, 14, 1867 7 of 20

Table 1. Cont.

Compound Isoprene
Units

Carbon
Atoms Examples and Chemical Structures
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Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are chemically re-
active radical and nonradical species produced by enzymatic and nonenzymatic metabolic
redox reactions involved in cellular metabolism or respiration [46–49]. On the one hand,
ROS are generated through the partial reduction of oxygen to hydrogen peroxide, hydroxyl
radicals, superoxide radical anions, hydroperoxyl radicals, paramagnetic singlet oxygen,
ozone, or hypochlorous acid, followed by secondary reactions of these products. On the
other hand, RNS, such as nitric oxide, peroxynitrite anions, or nitrogen oxide radicals, are
produced through various reactions of the free radical nitrogen oxide, which is generated
from arginine by the activity of nitrogen oxide synthases enzymes [47–49].

Generally, ROS/RNS plays fundamental roles in various physiological processes, e.g.,
cell signaling and signal transduction, cell-cycle regulation, phagocytosis, inflammation,
enzyme and receptor activation, stressor response, gene expression, and infection pre-
vention [47,48,50]. However, xenobiotic or environmental stressors, such as ultraviolet or
ionizing radiations, pollutants, or heavy metals, significantly increase their production.
In this manner, ROS/RNS reacts with macromolecules present within the cell, includ-
ing proteins, lipids, or nucleic acids, consequently altering their biological functions and
causing serious pathological damages to cells and tissues [46–48,50]. In this context, the
overproduction of ROS/RNS causes oxidative or nitrosative stress, which is the global
concept associated with an imbalance in the redox homeostasis due to the inability of
natural antioxidant defenses to neutralize ROS/RNS and detoxify the organism of these
byproducts [47,48,50–52].

Oxidative stress has also proved to affect bone tissues by interfering with various
cellular events, ranging from cell differentiation, proliferation, and growth to cell apoptosis
and disruption of the balance between osteoblastic and osteoclastic activity [53–55]. On the
one hand, oxidative stress reduces the osteogenic potential of bone marrow mesenchymal
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stem cells, thus inhibiting the differentiation and proliferation of osteoblasts. Consequently,
it promotes the apoptosis of mature osteoblasts, which leads to a reduction in bone forma-
tion, mineralization, and mass [53–56]. Additionally, fibronectin, a major bone extracellular
matrix component involved in osteoblastic differentiation, proliferation, migration, and
adhesion, is partially degraded [56]. On the other hand, as superoxide and hydrogen
peroxide are involved in osteoclastic bone resorption and degradation, oxidative stress
causes the upregulation of the process by enhancing the differentiation, proliferation, and
activity of osteoclasts [54,56,57].

From a mechanistic point of view, oxidative stress influences these processes as they
are regulated by multiple paracrine and endocrine molecules, such as ROS, cytokines,
growth factors, and hormones, involved in numerous signaling pathways [54,55,58]. The
main signaling systems involved in osteoblast and osteoclast activity regulation are the
osteoprotegerin (OPG)/receptor activator of nuclear factor-κB (RANK)/RANK ligand
(RANKL) signal-transduction pathway, the Wnt signal-transduction pathway, the mitogen-
activated protein kinases (MAPK) signal-transduction pathway, through the action of extra-
cellular signal-regulated kinases (ERK1/2), c-Jun-N terminal kinase (JNK), or p38 mitogen-
activated protein kinase, transforming the growth factor-β (TGF-β) signal-transduction
pathway, Notch signal-transduction pathway, and Hedgehog signal-transduction path-
way [54,57,59]. These signaling pathways are further controlled by a series of interdepen-
dent transcription factors, such as canonical and noncanonical nuclear factor κB (NF-κB),
c-Fos, c-Jun, Runt-related transcription factor-2 (Runx-2), Osterix (Osx), Msx1 and Msx2,
and T-cell factor/lymphoid enhancer factor (TCF/LEF) [54,57,59,60].

OPG, RANK, and RANKL are molecules of the tumor necrosis factor (TNF) and
its receptor superfamily [61,62], with a pivotal role in bone metabolism that was discov-
ered at the end of the last century [63,64]. RANKL, also known as osteoprotegerin ligand
(OPGL), osteoclast differentiation factor (ODF), TNF-related activation-induced cytokine
(TRANCE), or TNFSF11 (TNF ligand superfamily member 11), is a homotrimeric transmem-
brane protein primarily expressed by osteoblasts, osteocytes, bone marrow stromal cells,
and other immune cells, such as activated T cells [61,64,65]. In bone metabolism, RANKL
is mainly involved in preosteoclast differentiation and osteoclast adherence, activation,
and maintenance [65,66]. Moreover, the binding of RANKL with the RANK corresponding
receptor, a monomeric protein expressed at the surface of osteoclast precursor cells, den-
dritic cells, and mature osteoclasts, will induce osteoclastogenic signals and the consequent
enhancement of the osteoclast differentiation [61,62,65,66]. Subsequently, mature osteo-
clasts are activated and will further adhere to the surface of the bone and secrete acid and
lytic enzymes, such as cathepsin K or tartrate-resistant acid phosphatase, for bone resorp-
tion [64]. Furthermore, OPG is an atypical homodimeric protein expressed by bone marrow
stromal cells and osteoblasts that plays a fundamental role as an anti-osteoclastogenesis
molecule [61,62,65]. Specifically, since it has been found to bind RANKL with an affinity
500-fold higher than RANK, it acts as a RANKL decoy receptor [64,65]. Therefore, OPG
prevents RANKL–RANK binding and subsequently downregulates RANKL signaling,
acting as a bone resorption inhibitor [64–66]. The OPG/RANK/RANKL system can be af-
fected by several endogenous factors, including cytokines; i.e., TNF-a, IL-1, IL-6, IL-4, IL-11,
and IL-17, hormones, such as vitamin D, estrogen, and glucocorticoids, and mesenchymal
transcription factors. Additionally, OPG is also regulated through the Wnt/β-catenin
signaling pathway [64].

Wnt proteins are a family of phylogenetically highly conserved secreted, cysteine-rich
glycoproteins, i.e., Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a,
Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16; 10 seven-pass
transmembrane Frizzled receptors, i.e., Fz1-10; three transmembrane tyrosine kinases,
i.e., receptor-like tyrosine kinase (Ryk), tyrosine kinase-like orphan receptors (ROR), and
protein tyrosine kinase 7 (PTK7); muscle-skeletal tyrosine kinase (MuSK); and two low-
density lipid receptor-related protein (LRP5/6) coreceptors (Table 2) [67–70]. These proteins
activate various divergent intracellular signaling pathways by receptor and coreceptor
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binding at the cell surface [67,68]. Specifically, there are three major pathways that have
been described, namely the canonical or β-catenin-dependent Wnt/β-catenin signaling
pathway, the planar cell polarity (PCP), and the Wnt/Ca2+ pathway [67,69,70]. The Wnt
signaling cascade is an essential regulator of stem and progenitor cell development and
maintenance during embryogenesis and adult tissue homeostasis [68–71]. Furthermore,
Wnt proteins are implicated in the regulation of various cellular processes, namely cell
cycle, differentiation, proliferation, motility, migration, polarity, self-renewal, metabolism,
and death [68,71], acting as directional growth factors that control tissue patterning, ex-
pansion, and differentiation [68,72]. Additionally, they are also important for osteoblast
differentiation and chondrocyte maturation [73]. Moreover, Wnt signaling dysregulation is
linked to a multitude of diseases, including cancer, cardiovascular, neurodegenerative, and
metabolic disorders, fibrosis, and bone-density disorders [67,68,72].

Table 2. Summary of the Wnt protein family members.

Protein Class Members

Secreted cysteine-rich glycoproteins
Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6,
Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b,

Wnt11, and Wnt16

Seven-pass transmembrane Frizzled receptors Fz1, Fz-2, Fz-3, Fz-4, Fz-5, Fz-6, Fz-7, Fz-8, Fz-9, and Fz-10

Transmembrane tyrosine kinases Ryk, ROR, and PTK7

Muscle skeletal tyrosine kinase MuSK

Low-density lipid receptor-related proteins co-receptors LRP5 and LRP6

However, the differentiation of bone marrow stem cells into osteoblasts is mainly
promoted by the canonical Wnt pathway, of which β-catenin is the key component [57,74].
In the absence of the Wnt signaling, β-catenin levels are maintained low through the constant
degradation by the ubiquitin-dependent multiprotein destruction complex consisting of
the scaffolding proteins Axin1/Axin2 and adenomatous polyposis coli (APC); the kinases
responsible for the phosphorylation of β-catenin, namely casein kinase 1 (CK1) and glycogen
synthase kinase-3β (GSK-3β); and the Dishevelled (Dvl) protein [70,74–76]. However,
the binding of the Wnt glycoprotein to the receptor complex comprising the Fz receptor
and LRP coreceptor leads to the activation of the Dvl protein and consequently to the
inhibition of the destruction complex. In this manner, the β-catenin accumulated in the
cytoplasm translocates into the nucleus, acting as a coactivator for the TCF and LEF and
eliciting the target’s specific expression osteoblast-related genes, such as Runx-2, FoxO,
alkaline phosphatase, osteocalcin, and collagen type I [55,57,70,74,75]. While Wnt signaling
is modulated by several secreted proteins, including the Dickkopf proteins (Dkk1–4), the
secreted Frizzled-related proteins (sFRPs1–5), and the Wnt inhibitory factor 1 (Wif1), ROS
also play key roles in β-catenin accumulation regulation [70,74].

Under oxidative stress, the expression of RANKL is upregulated, while OPG is down-
regulated. In this context, the RANKL/OPG ratio is an indicator of the bone-remodeling
process, and consequently, the intensity of bone resorption [54,57,65]. Therefore, oxidative
stress has been shown to cause an increase in bone-remodeling turnover and subsequently
to play key roles in the development of many age-related diseases, such as osteoporo-
sis [54,55,57]. In this context, antioxidants have proved to contribute to osteoblast differen-
tiation and bone formation while reducing the differentiation and activity of osteoclasts,
exhibiting beneficial effects in patients with bone disorders [54]. Considering the significant
impact, they could bring in disease prevention, such as cancer, heart diseases, brain disor-
ders, or immune-system decline through their beneficial physiological actions on human
cells; and in the food industry, EOs have been widely investigated for their antioxidant
activities [40,77–79].
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Their antioxidative effects have been attributed to the presence of various terpenes
and phenolic compounds. Terpenes, especially from the aromatic Lamiaceae family species,
such as linalool, eucalyptol, citral, citronellal, isomenthone, menthone, α-terpinene, β-
terpinene, and α-terpinolene, have been widely applied as additives in food supplements
for preventing oxidative stress [80,81]. Among the phenolic compounds that are known for
their redox properties that play fundamental roles in free-radical neutralization and perox-
ide decomposition, thymol and carvacrol are the most active compounds. Additionally,
antioxidant activities have also been associated with specific alcohols, ethers, aldehydes,
and ketones [40]. In vitro investigations of the antioxidant properties of EOs generally
include direct and indirect approaches, such as 2,2-diphenyl-1-picrylhydrayl free radical,
ferric reducing–antioxidant power, β-carotene bleaching assay, total phenolic content, and
ABTS radical-scavenging activity [80,82].

Furthermore, many studies have shown that high levels of ROS and oxidative stress
induction in chondrocytes are the major contributors to the onset and progress of os-
teoarthritis [83]. In this context, it has been demonstrated that ROS upregulation in the
cartilage and chondrocytes could lead to increased inflammation, and conversely, as ox-
idative stress is considered to be both the cause and the consequence of inflammation. On
the one hand, ROS has the potential to induce the transcription of inflammation-related
genes through the activation of the MAPK and NF-κB pathways, which further increase the
generation of IL-1 and TNF-α. Therefore, oxidative stress is associated with the molecular-
signaling dysregulation commonly observed in osteoarthritis and rheumatoid arthritis. On
the other hand, like IL-1 and TNF-α and other proinflammatory cytokines and chemokines
are released, macrophages and T cells become activated in the synovium, which induces
ROS production and consequently promotes synovitis. As such, the relation between ROS
and inflammation can be translated into one enhancing the damaging potential of the
other [83,84]. Therefore, the anti-inflammatory strategy for the treatment of osteoarthritis
has received significant attention [83]. However, as synthetic anti-inflammatory drugs are
considered toxic and expensive, there has been an increasing interest in EOs as agents for
the treatment of inflammation [85]. With many studies demonstrating the protective effects
of EOs against prolonged inflammation and for improving human health, they play an
important role in the process of drug discovery and development [86].

Besides their biological and pharmaceutical effects on the central nervous system
and antimicrobial and antitumor actions, the subclass of sesquiterpenes has initiated the
search for anti-inflammatory agents among EOs [87]. Their action is not only based on
the antioxidant character, but also on the interactions with signaling cascades that involve
cytokines and regulatory transcription factors and the modulation of proinflammatory
gene expression. Therefore, EOs could represent a novel strategy for treating inflammatory
diseases, including rheumatism, allergies, or arthritis [40].

3. Essential Oils for Bone Repair and Regeneration

Bone is a composition of cells embedded in a mineralized extracellular matrix con-
sisting of 65% calcium phosphates, especially calcium hydroxyapatite, which provides the
compressive strength. The remaining mass comprises organic components and water. The
organic matrix consists of 90% collagen type I, which provides the tensile strength of the
bone; other noncollagenous proteins, including proteoglycans, which contribute to the
compressive strength of the bone; and matrix proteins, such as osteocalcin, osteopontin,
and osteonectin, which promote bone mineralization and formation (Table 3). Additionally,
cytokines and growth factors are involved in the activation, differentiation, growth, and
turnover of the bone [15,88].
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Table 3. The main components of bone organic extracellular matrix [89].

Collagens Proteoglycans/Glycosaminoglycans Matrix Proteins

Collagen type I
Collagen type III

Decorin
Lumican
Biglycan

Epiphycan
Keratocan

Osteocalcin
Osteopontin
Osteonectin
Sialoprotein

The development of bone tissue occurs through two main processes, namely in-
tramembranous and endochondral ossification. In intramembranous ossification, neural
crest-derived mesenchymal cells proliferate and condense to form compact nodules as the
primitive connective tissue and further differentiate into osteoblasts in order to produce
flat bones [90,91]. Osteoblasts are the cells responsible for the synthesis and mineralization
of the bone matrix by secreting different extracellular matrix proteins. Thus, as the osteoid
consisting of collagen–proteoglycan matrix is produced, osteoblasts are gradually embed-
ded in it, eventually transforming into osteocytes to form the calcified tissue [88,90,92].
Osteocytes are the most abundant type of cells within bone tissue, responsible for main-
taining skeleton physiological functions through mechanical strains and bone-damage
sensing [88]. Endochondral ossification is the process of replacing pre-existing hyaline
cartilage with bone tissue. This process is characterized by the formation of ordered zones
for the proliferation and differentiation of chondrocytes in the growth plate, with distinct
composition and properties of the extracellular matrix [90,91]. Specifically, the extracellular
matrix of the growth plate consists of collagen type II, IX, X, and XI; aggrecan; chondroitin
sulfate; hyaluronic acid; matrilins; and matrix metalloproteinases. The presence of collagen
type X and the collagenase matrix metalloproteinase-13 is a contributing factor for the
invasion of osteoclasts, osteogenic cells, and blood cells, leading to the ossification and mat-
uration of the bone [90]. Osteoclasts, located at the surface of the bone, are responsible for
bone-tissue resorption through calcium phosphate crystal dissolution and organic matrix
decomposition [88]. Bone development and growth are influenced by a series of genetic
and environmental factors, such as hormonal, diet, and mechanical factors. Additionally, it
varies on the bone parts; e.g., it is faster in the proximal ends than the distal ends of long
bones, as it is influenced by the intrinsic bone pressure [91].

Through the action of osteoclasts and osteoblasts, bone, a highly vascularized tissue,
is subjected to a continuous process of remodeling that changes its internal structure in
order to fulfill functional needs [88,91]. The bone-remodeling process occurs through five
main sequential stages: resting, activation, resorption, reversal, bone formation, and miner-
alization (Figure 3). Initially, the bone surface is covered by osteoclast precursors that will
subsequently be activated through physical and chemical stimuli and differentiated into
mature osteoclasts to allow for bone resorption. In the reversal phase, which is a transient
phase, bone resorption is inhibited, and pre-osteoblasts are recruited and subsequently
differentiated to osteoblasts that will produce and mineralize the osteon. The osteoblasts
undergo apoptosis or transform into lining cells or osteocytes [89,93]. The integrity of bone
tissue is maintained through the delicate balance between resorption and formation pro-
cesses. Variations in these processes could lead to skeletal disorders due to either excessive
bone resorption, as in the case of osteoporosis, or excessive bone formation, as in the case
of osteopetrosis [93].

In the cases of fractures, defects, or trauma, bone healing and regeneration is a
highly organized, multipart, and reformative process that involves numerous progenitor,
inflammatory, endothelial, and hematopoietic cells. Bone repair involves a cascade of
biological events subdivided into three main overlapping stages: inflammation, bone
production, and bone remodeling (Table 4) [88,94].
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Table 4. The key events and the signaling molecules involved in the bone repair and regeneration process [18,88,94,95].

Bone Repair Phase Key Events Signaling Molecules

Inflammation

Production of pro-inflammatory cytokines, chemokines, and growth factors
Recruitment of polymorphonuclear neutrophils, macrophages, and platelets

Activation of the blood coagulation cascade
Formation of hematoma

Angiogenesis

Tumor necrosis factor-α
Interleukin-1, -6, -11, -18

Platelet-derived growth factor
Transforming growth factor-b1
Tumor-derived growth factor-β

Insulin-like growth factor
Fibroblast growth factor-2

Bone production

Differentiation of progenitor cells into chondrocytes
Formation of fibrocartilage
Fibrocartilage calcification

Woven bone deposition

Bone morphogenetic protein
Tumor-derived growth factor-β2 and -β3

Bone remodeling
Differentiation of osteoprogenitor cells into osteoblasts and osteoclasts

Resorption of woven bone
Deposition of lamellar bone

Interleukin-1, -6, -11, and -12
Tumor necrosis factor-α

Interferon-γ

Inflammation is initiated immediately after a bone fracture, with a peak at 24 h. Bleed-
ing into the region results in a migration of an intricate network of proinflammatory sig-
nals and growth factors, which will upregulate inflammatory molecules, including tumor
necrosis factor-α, and interleukin-1, -6, -11, and -18. Subsequently, polymorphonuclear
neutrophils, macrophages, and platelets are recruited and produce platelet-derived growth
factor, transforming growth factor-b1, tumor-derived growth factor-β, insulin-like growth
factor, and fibroblast growth factor-2 to form an initial hematoma [88,94,95].

The bone-production phases start with the substitution of the coagulated blood with a
soft callus consisting of fibrous tissue and cartilage as a consequence of bone morphogenetic
protein and tumor-derived growth factor-β2 and -β3 signaling. At the end of this stage, the
cartilage is matured into a hard callus, which will be replaced by the woven bone [88,94,95].

The repair process’s ultimate phase is bone remodeling, which continues for more than
a few months. In this step, osteoprogenitor cells differentiate into osteoblasts and osteo-
clasts, which will modulate the substitution of the woven bone with lamellar bone, through
the signaling of interleukin-1, -6, -11, and -12; tumor necrosis factor-α; and interferon-γ.
Thus, with the progressive blood circulation, the geometry and function of the damaged
bone is restored [88,94,95].

As the process of bone regeneration comprises a variety of mechanisms, a complete
understanding of the process requires a thorough assessment of how the individual events
interact within and across multiple length and time scales [25]. Accounting for most of the
functional disabilities and esthetic and psychological trauma for patients, the regeneration
of bone defects caused by fractures, trauma, metabolic and congenital disorders, tumors,
infectious diseases, or abnormal bone development remains one of the most important
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challenges in the field. In this manner, current strategies are focusing on the use of
biomaterials and biocompounds that could enhance the regenerative processes [36].

Therefore, natural compounds known for their anti-inflammatory, antioxidant, an-
ticancer, and antimicrobial characters have been investigated for potential bone-healing
capacities. In this context, EOs could become ideal candidates for this purpose. However,
the results described in the literature are still limited [26], and further research is required
for assessing their potential in orthopedic applications. Current studies involve the use
of EOs for enhancing the regeneration of bone defects and preventing or treating osteo-
porosis and osteoarthritis and as bioactive compounds in bone scaffolds or implants for
regenerative or antimicrobial purposes.

Damlar et al. investigated the bone-healing effects of bovine-derived xenografts and
Hypericum perforatum EO in calvaris bone bicortical defects of New Zealand rabbits. Compar-
ative results between xenografts alone and xenografts with EOs showed improved results
for the EO models, with reduced residual grafts and enhanced de novo bone formation [96].

Furthermore, Kania et al. studied the effects of Cinnamomum burmanini Blume EOs in
ovariectomized Wistar rats on bone-turnover markers, mineral elements, and mesostruc-
ture. Specifically, administration at 12.5, 25, and 50 mg/kg body weight doses resulted in
an attenuated increase of serum C-telopeptide collagen type I and osteocalcin, thus proving
the EO’s potential to normalize bone-turnover markers and achieve the mesostructure of
hydroxyapatite crystal growth [97]. Additionally, Elbahnasawy et al. evaluated the protec-
tive effects of Thymus vulgaris and Rosmarinus officinalis EOs against osteoporosis in male
Sprague–Dawley rats with low calcium intake. EO administration resulted in bone-loss
inhibition, plasma calcium and vitamin D3 increases, bone mineral-density improvement,
and inflammation and oxidative stress prevention, which proves their efficiency for coun-
teracting bone resorption and osteoporosis [98]. Moreover, Sapkota et al. evaluated the
effects of thymol, the key compound contributing to thyme leaves’ aroma, on receptor acti-
vator NF-κB ligand-induced osteoclastogenesis in murine macrophage RAW264.7 cells and
bone-marrow-derived macrophage cells and lipopolysaccharide-induced bone loss in ICR
mice. Thymol significantly reduced the formation and differentiation of osteoclasts without
cytotoxic effects and lipopolysaccharide-induced bone loss, thus proving its therapeutic
potential for metabolic bone disorders [99].

Similarly, the effects of EOs on preventing or ameliorating osteoarthritis have been
widely investigated. In this context, Belkhodja et al. performed radiographic and histologic
evaluations of the effects of Rosmarinus officinalis and Populus alba on Wistar rat models of
knee osteoarthritis. Results showed significant decreases in the Mankin scores for EO-treated
mice compared to the untreated group, with a slightly higher difference for the Populus alba
group [100]. Furthermore, Funk et al. investigated the anti-inflammatory activity of ginger
EOs in female Lewis rats with streptococcal cell wall-induced arthritis. Administration of the
EO prevented chronic joint inflammation, and results suggested that the anti-inflammatory
effects could be attributed to the synergistic effects of its biocompounds [101]. Moreover, Bi
et al. investigated the effects of Notopterygium incisum volatile EOs against the production
of nitric oxide in RAW264.7 cells, which decreased by more than 50%. Additionally, the
EO ameliorated adjuvant-induced arthritis in rat models in a dose-dependent manner and
inhibited EAhy926 cell proliferation. Therefore, the antioxidant, anti-inflammatory, antipro-
liferative, and antiangiogenic effects make Notopterygium incisum EOs potential candidates
in the treatment of osteoarthritis [102]. α-bisabolol, a sesquiterpene found in various EOs,
such as chamomile, has been studied for its anti-inflammatory and chondroprotective effects.
Its administration on human chondrocytes treated with advanced glycation end products
to mimic osteoarthritis suppressed inflammation and extracellular matrix degeneration by
blocking nuclear factor kappa B, p38, and c-Jun N-terminal kinase signaling. Additionally,
α-bisabolol ameliorated radiological and histopathological changes in mouse models, prov-
ing its potential for osteoarthritis therapy [103]. Similar results were obtained by Gomes
et al., who applied myrtenol, a bicyclic monoterpene with anti-inflammatory properties,
on rat models of chronic osteoarthritis [104]. Additionally, studies evaluating the effects of
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aromatherapy massages in patients with osteoarthritis using sweet almond, apricot kernel,
lavender, eucalyptus, and ginger EOs proved their potential in ameliorating knee pain,
which could be applied as a routine adjuvant therapy [105,106].

In addition, EOs could be applied as bioactive compounds in scaffolds designed
for bone-regeneration purposes (Figure 4). In this context, electrospun polyurethane scaf-
folds treated with EOs and metallic nanoparticles have been widely investigated. Chao
et al. treated polyurethane scaffolds with grape seed EOs and honey and propolis. Results
showed that neither of the scaffolds exhibited cytotoxic effects on red blood cells and human
fibroblast cells, thus proving blood compatibility and cell viability rates. Additionally, the
addition of the biocompounds increased hydrophilicity and thermal stability and reduced
surface roughness [107]. Mani et al. treated polyurethane nanofibers with ylang EOs and
zinc nitrate, which improved thermal stability and mechanical properties and reduced sur-
face roughness. Microbiology tests revealed improved biocompatibility and anticoagulant
properties and increased calcium deposition for the treated samples [108]. Similar results
were obtained by Jaganathan et al. by treating polyurethane scaffolds with rosemary EOs
and copper sulfate, which exhibited antibacterial, bone mineralization, and osteoblast cell ad-
hesion and proliferation activities [109]. Zhang et al. treated electrospun polyurethane with
lavender EOs and cobalt nitrate, and results proved delayed blood coagulation, nontoxic
behavior on fibroblast cells, and bone mineralization properties [110]. Moreover, Banerjee
et al. developed porous fluorescent nanocrystalline erbium-doped hydroxyapatite treated
with eucalyptus, frankincense, tea tree, and wintergreen EOs. The obtained nanocomposites
exhibited moderate biocompatibility toward WI-38 cells, antimicrobial activities against
Escherichia coli and Staphylococcus aureus, cytotoxic effects against breast cancer cell line
MDA-MB 468, and pH-dependent EO release profiles [111]. Florea et al. also demonstrated
the potential of eucalyptus EOs in collagen type I and hydroxyapatite composite scaffolds
to promote bone regeneration and inhibit antimicrobial activities [112]. Moreover, Polo
et al. combined the regenerative effects of the commercially available Surgibone calcium
phosphate microparticles and vanillin’s antimicrobial effects. Results showed antibacterial
effects toward Escherichia coli and biocompatibility on MG-63 human osteoblast-like cells,
but further in vivo studies are required to confirm these biomaterials’ efficacy [113].
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Additionally, EOs could also be applied for coating metallic implants in order to
prevent microbial contamination and infections. In this regard, treatment of Ti6Al4V with
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peppermint EOs [115] and farnesol [116] could represent a promising coating strategy that
prevents bacterial adhesion and biofilm development.

4. Conclusions and Future Perspectives

Bone healing and regeneration is a highly organized, multipart, and reformative
process that involves numerous progenitor, inflammatory, endothelial, and hematopoietic
cells and a cascade of biological events. As the intrinsic capacity of self-remodeling and
self-healing is insufficient in the case of bone fractures, defects, or trauma, additional
treatment is required. As conventional options are associated with a variety of drawbacks
and are relatively ineffective, innovative strategies are fundamental. EOs, which have long
proven their antimicrobial, antioxidant, and anti-inflammatory effects, could be efficiently
used for bone repair and regenerative applications. In this context, studies focus on
applying EOs for enhancing the regeneration of bone defects and preventing or treating
osteoporosis and osteoarthritis and as bioactive compounds in bone scaffolds or implants
for regenerative or antimicrobial purposes. The most commonly used EOs include St. John
wort, cinnamon, thyme, rosemary, white poplar, ginger, and Notopterygium root EOs, which
have proven to improve bone properties, such as mineral turnover marker normalization,
bone-loss inhibition, plasma calcium and vitamin D3 increases, bone mineral-density
improvement, and inflammation and oxidative stress prevention Furthermore, grape
seed, ylang, rosemary, eucalyptus, frankincense, tea tree, and wintergreen EOs applied
in scaffolds have improved biocompatibility and bone regeneration capacities, while also
preventing microbial colonization. However, the publications available in the literature
are still limited, with most studies only focusing on animal experiments. Thereby, further
studies are required in order to confirm the efficiency of these biocompounds. Additionally,
assessing the precise chemical composition and the underlying mechanisms of action is
necessary for a thorough understanding of the field.
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